混合法测量固体比热容
混合法测量固体比热容

实验报告姓名:叶洪波学号:PB05000622固体比热容的测量*实验原理1.混合法测比热容设一个热力学孤立体系中有n 种物质,其质量分别为m i ,比热容为c i (i=1,2,…,n )。
开始时体系处于平衡态,温度为CT 1,与外界发生热量交换后又达到新的平衡态,温度为T 2。
若体系中无化学反应或相变发生,则该体系获得(或放出)的热量为))(...(122211T T c m c m c m Q n n -+++= (1)假设量热器和搅拌器的质量为m 1,比热容为c 1,开始时量热器与其内质量为m 的水具有共同温度T 1,把质量为m x 的待测物加热到T ’后放入量热器内,最后这一系统达到热平衡,终温为T 2。
如果忽略实验过程中对外界的散热或吸热,则有))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- (2) 式中c 为水的比热容。
310.2--⋅⋅cm K VJ 代表温度计的热容量,其中V 是温度计浸入到水中的体积。
2.系统误差的修正在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。
所以,校正系统误差是量热学实验中很突出的问题。
为此可采取如下措施:(1) 要尽量减少与外界的热量交换,使系统近似孤立体系。
此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。
(2) 采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在量热器外生成凝结水滴。
先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。
这样混和前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。
(3) 缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。
(4) 严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。
混合法测定铝比热容实验报告

混合法测定铝比热容实验报告实验目的:通过混合法测定铝的比热容。
实验原理:比热容是指物质单位质量在单位温度变化下吸收或释放的热量。
在恒定压力条件下,物质的比热容可由以下公式计算:Q = mcΔT,其中Q表示吸收或释放的热量,m表示物质的质量,ΔT表示温度变化。
混合法是比热容测定的常用方法之一、原理是将待测物质与已知比热容的物质混合,两者达到热平衡时,可以根据能量守恒定律推导出待测物质的比热容。
实验步骤:1.将两个烧杯置于天平上,分别称取一定质量的待测铝和已知比热容的物质(如水等)。
2.将待测铝加热到一定温度(如90℃),记录下来。
3.将待测铝迅速转移入已知质量的热水中,搅拌保持温度均匀。
4.观察水温的变化,当温度稳定后,记录下最终温度。
5.根据能量守恒定律,可得出待测铝的比热容。
实验结果与数据处理:通过上述实验步骤,我们得到了以下实验数据:已知物质的质量:m1已知物质的初始温度:T1已知物质与待测物质的最终温度:T2待测物质的质量:m2根据能量守恒定律,我们可以得到以下公式:m1c1(T2-T1)=m2c2(T2-T1)其中c1表示已知物质的比热容,c2表示待测物质的比热容。
通过测量已知物质和待测物质的质量和温度,以及已知物质的比热容,我们可以计算出待测物质的比热容。
讨论与结论:通过实验计算,我们得到了待测铝的比热容。
与理论值进行对比后发现两者存在一定的误差,可能是由于实验过程中的误差导致的。
可以进一步改进实验方法,提高实验精度。
在实际应用中,准确测定物质的比热容对于工程和科研领域都具有重要意义。
比热容可以用于计算物质在不同温度下的热传导、热膨胀等性质,也可以用于工业生产中的能量平衡计算。
因此,混合法测定比热容的实验方法具有广泛的应用前景。
总结:本次实验通过混合法测定了铝的比热容,并讨论了实验结果的准确性和可行性。
尽管实验中存在一定的误差,但通过改进实验方法和进一步提高实验精度,可以得到更准确的比热容值。
5实验五 混合法测量比热容

实验五混合法测量比热容Experiment 5 Determining thermal capacity using mixing method量热学是以热力学第一定律为理论基础的一门科学,量热学所研究的范围就是如何计量物质系统借温度变化、相变、化学反应等所吸收和放出的热量。
量热学的实验方法有混合法、稳流法、冷却法、潜热法、电热法等,本实验采用混合法测金属样品的比热容。
实验目的Experimental purpose1.掌握混合法测定金属比热容的方法;2.巩固物理天平的使用方法。
实验原理Experimental principle将温度不同的物体混合后,如果由这些物体组成的系统没有与外界交换热量,最后系统将达到稳定的平衡温度。
在此过程中,高温物体放出的热量等于低温物体所吸收的热量。
这就是热平衡原理。
根据这一原理可用混合法测量金属的比热容。
为了做好实验,需有一个隔热良好的量热器。
本实验用的量热器如图1所示,它由外筒和内筒组成,内筒放置在绝热架上,与外筒隔开,外筒用绝热盖盖住,盖上开两个小孔,可放入温度计和搅拌器(连有绝缘柄)。
由于内筒与外筒间充有不图1量热器结构图良导体的空气,它们间传导的热量很小;又由于外筒装有绝热盖,对流的热量也很小,内筒的外壁和外筒的内外壁都抛光,以减少热辐射。
这样的量热器可被看做近似符合热平衡原理的实验系统。
实验时,将待测金属样品置于加热器中加热至温度θ1,并迅速将它投入量热器的水(温度为θ2)中,最后达到平衡温度θ。
设待测样品的质量为m ,比热容为c ,则其放出的热量为()θθ-=11mc Q (1)设量热器内筒的质量为m 1,比热容为c 1;水的质量为m 2,比热容为c 2,则量热器和水吸收的热量为()()222112θθ-+=c m c m Q (2)根据热平衡原理,Q 1= Q 2。
由式(1)和(2)可得待测样品的比热容为()()()θθθθ--+=122211m c m c m c (3) 以上讨论并没有考虑系统热量的散失,但实际上只要有温差存在,总会发生系统与外界热交换现象。
固体比热容

c0
4.取出量热器的内筒,称其总质量并减去 m+ m ,即为 1 水的质量 m ; 0 5.小量筒测出温度计浸入水中的体积V;另换温水,重 复上述实验一次。 6.实验时应注意 (1)本实验的误差主要来自温度的测量,因此在测量温 度时要特别注意,读数迅速且要准确(准确到0.1℃); (2)倒入量热器中的温水不要太少,必须使投入的金属 块悬挂浸没在其中。 水的比热容 c0 为 4.187×103 J ⋅ kg−1⋅oC−1
实验结果分析和处理
1.将实验中测出的各个数值填入下表:
前8分钟 t(℃) 次 1 2 3 4 t 次 (℃) 5 6 7 8 次 1 2 3 4 中间2分钟 t(℃) 次 5 6 7 8 t(℃) 次 1 2 3 4 后8分钟 t(℃) 次 5 6 7 8 t(℃)
t2(℃) m 0(kg) m (kg) m1(kg) C(J·k—1·℃—1)
在上述混合过程中,实际上系统总要与外界交换热量, 这就破坏了(1)式的成立条件。为消除影响,需要采用散 热修正。本实验中热量散失的途径主要有三个方面。第一, 若用先加热金属块投入量热器的混合法,则投入前有热量损 失,且这部分热量不易修正,只能用尽量缩短投放时间来解 决;第二,将室温的金属块投入盛有热水的量热器中,混合 过程中量热器向外界散失热量,由此造成混合前水的温度与 混合后水的温度不易测准。为此,绘制水的温~时曲线,
实验仪器
电子温度计;量热器;天平
实验步骤
测环境温度 测内桶和搅拌器质量 加水,测总质量 备冰 投冰,搅拌,测温 测至系统温度有上升为止 测内桶及水总质量 测环境温度 绘制温度时间曲线,求冰的溶解热
注意事项
投冰前应将其拭干,且不得直接用手触摸;其质量 不能直接放在天平盘上称衡,而应由投冰前、后量 热器连同水的质量差求得。 为使温度计示值确实代表系统的真实温度,整个实 验过程中(包括读取前)要不断轻轻地进行搅拌 (搅拌的方式应因搅拌器的形状而异)。
比热容的测定方法

比热容的测定方法
1. 混合法呀,就像你调鸡尾酒一样。
把不同温度的东西放一块儿,然后通过测量温度变化来算出比热容呢!比如说把热水和冷水混在一起,你想想看这多有意思呀!
2. 量热计法,这就像是给物体做个专门的体检。
把东西放进去,仔细测量各种数据,最后找到它的比热容,哇,是不是感觉很专业呢!
3. 冷却法呀,你可以联想一下给发烧的人降温的过程。
我们让热的物体慢慢冷却,通过观察冷却的情况来确定比热容,这很神奇吧!
4. 绝热法,这不就像是给物体包上一层温暖的毛毯嘛!看看它在绝热的情况下温度怎么变化,然后就能算出比热容啦,是不是很妙?
5. 电加热法,就好像给物体通上电流来取暖一样。
通过电的作用和温度的变化来搞清楚比热容,是不是很独特呀!
6. 我们还可以用热线法,想象一下有根热线在探测物体呢。
靠它来获取信息从而得到比热容,多好玩呀!
7. 辐射法,这如同太阳光照在物体上一样。
研究这种辐射带来的影响来测定比热容,很新奇吧!
8. 声波法呢,就像是用声音去和物体交流。
通过声波的传播和反应来找出比热容,哇塞,这也太独特了吧!
9. 还有相变法,就好比水变成冰的过程。
关注这个过程里的各种变化来确定比热容,太有意思啦!
我觉得这些测定比热容的方法都各有各的奇妙之处,都值得我们去深入了解和探索呀!。
固体比热测定

固体比热容的测定指导老师:王亚辉小组成员:李彦辉张燚杨朋波胡宏明电热法测固体比热容实验的改进1引言在传统的混合法测固体比热容实验中, 量热器等的吸热和散热一直是制约实验结果准确度的一个关键因素. 为了消除此类热量传递对测量结果的影响, 在一定的实验条件下, 可以近似地用作图法消除热交换的影响, 其次还要考虑量热器、搅拌器等的等效比热容和质量, 处理过程相当麻烦. 本实验采用电热法, 通过控制放试件和不放试件两种情况下的初末温度和液面高度, 将上述种种热散失抵消掉, 使测量较准确, 操作较简单. 另外, 本实验采用传感器加模拟电路来测量温度, 使温度的测量更准确; 用不锈钢杜瓦瓶代替传统的量热器筒和保温套筒,减少了向外界的热量散失, 且使用方便2实验改进方法实验装置如图1所示. 待测样品及水放在杜瓦瓶中, 并设置了AD590温度传感器和电加热器、搅拌器. 水面高度为杜瓦瓶的3/ 5左右;样品不宜太大或太小; AD590和样品大致位于水深的中部; 电加热器置于偏下部.设加热电压为U, 电流为I, 则电加热器在时间T内放出的热量为UIS. 此热量使量热器的整体温度由t1 升至t2. 根据能量守恒定律, 可得如下方程UIT= (mc+ m0c0+ C1 + C2 + C3) (t2 - t1) + ΔQ ( 1)式中, m, c为待测物的质量和比热容; m0, c0 为水的质量和比热容; C1, C2, C3 分别为在此实验状况下量热器( 包括搅拌器) 、电加热器、温度传感器的等效热容量; ΔQ为其它因素散失的热量.本实验测量的困难在于C1, C2, C3 及ΔQ均为未知的参量. 为解决这一问题, 采用同等实验条件下的系统误差差值消去法.实验分两步进行: 第一步不加待测试件, 加热T1时间后, 系统从t1 升温至t2; 第二步放入t1温度的水和试件, 且要求水位和第一步等高, 加热T2 时间后, 同样使温度升高到t2. 据( 1) 式有UIT1 = (m01c0+ C1+ C2 + C3)(t2 - t1) + Δ Q1 ( 2)UIT2= (m02c0 + C1+ C2+ C3+ mc)(t2- t1) + ΔQ2( 3)( 2) 式减去( 3) 式得UI ( T1 - T2) =- mc( t2- t1) + ( m01 - m02) c0( t2 - t1) +ΔQ1 -ΔQ2故\( m01- m02) c0( t 2- t 1) - UI( T1- T2) +Q1 -Q2∆∆( 4) c=m( t2- t1)考虑到在前后两步测量中, 初末温度相同,水的高度相同, 环境条件也相同, 因此量热器热量交换情况基本相同, 其差别仅在于电加热的时间T1 与T2 略有差别, 造成ΔQ1 与ΔQ2 略有不同. 由于用了高真空杜瓦瓶作为量热器, ΔQ1与ΔQ2 均很小, 而其差值将更小. 测试结果也表明平衡后系统的温度随时间的变化极缓慢, 如图2所示. 因此, 可以忽略该项差别, 认为ΔQ1- ΔQ2= 0, 则( 4) 式化得为( m01- m02) c0( t 2- t 1) - UI( T1- T2)c=m( t2- t1)本实验应该注意的几个问题:1) 本实验的关键之一在于两步实验初末温度的控制, 最好相同, 稍有差别也是可以的, 但一定要保证t2-t1 相同.2) 加热过程中要充分地、不断地搅拌, 否则传感器即数字毫伏表反映的温度与实际平衡温度会有差别.3) 计时器的开关要迅速及时, 必要时可两人配合. 关闭加热器和计时器后应继续搅拌片刻, t2 应取最大读数值.4) 要选择恰当的电加热功率. 功率太大, 会使计时器的控制难度加大, 且增加量热器内温度的不均匀性; 太小会使实验时间延长, 增大散热引起的误差.数据记录:烧杯:m1=66.3 筒:m2=66.6 筒+水:m3=212.1g筒+水+珠:m4=298.7g 烧杯+铜珠:m5=166.4g只加水: U=11.99v I=1.026A稍加热停止时末温T0 T1 T221.2℃21.8℃22.2℃继续加热停止时末温时间T3 T4 T132℃32.4℃599.1s水+珠:稍加热停止时 末温 '0T '1T '2T21.0℃ 21.7℃ 22.2℃继续加热停止时 末温 时间'3T '4T '5T31.8℃ 32.4℃ 590.1s数据处理:m=m5-m1=100.1g m10=m3-m2=145.5gm20=m4-m-m2=132gC 测珠=m m m 2010-*Co 水-)24()21(T T m t t VI -- =1.1001325.145-×4.2×103J/g ℃-)2.224.32(**1.100)1.5901.599(_*026.1*99.11103---J/(g ℃) =566.4 J/g ℃-108.4 J/g ℃=458 J/g ℃误差分析:因为数字毫伏表容许误差为0.1℃,电压表,电流表准确度分别为0.1V,0.01A,启停数字计数器的误差之和为0.4s,天枰的感量为0.02g.u( t1) = u( t2) = 0. 1/ 3 = 0. 06℃u( U) = 0. 1/ 3 = 0. 06Vu( I) = 0. 01/ 3 = 0. 006Au( Ʈ1) = u(Ʈ 2) = 0. 4/ 3 = 0. 23su( m01) = u( m02) = u( m) =0. 02/ 3= 0. 016g则故u( c) = u2( c1) + u2( c2) = 5J/ ( g *℃)取公认值480J/(g*℃)测量值与真实值之差与标准值取百分比 η=480458480 *100%=4.6% 在允许百分误差(5%)以内,故该实验测量比热容是可行的。
4 固体比热容的测量

实验18 固体比热容的测量(一)混合法测量固体比热容[实验目的]1.学习量热的基本方法——混合法2.学习一种修正散热的方法——温度的修正3.测定金属的比热容[实验仪器]量热器、双壁加热器、蒸汽锅、电炉、水银温度计(0-50.0℃, 0-100℃)各一支、物理天平、停表、量筒。
[仪器介绍]1.量热器为了使实验系统(包括待测系统与已知其热容的系统)成为一个孤立系统, 我们采用量热器。
传递热量的方式有三种: 传导、对流和辐射。
因此必须使实验系统与环境之间的传导、对流和辐射都尽量减少, 量热2.外筒是双层结构, 空气封闭其中, 因为空气是热的不良导体, 故可避免空气传导而引起热量的损失;外筒上端的木盖可严密地盖着, 避免空气对对流所引起的热量损失;外筒的内壁和内筒的外壁均电镀得十分光亮, 可减少热辐射, 外筒的底部放上一个隔外筒的外表再包一层绒布, 这样就能使整个系统尽可能根据上述测量的T-t数据, 以T为纵坐标, 以t为横坐标, 即得如图(2—3—18—4)的T-t曲线。
A点对应的时刻就是测水温开始的时间 , B点对应的时刻就是, 而不是5分钟末的时间。
然后作图即得混合前后冷水的初温和末温T。
把各个物理量的测量值代入式(2-3-18-1)即可算出金属样品的比热容。
图(2—3—18—4)中的G点所对应的温度应为室温所在的位置, 这样才不影响温度的修正。
[实验内容和要求]1. 混合法测定铜块的比热容2.混合过程中散热的温度修正法3.混合前量热器(含水)系统温度低于室温(加冰块), 测量系统随时间吸热变化的温度。
4. 混合过程快速测量变化的温度5. 数据处理:Cx与标准值求百分误差[注意事项]1. 作温度值修正法曲线图, FE垂直于t轴, 满足S1=S2, 图中G点对应的温度接近室温为佳。
2. 从曲线图中定出初温T2和末温T。
[实验思考]请分析本实验主要的误差来源。
(二)冷却法测量金属的比热容[实验目的]学习冷却法测量金属比热容的方法[实验仪器]FB312型冷却法金属比热容测量仪[实验原理]根据牛顿冷却定律, 用冷却法测定金属的比热容是量热学常用方法之一。
两种物质混合比热容

两种物质混合比热容物质的热容是描述物体吸热性质的物理量,用来衡量物质在温度变化下吸收或释放热量的能力。
在混合物的热容中,存在着两种物质混合比热容的研究。
本文将探讨这两种物质混合比热容的原理、实验方法和相关应用。
1.方法一:等体积法等体积法是通过将两种物质按照相同体积进行混合,然后测量混合物的温度变化来计算混合物的比热容。
该方法适用于两种物质相互溶解或反应导致混合物温度变化的情况。
2.方法二:等质量法等质量法是通过将两种物质按照相同质量进行混合,然后测量混合物的温度变化来计算混合物的比热容。
该方法适用于两种物质相互不溶或反应不明显的情况。
三、实验步骤1.选择适合的实验装置,并确保其正确使用和校准。
2.按照选定的方法,准备相应的样品和试剂。
3.将两种物质按照相应的比例或相等体积/质量混合在一起。
4.在混合物中插入温度计,并记录初始温度。
5.进行反应或溶解过程,同时记录混合物的温度变化。
6.根据所选方法,计算混合物的比热容。
四、结果分析根据实验所得数据和计算结果,可以得出两种物质混合比热容的相关结论。
比热容越高的物质在混合物中所起的作用越显著,其温度变化也会更大。
同时,不同物质的混合比热容也可能会导致混合物整体的比热容发生变化。
五、应用领域1.工业生产中的温度控制:通过混合物的比热容,可以调节工业生产中的温度,实现对反应过程的控制。
2.热能储存和传输:混合物的比热容可以影响其储存和传输能力,从而应用于热能储存和传输领域。
3.材料研究:混合物的比热容对于材料的性质研究有重要影响,对于热学性能的分析和材料改进具有一定的指导作用。
两种物质混合比热容是研究物质吸热性质的重要内容。
通过实验方法的选择和实验结果的分析,可以得出混合物比热容的相关结论。
同时,混合物比热容的应用广泛,涉及到工业生产、热能储存和传输以及材料研究等领域。
这些研究对于深入理解和应用相关物质具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目:混合法测量固体比热容
实验目的:通过本实验,学会采用混合法测固体的比热容。
实验仪器:量热器(见右图所示),冰,水,干毛巾,天
平(带砝码),绝热套筒,锌粒,温度计,秒表,
加热装置等.
实验原理、步骤及测量记录:
本实验采用混合法测固体比热容,根据其原
理,假定:(实际室温:)
用天平测得量热器及搅拌器的质量和为:
查资料知:
又测得大气压强:
查表可知此状态下沸水的温度:
假定温度计没入水中的体积为:
利用公式:
))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 可初步计算得水的质量:
取量热器及搅拌器并注入水放在天平上,调节水的质量得热器及搅拌器和水的质量:
计算得水的质量为:
在实验台上(套筒之外)利用冰进行水的降温操作,使其降到,并使冰彻底融化掉。
再将其放入绝热套筒中,密封。
然后将已加热15分钟的锌粒迅速放入量热器中,密封。
迅速记录温度随时间的变化。
记录数据如下所示:
表一,量热器中的温度
随时间的变化
时间(min) 0 1 2 3 4 5
温度() 23.20 23.35 23.40 23.42 23.45 23.48
时间(min) 5:25 5:28 5:41 5:50 5:54 6:02
温度() 29.50 29.70 29.80 29.90 30.00 30.10
时间(min) 6:15 6:30 6:46 7:25 7:46 8:30
温度() 30.20 30.25 30.30 30.20 30.10 30.05
时间(min) 9:00 9:30 10:30 11:30 12:30 13:30
温度() 30.02 30.00 29.99 29.98 29.97 29.97
时间(min) 14:30 15:30 - - - -
温度() 29.97 29.97 - - - -
.
2009
05
22
.
测量温度计没入水的体积:
数据处理:
根据以上数据可用Origin8.0画出温度随时间的变化图,见
下图:
根据公式: ))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 及图中
计算得锌的比热容为:
相对误差为:
误差分析及改进:
本实验有一些系统误差修正的方法,比如采取补偿措施,缩短操作时间,沸点的校正等,有效地减小了系统误差。
但是当把锌粒倒进量热器后,温度会迅速变化,此时对
时间和温度的读数存在误差,应尽可能的多读些数据,尽可能读准确。
我们可以对实验作如下改进:对时间和温度的读数,可以采用高频照相机对温度计进行监控,从而可以得到准确的数据。
如果有条件可以用温度传感器直接用电脑监控温度变化,当然这可以运用到整个实验。
思考题:
1. 为使系统从外界吸热与向外界放热大体相抵,你采取了哪些措施?结果怎样?
答: 使用绝热套筒尽量减少与外界的热量交换,使系统近似孤立体系;采取补偿措施;缩短操作时间,实验中将锌从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失;严防有水附着在量热筒外面,以免水蒸发时带走过多的热量;进行沸点校正,先测量空气压强再查得水的沸点。
以上措施有效地减小了系统误差。
2.设计出一种测量液体比热容的方法,并创造条件做实验。
答: 法一,只要稍加改进,就可以把此实验改成测液体(比
如水)的比热容。
在带入数据运用公式:
))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- 计算锌的比热容时,只要把水的比热容当成未知量,
锌的比热容按查资料所得数据带入即可求得水的比热容。
法二,我们可以利用电阻对液体进行加热,计算出电阻所产生的热量()作为液体所吸收的热量,同时记录液体的起止温度,利用公式:)(12T T mc Q -= 即可算得液体的比热容,可以利用本实验同样的思路减小系统误差。