微积分基本定理 课件
合集下载
微积分基本公式PPT课件

xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。
微积分基本公式优秀课件

牛顿-莱布尼茨公式
例:求 2 x 2 d x 和 2 t 2 d t
1
1
例:求 y2cosx在 x [ 0 , ] 的平均值. 2
例:连续可导函数 f (x) 有 f (a) = 3, f (b) = 5, 求
b f ( x)dx. a
积分上限函数的导数
利用牛顿—莱布尼茨公式反过来理解积分上限函数 (注:此为非正规方式)
x
(x)a f(t)dt
就是 f (x) 在 [a , b] 上的一个原函数.即:
(x)f(x) 或 (x) f(x)dx
例:函数 f (t ) = t 的积分上限函数 (x)
x
tdt
0
(x)f(x)x
原函数存在定理
x
(x )af(t)d t (x )f(x )
证:
xx
x
(xx)(x) f(t)dt f(t)dt
例:已知
f
(x)
x x2
0 x1 ,求 1 x2
2
f ( x)dx.
0
y
f (x)
O
1 2x
例:已知
x2 f (x) ex
1 x2
,求
0 x1
2
f ( x)dx.
0
牛顿-莱布尼茨公式
例:求 cos x dx 0
例:求 sin x dx
2
例:求 1 x dx 0
2
例:求 2x 1 dx 0
F(x)(x)C, x[a,b]
当 x = a 得 F(a) (a)C,
牛顿-莱布尼茨公式
a
(a )af(x )d x0 F (a )C
( x ) F ( x ) C F ( x ) F ( a )
( 人教A版)微积分基本定理课件 (共38张PPT)

2
2
答案:D
3.设 f(x)=x22-,x0,≤1x<≤x≤1,2,
则2f(x)dx 等于________. 0
解析:2f(x)dx=1x2dx+2(2-x)dx
0
0
1
=x3310 +(2x-x22)21
=13+[(2×2-222)-(2-12)]=56.
答案:56
探究一 计算简单函数的定积分
[自主梳理]
如果 f(x)是区间[a,b]上的 连续 函数,并且 F′(x) 内容 = f(x),那么bf(x)dx= F(b)-F(a)
a
符号
bf(x)dx=F(x)ba = F(b)-F(a)
a
二、定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面积为 S 下,则 1.当曲边梯形的面积在 x 轴上方时,如图(1), 则bf(x)dx= S 上.
(7)baxdx=lnaxaba (a>0 且 a≠1). a
1.计算下列定积分.
(1)1(x3-2x)dx; 0
(2)
2 0
(x+cos
x)dx;
(3
解析:(1)∵(14x4-x2)′=x3-2x,
∴1(x3-2x)dx=(14x4-x2)10 =-34. 0
2.(1)若
f(x)=x2 cos
x≤0 x-1
x>0
2.常见函数的定积分公式: (1)bCdx=Cxba (C 为常数).
a
(2)abxndx=n+1 1xn+1ba (n≠-1). (3)bsin xdx=-cos xba .
a
(4)bcos xdx=sin xba . a
(5)b1xdx=ln xba (b>a>0). a
微积分基本定理-2市公开课获奖课件省名师示范课获奖课件

2. 汽车以每小时 36 km 旳速度行 驶 ,到某处需要减速停车,设汽车以等
加速度 a = -5 m刹s2车,问从开始刹车
到停车走了多少距离?
课堂答案
1.解: 因为
-
1 x
'
=
1 x2
, arctanx '
=
1
1 + x2
由微积分基本定理得:
2 dx
21
21
1 x2 (1 + x2 ) = 1 x2 dx - 1 1 + x2dx
微积分基本定理
知识回忆
我们已经学习了微积分 学中两个最基本和最主要旳 概念——导数和定积分,先 回忆一下.
导数 是刻画函数变化快慢程度旳 一种一般概念,因为变量和函数在自然 界和社会中有着几乎无处不在旳实际背 景,所以它是高等学校许多专业旳一门 主要基础课.
定积分 旳最本质思想:在每个局 部小范围内“以直代曲”,“以不变代 变”和逼近旳思想,这也是应用定积分 处理实际问题旳思想措施.
过程与措施
经过实例(如变速运动物体在某 段时间内旳速度与旅程旳关系), 直观了解微积分基本定理旳含义.
情感态度与价值观
微积分是大学阶段旳数学必修, 是高等数学旳基础构成部分.高中阶 段旳导数是其基础.
教学重难点
要点
直观了解微积分定理旳基本含义, 能利用定理计算简朴旳定积分.
难点
微积分基本定理旳推导过程.
=
F(x)
-
F
a
令
x
= b,
b
即得a f
x dx
=
Fb- Fa.
接下来让我们练一练吧
定积分旳基本公式,又称牛顿---莱布尼兹公式.常表达为
加速度 a = -5 m刹s2车,问从开始刹车
到停车走了多少距离?
课堂答案
1.解: 因为
-
1 x
'
=
1 x2
, arctanx '
=
1
1 + x2
由微积分基本定理得:
2 dx
21
21
1 x2 (1 + x2 ) = 1 x2 dx - 1 1 + x2dx
微积分基本定理
知识回忆
我们已经学习了微积分 学中两个最基本和最主要旳 概念——导数和定积分,先 回忆一下.
导数 是刻画函数变化快慢程度旳 一种一般概念,因为变量和函数在自然 界和社会中有着几乎无处不在旳实际背 景,所以它是高等学校许多专业旳一门 主要基础课.
定积分 旳最本质思想:在每个局 部小范围内“以直代曲”,“以不变代 变”和逼近旳思想,这也是应用定积分 处理实际问题旳思想措施.
过程与措施
经过实例(如变速运动物体在某 段时间内旳速度与旅程旳关系), 直观了解微积分基本定理旳含义.
情感态度与价值观
微积分是大学阶段旳数学必修, 是高等数学旳基础构成部分.高中阶 段旳导数是其基础.
教学重难点
要点
直观了解微积分定理旳基本含义, 能利用定理计算简朴旳定积分.
难点
微积分基本定理旳推导过程.
=
F(x)
-
F
a
令
x
= b,
b
即得a f
x dx
=
Fb- Fa.
接下来让我们练一练吧
定积分旳基本公式,又称牛顿---莱布尼兹公式.常表达为
定积分与原函数的关系 微积分基本定理【高等数学PPT课件】

通过原函数计算定积分开辟了道路 .
2) 变限积分求导:
d (x)
dx a
f
(t) d t
f
[ (x)](x)
d
dx
( x) (x)
f
(t)
dt
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [ (x)](x) f [ (x)] (x)
第二节 定积分与原函数的关系 微积分基本定理
一、积分上限函数
二、牛顿—莱布尼茨公式
一、积分上限函数
定理1. 若
x
则变上限函数 y
y f (x)
(x) a f (t) d t
(x)
证: x, x h [a, b] , 则有
o a x b x
(x
h) h
(x)
1
o
x
0
例6
设
f
(x)
2x 5
0 1
x x
1
,
2
求
2
0
f
( x)dx.
解:
2
0
f
ห้องสมุดไป่ตู้
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6.
0
1
o 12x
例7. 设
解:设
1
2) 变限积分求导:
d (x)
dx a
f
(t) d t
f
[ (x)](x)
d
dx
( x) (x)
f
(t)
dt
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [ (x)](x) f [ (x)] (x)
第二节 定积分与原函数的关系 微积分基本定理
一、积分上限函数
二、牛顿—莱布尼茨公式
一、积分上限函数
定理1. 若
x
则变上限函数 y
y f (x)
(x) a f (t) d t
(x)
证: x, x h [a, b] , 则有
o a x b x
(x
h) h
(x)
1
o
x
0
例6
设
f
(x)
2x 5
0 1
x x
1
,
2
求
2
0
f
( x)dx.
解:
2
0
f
ห้องสมุดไป่ตู้
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6.
0
1
o 12x
例7. 设
解:设
1
《微积分学基本定理》课件

解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。
【数学】4.2 微积分基本定理 课件(北师大版选修2-2)

第四章 定积分 §2 微积分基本定理
复习回顾
定积分的概念:
b
a
f ( x )dx lim f i △xi
n i 1
b
n
定义求定积分:
分割→近似代替→求和→取极限(得定积分 f ( x )dx )
即①分割: n 等分区间 a , b ;
ba f ( i ) ; ③求和: n i 1
ba Si t s (ti 1 ) v(ti 1 ) n
'
由定积分的定义得
S v(t )dt s(b) s(a)
a b
牛顿—莱布尼茨公式
定理 (微积分基本定理)
如果f(x)是区间[a,b]上的连续函数,
并且F’(x)=f(x),则
b a
或 f ( x )dx F ( x ) |b F (b) F (a ) a
2 2 ( 2 x |1 2(ln x) |1 2 1) (ln2 ln1) 1 2 ln 2
公式1: 公式二:
b
a
1 b dx = lnx|a x
例3 计算下列定积分
(1)
2 0
cos xdx
(2)
2 0
sin xdx
(3) 2
0
cos 2 xdx
' 解(1) sin x) cos x (
ba S s1 s2 si sn Si v(t ) n i 1 i 1
n n
b b ba S lim Si lim v(t ) v(t )dt s ' (t )dt s(b) s(a) a a n n n i 1 i 1 n n
复习回顾
定积分的概念:
b
a
f ( x )dx lim f i △xi
n i 1
b
n
定义求定积分:
分割→近似代替→求和→取极限(得定积分 f ( x )dx )
即①分割: n 等分区间 a , b ;
ba f ( i ) ; ③求和: n i 1
ba Si t s (ti 1 ) v(ti 1 ) n
'
由定积分的定义得
S v(t )dt s(b) s(a)
a b
牛顿—莱布尼茨公式
定理 (微积分基本定理)
如果f(x)是区间[a,b]上的连续函数,
并且F’(x)=f(x),则
b a
或 f ( x )dx F ( x ) |b F (b) F (a ) a
2 2 ( 2 x |1 2(ln x) |1 2 1) (ln2 ln1) 1 2 ln 2
公式1: 公式二:
b
a
1 b dx = lnx|a x
例3 计算下列定积分
(1)
2 0
cos xdx
(2)
2 0
sin xdx
(3) 2
0
cos 2 xdx
' 解(1) sin x) cos x (
ba S s1 s2 si sn Si v(t ) n i 1 i 1
n n
b b ba S lim Si lim v(t ) v(t )dt s ' (t )dt s(b) s(a) a a n n n i 1 i 1 n n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[迁移探究 1] 将原已知条件改为 f(t)=∫10(1-2x+ 2t)dx,则 f(t)=________.
解析:f(t)=∫10(1-2x+2t)dx=[(1+2t)x-x2]|10=2t. 答案:2t
[迁移探究 2] 将原已知条件改为 f(t)=∫10(2tx2- t2x)dx,则 f(t)的最大值是________.
2.若 F′(x)=x2,则 F(x)的解析式不正确的是( ) A.F(x)=13x3 B.F(x)=x3 C.F(x)=13x3+1 D.F(x)=13x3+c(c 为常数)
解析:因为 F(x)=x3 的导函数为 F′(x)=3x2. 所以 F(x)=x3 的解析式不正确. 答案:B
3.∫102xdx=________. 解析:∫102xdx=x2|10=12-0=1. 答案:1
解析:因为∫10(2tx2-t2x)dx=23tx3-12t2x2|10= 23t-12t2,所以 f(t)=23t-12t2=-12t-232+ 29, 所以,当 t=23时,f(t)有最大值为29. 答案:29
归纳升华 处理含有参数的定积分问题的注意点: (1)含有参数的定积分可以与方程、函数或不等式综 合起来考查,先用微积分基本定理计算定积分是解决此类 问题的前提;
4.设函数 f(x)=x32-+x1,,10≤≤xx≤<12,,则∫20f(x)dx=
________.
解
析
:
∫
2 0
f(x)dx
=
∫
1 0
(x2
+
1)dx
+
∫
2 1
(3
-
x)dx
=
x33+x10 +3x-x2221=167.
答案:167
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:(1)对,根据微积分基本定理的概念知,该说 法正确.
(2)对,事实上,被积函数的原函数有无数多个,取 原函数的常数项为 0,给计算带来方便.
(3)对,根据微积分基本定理的概念知,该说法正确. (4)错,如(x2)′=2x,(x2+1)′=2x,不唯一. 答案:(1)√ (2)√ (3)√ (4)×
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
类型 1 利用微积分基本定理求定积分(自主研析) [典例 1] 求下列定积分. (1)∫3-1(4x-x2)dx;(2)∫1-1exdx. 解:(1)因为2x2-13x3′=4x-x2, 所以∫3-1(4x-x2)dx=2x2-13x3|3-1=
+
∫
2 1
(x2
-
1)dx
=
x-x33|10+x33-x|21=1-13+83-2-13-1=2.
类型 3 微积分基本定理的综合应用(互动探究)
[典例 3] 已知 x∈[1,2],f(x)=∫10(1-2x+2t)dt, 则 f(x)的值域是________.
解析:∫10(1-2x+2t)dt=[(1-2x)t+t2]|10=2-2x, 即 f(x)=2-2x.因为 x∈[1,2], 所以 f(2)≤f(x)≤f(1),即-2≤f(x)≤0, 所以函数 f(x)的值域是[-2,0]. 答案:[-2,0]
=∫10(2x+ex)dx+∫21x-1xdx
=(x2+ex)10+12x2-ln x21
=(1+e)-(0+e0)+12×22-ln
2-12×1-ln
1
=e+32-ln 2.
(2)因为 y=|x2-1|=1x-2-x12,,01≤≤xx<≤12,,
所
以
∫
2 0
|x2
-
1|dx
=
∫
1 0
(1
-
x2)dx
2×32-333-2×(-1)2-(-31)3=230. (2)因为(ex)′=ex,所以∫1-1exdx=ex|1-1=e-1e.
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(2)计算含有参数的定积分,必须分清积分变量与被 积函数 f(x)、积分上限与积分下限、积分区间与函数 F(x) 等概念.
1.应用微积分基本定理求定积分时,首先要求出被 积函数的一个原函数,在求原函数时,通常先判断原函 数的类型,然后求导数进行验证,在验证过程中要特别 注意符号和系数的调整,直到原函数 F(x)的导函数 F′(x) =f(x)为止,然后再利用微积分基本定理求出结果.
2.分段函数在区间[a,b]上的定积分可分成 n 段定 积分和的形式,分段的标准可按照函数的分段标准进行; 带绝对值号的解析式,可先化为分段函数,然后求解.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
类型 2 求分段函数的定积分
[典例❷]
ห้องสมุดไป่ตู้
(1) 若
f(x)
=
2x+ex,0≤x≤1, x-1x,1<x≤2,
求
∫
2 0
f(x)dx;
(2)计算定积分:∫20|x2-1|dx.
解:(1)∫20f(x)dx
微积分基本定理
微积分基本定理 (1)定理内容:如果 f(x)是区间[a,b]上的连续函数, 并且 F′(x)=f(x),那么∫baf(x)dx=F(b)-F(a).这个结论 叫作微积分基本定理,又叫作牛顿—莱布尼茨公式. (2)定理的符号表示:∫baf(x)dx=F(x)|ba=F(b)-F(a).
1.思考判断(正确的打“√”,错误的打“×”). (1)微积分基本定理中,被积函数 f(x)是原函数的导 数.( ) (2)应用微积分基本定理求定积分的值时,为了计算 方便通常取原函数的常数项为 0.( ) (3)只有在连续的区间上才能用微积分基本定理求定 积分的值.( ) (4)若=F′(x)= f(x),则 F(x)唯一( )