高中数学16微积分基本定理(教案)

合集下载

(整理)学年高中数学16微积分基本定理学案选修2-2.

(整理)学年高中数学16微积分基本定理学案选修2-2.

选修2-2 1.6 微积分基本定理一、选择题1.下列积分正确的是( )[答案] AA.214B.54 C.338D.218[答案] A[解析] ⎠⎛2-2⎝ ⎛⎭⎪⎫x 2+1x 4d x =⎠⎛2-2x 2d x +⎠⎛2-21x 4d x=13x 3| 2-2+⎝ ⎛⎭⎪⎫-13x -3| 2-2 =13(x 3-x -3)| 2-2 =13⎝ ⎛⎭⎪⎫8-18-13⎝ ⎛⎭⎪⎫-8+18=214.故应选A.3.⎠⎛1-1|x |d x 等于( )A.⎠⎛1-1x d xB.⎠⎛1-1d xC.⎠⎛0-1(-x )d x +⎠⎛01x d xD.⎠⎛0-1x d x +⎠⎛01(-x )d x[答案] C[解析] ∵|x |=⎩⎪⎨⎪⎧x (x ≥0)-x (x <0)∴⎠⎛1-1|x |d x =⎠⎛0-1|x |d x +⎠⎛01|x |d x=⎠⎛0-1(-x )d x +⎠⎛01x d x ,故应选C.4.设f (x )=⎩⎪⎨⎪⎧x 2(0≤x <1)2-x (1≤x ≤2),则⎠⎛02f (x )d x 等于( )A.34B.45C.56D .不存在[答案] C[解析] ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x取F 1(x )=13x 3,F 2(x )=2x -12x 2,则F ′1(x )=x 2,F ′2(x )=2-x∴⎠⎛02f (x )d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=13-0+2×2-12×22-⎝ ⎛⎭⎪⎫2×1-12×12=56.故应选C.5.⎠⎛ab f ′(3x )d x =( )A .f (b )-f (a )B .f (3b )-f (3a ) C.13[f (3b )-f (3a )]D .3[f (3b )-f (3a )][答案] C[解析] ∵⎣⎢⎡⎦⎥⎤13f (3x )′=f ′(3x ) ∴取F (x )=13f (3x ),则⎠⎛abf ′(3x )d x =F (b )-F (a )=13[f (3b )-f (3a )].故应选C. 6.⎠⎛03|x 2-4|d x =( )A.213B.223 C.233D.253[答案] C[解析] ⎠⎛03|x 2-4|d x =⎠⎛02(4-x 2)d x +⎠⎛23(x 2-4)d x=⎝ ⎛⎭⎪⎫4x -13x 3| 20+⎝ ⎛⎭⎪⎫13x 3-4x | 32=233.A .-32B .-12C.12D.32[答案] D[解析] ∵1-2sin2θ2=cos θ8.函数F (x )=⎠⎛0x cos t d t 的导数是( )A .cos xB .sin xC .-cos xD .-sin x[答案] A[解析] F (x )=⎠⎛0x cos t d t =sin t | x0=sin x -sin0=sin x .所以F ′(x )=cos x ,故应选A. 9.若⎠⎛0k (2x -3x 2)d x =0,则k =( )A .0B .1C .0或1D .以上都不对[答案] C[解析] ⎠⎛0k (2x -3x 2)d x =(x 2-x 3)| k 0=k 2-k 3=0,∴k =0或1.10.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 [答案] B[解析] F (x )=⎠⎛0x (t 2-4t )d t =⎝ ⎛⎭⎪⎫13t 3-2t 2| x 0=13x 3-2x 2(-1≤x ≤5).F ′(x )=x 2-4x ,由F ′(x )=0得x =0或x =4,列表如下:可见极大值F (0)=0,极小值F (4)=-3.又F (-1)=-73,F (5)=-253∴最大值为0,最小值为-323. 二、填空题 11.计算定积分: ①⎠⎛1-1x 2d x =________②⎠⎛23⎝ ⎛⎭⎪⎫3x -2x 2d x =________③⎠⎛02|x 2-1|d x =________ ④⎠⎛0-π2|sin x |d x =________[答案] 23;436;2;1[解析] ①⎠⎛1-1x 2d x =13x 3| 1-1=23.②⎠⎛23⎝⎛⎭⎪⎫3x -2x 2d x =⎝ ⎛⎭⎪⎫32x 2+2x | 32=436.③⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝ ⎛⎭⎪⎫x -13x 3| 10+⎝ ⎛⎭⎪⎫13x 3-x | 21=2.[答案] 1+π213.(2010·陕西理,13)从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.[答案] 13[解析] 长方形的面积为S 1=3,S 阴=⎠⎛013x 2dx =x 3| 10=1,则P =S 1S 阴=13. 14.已知f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.[答案] -1或13[解析] 由已知F (x )=x 3+x 2+x ,F (1)=3,F (-1)=-1, ∴⎠⎛1-1f (x )d x =F (1)-F (-1)=4,∴2f (a )=4,∴f (a )=2.即3a 2+2a +1=2.解得a =-1或13.三、解答题15.计算下列定积分: (1)⎠⎛052x d x ;(2)⎠⎛01(x 2-2x )d x ;(3)⎠⎛02(4-2x )(4-x 2)d x ;(4)⎠⎛12x 2+2x -3x d x .[解析] (1)⎠⎛052x d x =x 2| 50=25-0=25.(2)⎠⎛01(x 2-2x )d x =⎠⎛01x 2d x -⎠⎛012x d x=13x 3| 10-x 2| 10=13-1=-23. (3)⎠⎛02(4-2x )(4-x 2)d x =⎠⎛02(16-8x -4x 2+2x 3)d x=⎝ ⎛⎭⎪⎫16x -4x 2-43x 3+12x 4| 20=32-16-323+8=403.(4)⎠⎛12x 2+2x -3x d x =⎠⎛12⎝⎛⎭⎪⎫x +2-3x d x=⎝ ⎛⎭⎪⎫12x 2+2x -3ln x | 21=72-3ln2.16.计算下列定积分:[解析] (1)取F (x )=12sin2x ,则F ′(x )=cos2x=12⎝ ⎛⎭⎪⎫1-32=14(2-3).(2)取F (x )=x 22+ln x +2x ,则F ′(x )=x +1x+2.∴⎠⎛23⎝ ⎛⎭⎪⎫x +1x 2d x =⎠⎛23⎝⎛⎭⎪⎫x +1x +2d x=F (3)-F (2)=⎝ ⎛⎭⎪⎫92+ln3+6-⎝ ⎛⎭⎪⎫12×4+ln2+4=92+ln 32.(3)取F (x )=32x 2-cos x ,则F ′(x )=3x +sin x17.计算下列定积分: (1)⎠⎛0-4|x +2|d x ;(2)已知f (x )=,求⎠⎛3-1f (x )d x 的值.[解析] (1)∵f (x )=|x +2|=∴⎠⎛0-4|x +2|d x =-⎠⎛-4-2(x +2)d x +⎠⎛0-2(x +2)d x=-⎝ ⎛⎭⎪⎫12x 2+2x | -2-4+⎝ ⎛⎭⎪⎫12x 2+2x | 0-2=2+2=4.(2)∵f (x )=∴⎠⎛3-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01(1-x )d x +⎠⎛12(x -1)d x=⎝ ⎛⎭⎪⎫x -x 22| 10+⎝ ⎛⎭⎪⎫x 22-x | 21 =12+12=1. 18.(1)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值;(2)已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a ,b ,c 的值.[解析] (1)取F (x )=23ax 3-12a 2x 2则F ′(x )=2ax 2-a 2x ∴f (a )=⎠⎛01(2ax 2-a 2x )d x=F (1)-F (0)=23a -12a 2=-12⎝ ⎛⎭⎪⎫a -232+29∴当a =23时,f (a )有最大值29.(2)∵f (-1)=2,∴a -b +c =2① 又∵f ′(x )=2ax +b ,∴f ′(0)=b =0② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+bx +c )d x取F (x )=13ax 3+12bx 2+cx则F ′(x )=ax 2+bx +c∴⎠⎛01f (x )d x =F (1)-F (0)=13a +12b +c =-2③解①②③得a =6,b =0,c =-4.。

人教版高中数学第一章1.6微积分基本定理

人教版高中数学第一章1.6微积分基本定理

的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 下列积分值为 2 的是( )
A.∫50(2x-4)dx C.∫311xdx
B.∫0π cos xdx D.∫0π sin xdx
解析:∫50(2x-4)dx=(x2-4x)|50=5,∫0π cos xdx=sin
x|π0 =0,∫311xdx=ln x|31=ln 3,∫π0 sin xdx=-cos x|0π =2.
x 的原函数为
F(x)
π
=12x-12sin x,所以 sin2 x2dx=12x-12sin x|20=π4-12=
π-2 4. π-2 答案: 4
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
=sin 1-23. 答案:sin 1-23
类型 3 微积分基本定理的综合应用(互动探究)

微积分基本定理 说课稿 教案 教学设计

微积分基本定理   说课稿  教案 教学设计

微积分基本定理一、教学目标:知识与技能:1.通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分2.通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义过程与方法:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。

情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。

难点:了解微积分基本定理的含义。

三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程n有没有计算定积分的更直接方法,也是比较一般的方法呢?(1)下面以变速直线运动中位置函数与速度函数之间的联系为例:设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。

另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T - ()()S t v t '=。

3.微积分基本定理对于一般函数()f x ,设()()F x f x '=,是否也有()()()baf x dx F b F a =-⎰?若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。

2015高中数学 1.6微积分基本定理 课件(人教A版选修2-2)

2015高中数学 1.6微积分基本定理 课件(人教A版选修2-2)

●重点、难点 重点:通过探究变速直线运动中的速度和位移的关系导出 微积分基本定理,以及对微积分基本定理的应用. 难点:了解微积分基本定理的含义.
1.了解导数与定积分的关系以及微积分基本定理 课标 的含义.(重点、易混点) 解读 2.掌握微积分基本定理,会用微积分基本定理求
定积分.(重点、难点)
微积分基本定理(牛顿—莱布尼茨公式)
a
图①
图② 图 1-6-1
图③
(2)当曲边梯形在 x 轴下方时,如图②,
x 轴上方、x 轴下方均存在时,如图③,
则bf(x)dx= S上-S下
a
.特别地,若 S 上=S 下,则bf(x)dx= 0 .
a
用微积分基本定理计算定积分
计算下列定积分. (1)2(x2+2x+3)dx;(2)0-π(cos x-ex)dx;
【提示】 不唯一,根据导数的性质,若F′(x)=f(x),则 对任意实数c,都有[F(x)+c]′=F′(x)+c′=f(x).
(1)条件:f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x) ;
(2)结论:bf(x)dx= F(b)-F(a)

a
(3)符号表示:bf(x)dx= F(x)|ab
=(2k+2)-
12k+1=32k+1,所以2≤32k+1≤4,解得23≤k≤2.
【答案】
k23≤k≤2
1.含有参数的定积分可以与方程、函数或不等式综合起来 考查,先利用微积分基本定理计算定积分是解决此类综合问题 的前提.
2.计算含有参数的定积分,必须分清积分变量与被积函数 f(x)、积分上限与积分下限、积分区间与函数F(x)等概念.




微积分基本定理 说课稿 教案 教学设计

微积分基本定理   说课稿  教案 教学设计

微积分基本定理【学习目标】1.理解微积分基本定理的含义。

2.能够利用微积分基本定理求解定积分相关问题。

【要点梳理】要点一、微积分基本定理的引入我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。

我们必须寻求计算定积分的新方法,也是比较一般的方法。

(1)导数和定积分的直观关系:如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。

设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗?一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。

另一方面,这段路程还可以通过速度函数v (t )表示为 ()d bav t t ⎰,即 s =()d bav t t ⎰。

所以有: ()d bav t t =⎰s (b )-s (a )(2)导数和定积分的直观关系的推证:上述结论可以利用定积分的方法来推证,过程如下:如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间:[t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为1i i b at t t n--∆=-=。

当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移111()'()'()i i i i i b as h v t t s t t s t n----∆≈=∆=∆=。

② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是1tan '()i i i s h DPC t s t t -∆≈=∠⋅∆=⋅∆。

微积分基本定理 说课稿 教案 教学设计

微积分基本定理   说课稿  教案 教学设计

微积分基本定理【教学目标】1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.【教法指导】本节学习重点:会利用微积分基本定理求函数的积分.本节学习难点:直观了解并掌握微积分基本定理的含义.【教学过程】☆复习引入☆从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但直接用定积分的定义计算ʃ10x3d x的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?☆探索新知☆探究点一微积分基本定理问题你能用定义计算ʃ211xd x吗?有没有更加简便、有效的方法求定积分呢?思考1 如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f (x )d x 很方便,其关键是准确写出满足F ′(x )=f (x )的F (x ).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使F ′(x )=f (x )?若不唯一,会影响微积分基本定理的唯一性吗?答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,[F (x )+c ]′=F ′(x )+c ′=f (x ).不影响,因为ʃb a f (x )d x =[F (b )+c ]-[F (a )+c ]=F (b )-F (a )例1 计算下列定积分: (1)ʃ211x d x ;(2)ʃ31(2x -1x2)d x ;(3)ʃ0-π(cos x -e x )d x .所以ʃ31(2x -1x 2)d x =ʃ312x d x -ʃ311x2d x =x 2|31+1x|31 =(9-1)+(13-1)=223. (3)ʃ0-π(cos x -e x )d x =ʃ0-πcos x d x -ʃ0-πe x d x=sin x |0-π-e x |0-π=1eπ-1. 反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案 B解析 S 1=ʃ21x 2d x =13x 3|21=73, S 2=ʃ211x d x =ln x |21=ln 2<1,S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1)>73. 所以S 2<S 1<S 3,选B.探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧ sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.解 图象如图.ʃ40f (x )d x =π20⎰sin x d x +π20⎰1d x +42⎰(x -1)d x=(-cos x )|π20+x |2π2+(12x 2-x )|42 =1+(2-π2)+(4-0)=7-π2. 反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧ x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .探究点三 定积分的应用例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.解 因为(-cos x )′=sin x ,所以ʃπ0sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=2;ʃ2ππsin x d x =(-cos x )|2ππ=(-cos 2π)-(-cos π)=-2;ʃ2π0sin x d x =(-cos x )|2π0=(-cos 2π)-(-cos 0)=0.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).。

微积分基本定理 教学设计 教案

微积分基本定理 教学设计 教案

1. 教学目标1、能说出微积分基本定理。

2、能运用微积分基本定理计算简单的定积分。

3、能掌握微积分基本定理的应用。

4、会用牛顿-莱布尼兹公式求简单的定积分。

2. 教学重点/难点教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。

教学难点:微积分基本定理以及利用定理求复合函数定积分的计算。

3. 教学用具多媒体、板书4. 标签一、复习引入【师】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题:1.我们如何确定曲线上一点处切线的斜率呢?2.如何求曲线下方的面积?3.用“以直代曲”解决问题的思想和具体操作过程是什么呢?求由连续曲线y=f(x)对应的曲边梯形面积的方法【板书】用“以直代曲”解决问题的思想和具体操作过程:分割I以百代曲]—►,作和匚事I逼近二、新知介绍【1】微积分基本定理【师】同学们刚刚接触到积分,那么大家通过阅读课本来找出什么是微积分基本定理呢?【生】讨论回答【师】如果£(媒)是在区间回句上的壁画数,并且F1■⑶=的,则J:fG)dx=F(b)-F(江记!F(b)-F(^)=F㈤|>贝山『欧)收=Fg|:=F(b)—F⑷/值)是F㈤的导函数,F(>茂处)的原函数.【板书】1.f(x)dx=F(b3-7(a)记:F(b)-F(a)=F(x)|^【板演/PPT】例1:计算下列定积分?(1)J::dx(2)/;2xdx【师】同学们在练习本上先试着算一下,看看能不能计算出这两个定积分的值?【生】思考讨论【师】请大家注意,一定要按照定积分基本定理来做呢?(然后,演板)2、知识探究(1)微积分基本定理求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意:y=抑原函数是y=In(x)(2)求定积分时要注意积分变量,有时在被积函数中含有参数,但它不一定是积分变量。

(3)定积分的值可以是任意实数。

例2:计算定积分【师】同学们根据向量基本定理然后仔细的想一下,计算出结果【生】思考讨论【师】请大家注意,一定要按照向量的定义来做哦。

1.6微积分基本定理第2课时 (精品教案)

1.6微积分基本定理第2课时  (精品教案)

§1.6.2微积分基本定理【学情分析】:在上一节教学中,学生已经学习了微积分基本定理,并且初步学会使用微积分基本定理进行求定积分的计算.本节需要在上一节的基础上,进一步理解定积分的几何意义,以及利用几何意义求几何图形的面积.学生在学习了几种初等函数,必然会设法计算它们的一些定积分.另外学生在之前还学习一些具有特殊函数性质(奇偶性)的函数,这些函数也是可以作为研究的对象.【教学目标】:(1)知识与技能:进一步熟悉运用基本定理求定积分;增强函数知识的横向联系; (2)过程与方法:理解定积分的值与曲边梯形面积之间的关系; (3)情感态度与价值观:培养学生的探究精神与创新思想。

【教学重点】:(1)运用基本定理求定积分(2)定积分的值与曲边梯形面积之间的关系【教学难点】:(1)求函数()f x 的一个原函数()F x(2)理解定积分的值与曲边梯形面积之间的关系【教学突破点】:合理利用复合函数的求导法则来求原函数()F x 【教学过程设计】:(基础题)1. 22(sin cos )d x x x ππ-+⎰的值是( )(A)0 (B)4π(C)2 (D)4答案:C解释:()2222(sin cos )d cos sin 2x x x x x ππππ--+=-+=⎰2. 曲线3cos (0)2y x x π=≤≤与坐标轴所围成的面积是( ) (A)2(B)3(C)52(D)4答案:B 解释:332222cos d cos d (cos )d S x x x x x x ππππ==+-⎰⎰⎰3202sin sin 123x x πππ=-=+=3. sin (02)y x x π=≤≤与x 轴所围成图形的面积为 答案:4解释:220sin d sin d sin d x x x x x x ππππ=+⎰⎰⎰20cos (cos )4x x πππ=--=4.设201()512x x f x x ≤≤⎧=⎨<≤⎩,求20()f x dx ⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、教学过程 1、复习:
定积分的概念及用定义计算 2、引入新课
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。

我们必须寻求计算定积分的新方法,也是比较一般的方法。

变速直线运动中位置函数与速度函数之间的联系
设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为
2
1
()T T v t dt ⎰。

另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即
2
1
()T T v t dt ⎰
=12()()S T S T -
而()()S t v t '=。

对于一般函数()f x ,设()()F x f x '=,是否也有
()()()b
a
f x dx F b F a =-⎰
若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算
()f x 在[,]a b 上的定积分的方法。

注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则
()()()b
a
f x dx F b F a =-⎰
证明:因为()x Φ=
()x
a
f t dt ⎰
与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤)
其中C 为某一常数。

令x a =得()F a -()a Φ=C ,且()a Φ=
()a
a
f t dt ⎰
=0 即有C=()F a ,故()F x =()x Φ+()F a
∴ ()x Φ=()F x -()F a =()x
a
f t dt ⎰
令x b =,有
()()()b
a
f x dx F b F a =-⎰
此处并不要求学生理解证明的过程
为了方便起见,还常用()|b
a F x 表示()()F
b F a -,即
()()|()()b
b a a
f x dx F x F b F a ==-⎰
该式称之为微积分基本公式或牛顿—莱布尼兹公式。

它指出了求连续函数定积分的一般方法,把求
定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。

它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。

因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

例1.计算下列定积分:
(1)2
11dx x ⎰; (2)3211
(2)x dx x
-⎰。

解:(1)因为'1(ln )x x
=,所以22
111ln |ln 2ln1ln 2dx x x ==-=⎰。

(2))因为2'
'211()2,()x x x x ==-,所以3332211111(2)2x dx xdx dx x
x -=-⎰⎰⎰
23
3111122||(91)(1)33
x x =+=-+-=。

练习:计算1
20
x dx ⎰
解:由于
313x 是2x 的一个原函数,有 120x dx ⎰=3101|3x =33111033⋅-⋅=1
3
例2.计算下列定积分:
220
sin ,sin ,sin xdx xdx xdx π
ππ
π

⎰⎰。

由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。

解:因为'
(cos )sin x x -=,所以
00sin (cos )|(cos )(cos 0)2xdx x π
ππ=-=---=⎰

2
2
sin (cos )|(cos 2)(cos )2xdx x π
π
ππππ=-=---=-⎰, 22
sin (cos )|(cos 2)(cos 0)0xdx x π
π
π=-=---=⎰
. 可以发现,定积分的值可能取正值也可能取负值,还可能是0: ( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;
图1 . 6 一 3 ( 2 )
(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;
( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。

设汽车以等减速度a =1.8米/秒2
刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。

当t =0时,汽车速度0v =32公里/小时=321000
3600
⨯米
/秒≈8.88米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从
(t)=8.88-1.8t=0v 解得8.88
t= 4.931.8
≈秒 于是在这段时间内,汽车所走过的距离是
4.93
4.93
(t)(8.88 1.8t)s v dt dt ==-⎰

= 4.93
20
1
(8.88 1.8t )
21.902-⨯≈米,即在刹车后,汽车需走过
21.90米才能停住.
微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.。

相关文档
最新文档