深层土体水平位移监测在地质灾害治理中的应用
隧洞开挖施工深层水平位移监测

隧洞开挖施工深层水平位移监测一、监测目的通过洞脸边坡土体水平位移监测,掌握洞脸边坡土体水平位移的量值及其发展速度,以判定洞脸边坡土体的稳定性,为洞脸边坡支护结构参数优化提供依据。
二、测斜管埋设测斜管应采用垂直钻进比测斜管外径稍大的孔,插入测斜管后回填黏性土的方法固定在土体中。
测斜管应在施工前2~4个星期埋设完毕,在开挖前3~5天内重复测量2~3次,待判明测斜管已经处于稳定状态后,将其作为初始值,开始正式监测工作。
三、监测原理及方法钻孔测斜仪是通过测量测斜仪轴线与铅垂线之间夹角变化量,测算出不同深度土体的水平位移,以监测土、岩石和建筑物的侧向位移,并能连续测出钻孔不同深度相对位移的大小和方向。
其工作原理是利用仪器探头内的伺服加速度测量埋设于岩土体内的导管沿孔深的斜率变化,由于是自孔底向上逐点连续测量,任意两点之间斜率变化累积反映了这两点之间的相对水平变位,通过定期重复测量可提供岩土体变形的大小和方向。
使用测斜仪时将其放入测斜管并使其导向轮完全置于标记好的一对导向槽中,确认测斜管下部固定在稳定体中后,测量自下而上,每500mm测读一次直至管口,测点的位置由电缆上长度标记确定。
为提高测量精度,消除测量设备的系统误差,应逐段正反向各测读一次,取其差值一半来计算各段位移量,并用正反两次值的和作为恒定值来校验监测值的正确性。
监测过程中应注意以下事项:(1)测斜仪应下入测斜管底5~10min,待探头接近管内温度后再量测,每个监测方向均应进行正反两次量测。
(2)当以上部管口作为深层水平位移相对基准点时,每次监测均应测定孔口坐标的变化。
6.4.4 数据处理及分析分析评价测斜仪成果应综合地质资料,分析位移随时间的变化规律时应加以考虑地下水位资料及降雨资料。
资料整理及阶段报告编制要求如下:(1)按总体设计要求,对各观测孔、各测次的测试结果进行可靠性检查,剔除人为异常。
(2)将各测次、各测孔中各测点的电压信号换算成水平位移值,并据此获得任一深度的总水平位移。
水平位移监测

某大桥的水平位移监测
监测目的
01
确保大桥结构安全,预防因位移过大导致的结构损坏或坍塌。
监测方法
02
采用全站仪、GPS等高精度测量设备,定期对大桥各部位进行
位移测量。
监测结果
03
经过长期监测,发现大桥在风、水流等自然因素影响下,存在
微小水平位移,但位移量在安全范围内。
某大型水库的水平位移监测
监测目的
在建筑基础、关键楼层等部位设 置沉降和位移观测点,利用高精 度测量设备进行实时监测。
监测结果
通过实时数据分析和定期沉降、 位移测量,及时发现并处理潜在 的结构问题,确保高层建筑的安 全运营。
05
水平位移监测的未来发展与挑战
新技术与新方法的研发
01
自动化监测技术
利用无人机、卫星遥感等技术, 实现自动化、高精度的水平位移 监测。
跨江跨海大桥
对于跨江跨海大桥,水平 位移监测有助于评估水流、 风力等自然因素对桥墩的 影响。
矿山水工工程
尾矿库监测
对尾矿库的坝体进行水平位移监测,确保尾矿库安全运行,防止 溃坝事故发生。
水利水电工程
在水利水电工程中,对大坝、闸门等关键部位的水平位移进行监测, 确保工程安全。
地下工程
在地下工程施工过程中,对周边土体的水平位移进行实时监测,预 防因土体位移导致的工程事故。
评估水库大坝稳定性,预防因位移过大导致的 溃坝风险。
监测方法
在大坝关键部位埋设测点,通过精密水准仪和 GPS进行定期监测。
监测结果
经过多年监测,发现大坝水平位移量较小,整体结构稳定。
某高层建筑的沉降与水平位移监测
监测目的
确保高层建筑在施工和运营过程 中的安全,预防因沉降和位移导 致的结构问题。
深层水平位移监测方案

深层⽔平位移监测⽅案珑湖湾⼆期边坡坡体深层⽔平位移监测技术要求1概述深层⽔平位移主要⽤于⼤地运动,如可能产⽣在不稳固的边坡(滑坡)或挖⼟⼯程周围的测向运动等,也可以⽤来监测软⼟地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的⼟体位移,以及回填筑堤和地下⼯程的⼟体沉陷,也可⽤于沿海、江边重⼒存放物场的⼟层变化等。
2 仪器设备测斜仪(⼀般测斜仪由探头、电缆、数据采集仪(读数仪)组成。
探头的传感器型式有伺服加速度计式、电阻应变⽚式、钢弦式、差动电阻式等多种型式,⽬前使⽤最多的是伺服加速度式。
国内有航天部33 所⽣产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞⼠的PRIVEC 等)内壁有导槽的测斜管(测斜管道由以下⼏部分组成:测斜管、连接管、管座、管盖。
测斜管是⽤聚氯⼄烯、ABS 塑料、铝合⾦等材料制成,管内有互成90 度四个导向槽,国产塑料测斜管尺⼨多为:内径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。
塑料连接管多采⽤市场上出售的聚氯⼄烯塑料管制成,还可⽤软的万能接头相连。
连接管的尺⼨为内径Φ70mm,外径Φ82mm,长度分300,400mm两种。
在管壁的两端铣制有滑动槽各4 条或仅⼀端铣制滑动槽4 条,各槽相隔90 度。
管座位于测斜管底端,与管外径匹配,防⽌泥砂从管底端进⼊管内的⼀个安全护盖。
管盖⽤于保护测斜管管⼝,防⽌杂物从管⼝掉⼊管内影响正常观测⼯作也由聚氯⼄烯制成,其外形尺⼨同管座。
)3监测仪器⼯作原理测斜仪的⼯作原理是测量测斜管轴线与铅垂线之间的夹⾓变化量,从⽽计算出⼟层各点的⽔平位移⼤⼩。
通常在坝内埋设⼀垂直并互成90°四个导槽的管⼦,当管⼦受⼒发⽣变形时,将测斜仪探头放⼊测斜管导槽内,逐段(⼀般50cm ⼀个测点) 量测变形后管⼦的轴线与垂直线之间的夹⾓θi ,并按测点的分段长度,分别求出不同⾼程处的⽔平位移增量Δdi ,即Δdi = Lsinθi(1)由测斜管底部测点开始逐段累加,可得任⼀⾼程处的实际位移,即bi = ΣΔdi(2)⽽管⼝累积⽔平位移为:B = ΣΔdi(3)式中Δdi 为量测段内的⽔平位移增量;L 为量测点的分段长度,⼀般常取015m ;θi为量测段内管轴线与铅垂线的夹⾓;bi 为⾃固定点的管底端以上i点处⽔平位移;B 为管⼝在该次观测时的⽔平位移;n 为测斜孔分段数⽬,n = H/ 015 ,H 为孔深。
水平位移监测方案

水平位移监测方案一、监测目标和背景地质灾害和土地变形是城市建设过程中常见的问题,造成的损失经常是巨大的。
因此,为了及时发现和预防这些问题,监测土地的水平位移变化变得非常重要。
本监测方案旨在利用现代化的监测技术,对土地的水平位移进行监测和预警,为相关单位提供科学的决策依据。
二、监测原理水平位移监测是通过测量地表或建筑物的水平位移变化,来判断土地的稳定性。
常用的监测方法包括全站仪、GPS技术和遥感技术等。
全站仪可用于测量地表或建筑物的水平位移,GPS技术可以快速准确地获取多个采样点的坐标,而遥感技术则可通过对卫星影像的分析,来获取目标地区的水平位移信息。
三、监测方案(一)监测区域划定根据实际需要,选择合适的监测区域。
通常情况下,应优先考虑土质松散、坡度陡峭、植被覆盖不良等地段,因为这些地段容易出现土地滑坡等问题。
(二)监测点布设根据监测区域的特点和监测要求,决定监测点的布设数量和位置。
监测点的密度应根据实际需要进行调整,通常情况下,应在监测区域内均匀地布设监测点,以保证监测结果的准确性和可靠性。
(三)监测设备选择根据监测点的位置和监测要求,选择合适的监测设备。
如果监测点位于室内或条件较为良好的地方,可以选择全站仪作为监测设备;如果监测点位于户外或条件较为恶劣的地方,可以选择GPS技术或遥感技术作为监测设备。
(四)监测周期和频次根据实际需要,确定监测周期和频次。
监测周期一般为一个月或三个月,监测频次一般为每天或每周一次,具体周期和频次可根据实际情况进行调整。
(五)数据处理和分析对监测数据进行处理和分析,包括数据的收集、整理、存储和分析。
监测数据应按照一定的格式进行存储,以便于后续的分析和应用。
(六)监测结果报告根据监测结果,编写监测结果报告。
报告应包括监测数据的分析结果、水平位移变化的趋势等内容,同时还可以提出相关的建议和预警信息。
四、监测保障措施(一)设立监测保障团队组建专业的监测保障团队,包括技术人员、仪器设备维护人员等,负责监测设备的维护和检修工作。
深部位移在震后滑坡的监测应用

深部位移在震后滑坡的监测应用地震是自然界的一种地质现象,它往往会引发许多次生灾害,其中包括滑坡。
地震引发的滑坡往往会给周围的居民和交通带来严重的危害,因此如何及时监测并预防地震引发的滑坡成为了地质灾害预防领域中的一个重要课题。
深部位移监测技术正是为了解决这一问题而被广泛应用的一种技术手段。
本文将就深部位移监测在震后滑坡监测中的应用进行介绍。
一、深部位移监测概述深部位移监测是指对地下岩体或土体的位移进行实时监测和分析。
它主要应用于山体、边坡、岩体等地质体的位移监测,以及滑坡、崩塌等地质灾害的预警和防治。
深部位移监测的技术手段包括地面位移监测、孔隙水压力监测、地下应力监测、声发射监测等多种方法。
通过对地下岩土体位移情况的实时监测和分析,可以及时预警和预防地质灾害的发生,保障周围居民的生命财产安全。
二、深部位移监测在地震滑坡监测中的应用1.及时发现滑坡隐患地震往往会导致地下岩土体的破裂和位移,进而引发滑坡。
通过对地震后地下岩土体位移情况的监测,可以及时发现潜在的滑坡隐患,为滑坡的预防和应对提供重要依据。
尤其是对那些地震活跃带的地区,深部位移监测技术可以有效地发现滑坡隐患,从而提高地震滑坡的监测和预警能力。
2.预警地震滑坡地震滑坡是地震引发的一种严重地质灾害,它具有发生快、破坏力大的特点。
通过深部位移监测技术,可以实时监测地下岩土体的变形情况,及时提出滑坡预警。
这对于减少地震滑坡对周围居民和交通的影响至关重要。
通过提前预警地震滑坡,可以采取相应的措施来减轻滑坡带来的损失,保障人们的生命财产安全。
3.监测滑坡的活动性一旦发生地震滑坡,通过深部位移监测技术可以持续监测滑坡的活动性,包括滑坡体的位移速度、位移方向、位移量等指标。
这些监测数据可以为灾害救援和重建提供科学依据,以及为相关部门提供决策支持。
通过实时监测滑坡的活动性,可以及时调整救援和重建的工作重点,最大程度地减少滑坡灾害导致的人员伤亡和财产损失。
4.研究地震引发滑坡的机理深部位移监测技术还可以为研究地震引发滑坡的机理提供数据支撑。
基坑水平位移-沉降监测与深层水平位移(测斜孔)监测的关联性

基坑水平位移\沉降监测与深层水平位移(测斜孔)监测的关联性【摘要】现在,大型建筑物越来越多,基坑开挖的深度和规模也越来越大。
为保证深基坑开挖的安全,以及为基坑支护方案的选取提供基础资料,必须对基坑进行变形监测。
在基坑变形监测中,位移、沉降量是直接反映基坑变形的物理量,其准确性也是直接正确反映出建筑安全稳定性。
本文详细介绍了基坑水平位移、沉降的监测和深层水平位移监测方法及注意事项,同时还说明三者的相互关系。
【关键词】基坑水平位移沉降深层水平位移一、前言:随着经济建设的不断发展,全国各地兴建了大量的水工建筑物,工业与交通建筑物,高大建筑物以及开发地下资源而兴建的工程设施。
在建筑施工过程中,由于很多因素影响,会导致建筑变形。
因此,基坑开挖后要进行水平位移、沉降监测。
二、建筑产生变形的原因工程建筑物产生变形的原因有很多种,最主要的原因是两个方面,一是自然条件及其变化,即建筑物地基的工程地质、水文地质、土的物理性质、大气温度和风力等因素引起。
例如,同一建筑物由于基础的地质条件不同,引起的建筑物不均匀沉降,使其发生倾斜或裂缝。
二是建筑物自身原因,即建筑物本身的荷载、结构、形式、及动荷载的作用。
此外,勘测、设计、施工质量及运营管理工作的不合理也会引起建筑物的变形。
三、基坑水平位移、沉降监测的监测方法(一)基坑水平位移检测方法1、基坑水平位移主要是基坑壁水平位移,其测定时主要测定基坑围护结构桩墙顶水平位移与桩墙深层挠曲。
基坑壁水平位移观测的精度应根据基坑支护结构类型、基坑形状、大小和深度、周边建筑及设施的重要程度、工程地质与水文地质条件和设计变形警报预估值等因素综合确定。
基坑壁水平位移观测可根据现场条件使用视准线法、测小角法、前方交会法或极坐标法,并宜同时使用测斜仪或钢筋计、轴力计等进行观测。
2、当使用视准线法、测小角法、前方会交法或极坐标测定基坑水平位移时应该符合下列规定:(1)基坑壁水平位移观测点应沿基坑周边桩墙顶每隔10~15m布设一点。
基坑深层水平位移监测方案

基坑深层水平位移监测方案1概述深层水平位移主要用于运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。
2 仪器设备测斜仪(一般测斜仪由探头、电缆、数据采集仪(读数仪)组成。
探头的传感器型式有伺服加速度计式、电阻应变片式、钢弦式、差动电阻式等多种型式,目前使用最多的是伺服加速度式。
国有航天部33 所生产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞士的PRIVEC 等)壁有导槽的测斜管(测斜管道由以下几部分组成:测斜管、连接管、管座、管盖。
测斜管是用聚氯乙烯、ABS 塑料、铝合金等材料制成,管有互成90 度四个导向槽,国产塑料测斜管尺寸多为:径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。
塑料连接管多采用市场上出售的聚氯乙烯塑料管制成,还可用软的万能接头相连。
连接管的尺寸为径Φ70mm,外径Φ82mm,长度分300,400mm 两种。
在管壁的两端铣制有滑动槽各4 条或仅一端铣制滑动槽4 条,各槽相隔90 度。
管座位于测斜管底端,与管外径匹配,防止泥砂从管底端进入管的一个安全护盖。
管盖用于保护测斜管管口,防止杂物从管口掉入管影响正常观测工作也由聚氯乙烯制成,其外形尺寸同管座。
)3监测仪器工作原理测斜仪的工作原理是测量测斜管轴线与铅垂线之间的夹角变化量,从而计算出土层各点的水平位移大小。
通常在坝埋设一垂直并互成90°四个导槽的管子,当管子受力发生变形时,将测斜仪探头放入测斜管导槽,逐段(一般50cm 一个测点) 量测变形后管子的轴线与垂直线之间的夹角θi ,并按测点的分段长度,分别求出不同高程处的水平位移增量Δdi ,即Δdi = Lsinθi(1)由测斜管底部测点开始逐段累加,可得任一高程处的实际位移,即bi = ΣΔdi(2)而管口累积水平位移为:B = ΣΔdi(3)式中Δdi 为量测段的水平位移增量;L 为量测点的分段长度,一般常取015m ;θi 为量测段管轴线与铅垂线的夹角;bi 为自固定点的管底端以上i 点处水平位移;B 为管口在该次观测时的水平位移;n 为测斜孔分段数目,n = H/ 015 ,H 为孔深。
基坑监测中深层水平位移的应用研究

[ 4 ] 陈
龙, 杜静轩 . 湿陷性黄土路 基施工技术探讨 [ J ] . 科技 创
[ 2 ] 罗宇声. 湿 陷J I 生 黄 土地 区建 筑规 范[ M] . 北京: 中国建筑 工
新 与应 用 , 2 0 1 3 ( 3 ) : 8 1 - 8 2 .
( 1 . C h i n a C o n s t r u c t i o n N o . 3 B u r e a u C o st n r u c t i o n P r o j e c t s C o . , L t d , b y S h a r e i n t h e N o a h w e s t C o m p a n y , ’ a n 7 1 0 0 6 5 ,C h i n a; 2 . T h e F i r s t
2 监 测 过程 2 . 1 测 点 布设及 安 装
相对较弱 , 且紧邻基坑东侧和北侧 1倍开挖 深度 范围 内有 多根压
本基坑长边 达到 1 2 6 . 5 m, 南北 两侧长 边 中部抵 抗变形 能力 2 . 2 数 据分 析 1 ) 基坑北侧 。测点 ( C X 0 6 ) 可测 深度 为 2 3 . 6 m。在第一 层 、 力管线 , 紧邻基坑南 侧有 1幢 3层无 桩砖 混结 构 民宅 , 故在 基坑 第二层土开挖期 间 , 该处 8 m以上部分变形较 大 , 向基坑 内位移 , 围护体 内按 2 2 m左 右间距 进行测 点布设 , 测 斜管 深度 与围护体 最大位移量达 到 1 5 . 8 7 m i l l , 未达 到报警 值 ( 3 0 m l n ) 。T X 0 1变形 等深 。在 围护钻孔灌 注桩钢筋笼和地下连续墙 施工 过程 中 , 同步 较小 , 最大变形值为 1 O . 3 1 I o r n , 最 大变形深 度在 5 m一 7 m处 , 见 进行 测斜管 的安装 固定 。共布设 墙体测 斜监测点 1 7个 ( C X 1一 到和超过工程 需求 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深层土体水平位移监测在地质灾害治理中的应用[摘要]以某地灾治理施工项目监测为例,论述了该工程的深层土体水平位移
动态变化,介绍了监测程序、监测频率和监测预警值的确定。
在边坡治理过程中的通过对监测点的数据分析,判断边坡稳定现状和滑坡的可能性,及时反馈给业主及监理单位重视,施工单位及时处理、应用方法得当,保证了边坡治理的安全。
[关键字]深层土体水平位移监测频率监测报警值
1 工程概况
永安市某中学滑坡治理工程是市里地灾治理重点工程,滑坡所在斜坡体为土质类型,破坏后果很严重,边坡高度大,根据《建筑边坡工程技术规范》要求,施工过程和工程竣工后须进行监测测量精度为三级。
通过对滑坡治理工程进行监测,获得变形量,及时掌握滑坡治理工程变形情况,确保滑坡治理工程及周边建筑的安全。
2 监测方案
根据本工程的具体情况,依据有关规范规定和边坡设计方案对施工监测工作的要求,监测内容如下:
边坡外侧的土体侧向位移(土体测斜),7个测点(CX1~CX7),整个监测过程将自土体开挖施工开始,到挡墙和抗滑桩施工结束,监测过程持续至边坡加固工程完成后六个月内或当年雨季结束后三个月监测数据基本稳定即可结束。
为止。
测点具体布置位置详见下图1。
监测频率的确定:测点埋设稳定后即开始监测,一般来说:土方开挖期间、暴雨期和雨后数天内1次/天,正常观测1次/7天,竣工后观测1次/30天,六个月后观测1次/60天根据边坡的进展,在较危险的断面适当增加观测次数。
开挖期间如果变化速率较大时应按2次/天监测。
如出现险情,则跟踪监测。
边坡开挖稳定后,可适当减少监测频度。
实际测量频率根据前两次测量情况而定。
当观测值相对稳定时,可适当降低观测频率;当达到报警指标或观测值变化速率加快时,应加密观测。
监测标准:边坡监测稳定性评价主要根据以下几点进行综合判断:
(1)边坡开挖支护过程中,连续每天(累计3天)变形速度大于3mm/d;或累计达到30mm;
(2)边坡开挖停止后位移、沉降速率呈收敛趋势;
(3)坡面、坡顶有无开裂,裂缝的变化趋势如何;
在实际监测的过程中如果出现上述一点或几点现象时,都应引起注意,监测人员应立即向建设方、设计、监理和施工单位汇报,并通过其他项目的监测资料相互进行对照、比较分析,与建设方、设计、监理、施工方进一步讨论边坡的稳定性,以便及早发现安全隐患情况,采取相应的补救措施。
3 监测程序
边坡的监测程序按下图所示进行边坡监控系统操作。
说明:
(1)施工单位将边坡开挖到可以埋设监测仪器的位置时,监测单位进行监测仪器的埋设;
(2)在施工单位进行边坡开挖的同时,监测单位对边坡进行监测,满足稳定标准,继续进行开挖,不满足标准则停止开挖;
(3)边坡开挖完毕后对边坡继续进行稳定监测,可以以此评价加固措施和加固效果,满足标准则停止观测,不满足稳定标准的则要重新加固。
4 监测原理
深层土体水平位移是通过预埋在边坡顶测斜管来监测的,测斜仪是一种测量仪器轴线和铅垂线之间夹角的变化量,进而计算出土层各点的水平位移大小的仪器,它被广泛地应用于交通、冶金、煤炭、水利水电及城建部门的岩土工程原位监测中,尤其是在边坡、地基、土石坝及地下洞室的深部水平位移监测中具有不可替代的优越性和实用性。
依据规范和工程实际经验,影响深层土体水平位移监测的因素主要是以下几方面:钻孔倾斜度、测斜管埋深、填料、测斜管周围土层稳定时间及初始值、测斜仪探头稳定,因此在测斜管埋设时应遵守下列原则和注意事项:
(1)在靠近基坑侧壁的土体中埋设测斜管,测点位置选择在变形大或危险的典型位置。
(2)测斜管的长度为基坑开挖面以下3~8米,遇硬质基底(岩层)取小值,偏软基底取大值。
当通过平面测量的方法,将管顶作为位移计算的基准位置时,管底应超过围护结构底部不少于1米。
(3)用钻机成孔(一般测斜管是外径Φ76,钻孔内径Φ110的孔比较合适),成孔后将测斜管逐节组装并放入钻孔内,下入钻孔内预定深度后,向测斜管与孔
壁之间的空隙进行回填,以固定测斜管。
(4)测斜管与钻孔之间的空隙用细砂或水泥与膨润土拌合的灰浆缓慢进行回填,注意采取措施避免塞孔使回填料无法下降形成空洞。
回填后通过灌水和间隔一定时间后的检查,在发现回填料有下沉时,进行补充回填。
回填工作要确保测斜管与土体同步变形。
埋设就位的测斜管
(5)测斜管的上下管间应对接良好,无缝隙,接头处用自攻螺丝牢固固定、用封箱胶密封。
(6)测斜管安放就位后调正方向,必须保证有一对凹槽与基坑边缘垂直(即平行于位移方向)。
(7)调整方向后盖上顶盖,保持测斜管内部的干净、通畅和平直。
管顶宜高出地面约10~50cm。
(8)做好清晰的标示和可靠的保护措施。
进行钻孔和测斜管之间的回填。
(9)埋设时间应在基坑开挖或降水之前,并至少提前两周完成。
5 监测分析
自2011年8月23日始,监测人员进场,由专业勘探队埋设深层土体水平位移监测孔(测斜孔CX1-CX7)7只,埋设完毕后8月30日进行现场观测,各点第一次测试进行两次以上,确定初值。
依照监测方案以及边坡设计方案规定的频率进行监测,共进行47次监测。
由于数据较多,本文取具有代表性数据,各测斜管水平位移变化曲线见图3至图8所示:
从CX6测斜孔位移变化曲线看监测时间更长,8月30日至9月1日,变化3.731 mm,但之后变化小;CX6最大位移为9.611 5 mm发生在0.5 m处,也远没有达到报警值。
从CX7测斜孔位移变化曲线不难发现施工过程中曾发生过险情。
例如:
9月2日、3日两天下雨,CX7读数变化明显。
CX7孔水平位移发展较快,超过3 mm/d,达7.17 mm,日位移量3.93mm,超出规范限差3mm/d;数据当时提供给监理和施工方,9月5日CX7处发生滑坡。
主要原因是边坡顶部堆放施工材料过多,搅拌机等施工机械未及时移动,外加连续降雨,导致土质湿滑,粘住力下.降,土层剪切应力增大从而失去稳定,导致塌方。
后来进行放坡、加固措施,出现异常情况,致使此孔此后不能正常测试。
6 结论与建议
(1)为保证深层土体水平位移的监测准确性,尽量减少人为误差,确保工程结果接近事实,必须从以下五方面考虑:钻孔倾斜度;测斜管埋深;填料;测
斜管周围土层稳定时间及初始值;测斜仪探头稳定时间等。
(2)在监测对象内力和变形变化大的代表性部位及周边重点监护部位,监测点应适当加密。
并且加强对监测点的保护,必要时应设置监侧点的保护装置或保护设施。
(3)在边坡施工过程中,当监测值超过有关标准、有危险事故征兆、自然灾害或场地条件变化较大等异常情况出现时,应加密观测,监测频率视实际情况及工程需要再行制定。
(4)在地质灾害治理项目过程中,采用多种方式进行监测,采用水平位移、垂直位移等多种方法结合使用,更全面的分析和预报边坡的位移变形的发展趋势。
(5)当监测项目已超过其警戒值时,必须迅速停止开挖,查明原因,及时通知设计方、委托方、监理及施工方,配合采取应急措施,如快速原位回填土,保证警戒值不再增大;放坡、卸土;修改方案,进行加固等等,有效控制施工险情的发生。
参考文献
[1]马全珍,张宝华.钻孔测斜仪在边坡监测中的应用[J].常州工学院学报:2005,18(S):85-89.
[2]顾培英,吴亚忠,邓昌.基坑深层土体水平位移监测影响因素浅析[J].监测与分析,2006,10 (6):76-78.
[3]姜忻良,宗金辉,孙良涛.天津某深基坑工程施工监测及数值模拟分析[J].土木工程学报,2007,40(2):79-82.
[4]中国建筑科学研究院.建筑基坑支护技术规程JGJ 1202-99. 中国标准书号[S].北京:辽海出版社,1999.
[5]卫永立,郝福华,焦文斌.漳泽水库大坝测斜仪的施工埋设与监测分析[J].山西水利科技,2001,11:第4期.
[6]赵维炳,高俊合,施建勇.软土深基坑施工中深层土体水平位移测试[J].大坝观测与土工测试,1997,21(4):13-15.。