聚合物的电学性质
聚合物的电学、热学和光学性能—聚合物的电学性能(高分子物理课件)

表征材料电性能的另一个重主要参量是电导率。电导率的定义可以由欧姆定律给出:当施加的电场产生电流时,电流密度J正比于电场强度E,其比例常数,即为电导率σ,即:电导率σ= J(电流密度) /E(电场强度) 电导率与电阻率关系为σ=1/ρ,单位为西门子每米,即S/m。 电导率的大小反映了物质输送电流的能力。ρ愈小,σ愈大,材料导电性能就越好。
界面极化
PE能否发生取向极化?纯PE,界面极化能否发生?
思考题
介电性指在电场作用下,构成物质的带电粒子只能产生微观上的位移而不能进行宏观上的迁移的性质,宏观表现出对静电能的储蓄和损耗的性质,这是由于聚合物分子在电场作用下发生极化引起的,通常用介电系数ε和介电损耗表示。
二、聚合物的介电性能
例如喷涂在聚合物表面的抗静电剂,通过其亲水基团吸附空气中的水分子,会形成一层导电的水膜,使静电从水膜中跑掉。
在涤纶电影片基上涂敷抗静电剂烷基二苯醚磺酸钾,结果片基表面电阻率降低7~8个数量级。
另外,根据制造复合型导电高分子材料的原理,在聚合物基体中填充导电填料如炭黑、金属粉、导电纤维等也同样能起到抗静电作用。
相对于本征型导电高分子而言,这种复合材料的制备无论在理论上还是应用上都比较成熟,具有成型简便、重量轻、可在大范围内根据需要调节材料的电学和力学性能、成本低廉等优点,因而得以广泛开发应用。
复合型导电高分子的基体有:
常用的导电填料有:
碳类(石墨、炭黑、碳纤维ห้องสมุดไป่ตู้石墨纤维等)
金属类(金属粉末、箔片、丝、条或金属镀层的玻璃纤 维、玻璃珠等)
聚合物与聚合物摩擦时,介电系数大的聚合物带正电,介电系数小的带负电。另外聚合物的摩擦起电顺序与其逸出功顺序也基本一致,逸出功高者一般带负电。
聚合物的电学性质

聚合物的静电现象任何两个固体,不论其化学组成是否相同,只要它们的物理状态不同,其内部结构中电荷载体能量的分布也就不同。
这样两个固体接触时,在固-固表面就会发生电荷的再分配。
在它们重新分离之后,每一固体将带有比接触或摩擦前更多的正(或负)电荷。
这种现象称为静电现象。
高聚物在生产、加工和使用过程中会与其他材料、器件发生接触或摩擦,会有静电发生。
由于高聚物的高绝缘性而使静电难以漏导,吸水性低的聚丙烯腈纤维加工时的静电可达15千伏以上。
电子从材料的表面逸出,需要克服原子核的吸引作用,它所需的最小能量可用功函数(即逸出功)来表征。
摩擦时电子从功函数小的一方转移到功函数大的一方,使两种材料分别带上不同的静电荷。
一些主要高分子的功函数及起电次序(tribo-electric series)见表10-1。
表10-1高聚物的摩擦起电序物质在上述序列中的差距越大,摩擦产生的电量也越多。
一般认为摩擦起电序与有一定关系,大的带正电,小的带负电。
静电一般有害,主要是:(1)静电妨碍正常的加工工艺;(2)静电作用损坏产品质量;(3)可能危及人身及设备安全。
因而需要消除静电。
目前较广泛采取的措施是将抗静电剂加到高分子材料中或涂布在表面。
抗静电剂是一些表面活化剂,如阴离子型(烷基磺酸钠、芳基磺酸酯等)、阳离子型(季胺盐、胺盐等)以及非离子型(聚乙二醇等)。
纤维纺丝工序中采取“上油”的办法,给纤维表面涂上一层吸湿性的油剂,增加导电性。
静电现象有时也能加以利用。
如静电复印、静电记录、静电印刷、静电涂敷、静电分离与混合、静电医疗等,都成功地利用了高分子材料的静电作用。
聚合物的其他电学性质(1)力-电性在机械力的作用下,高聚物的电学性质反映主要是压电效应。
将高聚物的试样置于两电极之间,在机械力的作用下,因发生形变(伸长线缩短)而发生极化,同时产生电场,这种现象称正压电效应。
反之,在高聚物试样上加上电场,试样发生相应的形变,同时产生应力,这个现象称为逆压电效应。
高分子物理考研习题整理09 聚合物的电学性能汇编

1 聚合物的极化与介电性能1.1 介电极化①什么是高分子的极化?高分子在外电场中的极化有哪几种形式?各有什么特点?极化的机理是什么?非极性分子和极性分子在外电场作用下极化有什么不同?绝大多数聚合物是优良的电绝缘体,有高的电阻率、低介电损耗、高的耐高频性和高的击穿强度。
但在外电场作用下,或多或少会引起价电子或原子的相对位移,造成电荷的重新分布,称为极化。
高分子在外电场中的极化有电子极化 、原子极化和取向极化三种形式:(1)电子极化是分子中各原子的价电子云在外电场作用下,向正极方向偏移,发生了电子相对于分子骨架的移动,使分子的正、负电荷中心的位置发生变化引起的。
电子极化弱,但极快。
(2)原子极化是分子骨架在外电场作用下发生变形造成的。
原子极化比电子极化更弱,速度比电子极化慢。
(3)取向极化(或称偶极极化)是极性分子骨架在外电场作用下沿电场的方向排列,产生分子的取向。
取向极化较慢,但对总极化的贡献是很大的。
前两种产生的偶极矩为诱导偶极矩,后一种为永久偶极矩。
非极性分子只有电子极化和原子极化,而极性分子除电子极化和原子极化外还有取向极化。
②什么是分子极化率?极化偶极矩(μ)的大小与外电场强度(E )有关,比例系数α称为分子极化率,μ=αE 。
③如何区分极性聚合物和非极性聚合物?列举至少3个极性聚合物与3个非极性聚合物 根据聚合物中各种基团的有效偶极矩μ或介电常数ε,可以把聚合物按极性大小分为四类:非极性(μ=0,ε=2.0~2.3),如PE,PP ,PTFE,PB ;弱极性(0<μ≤0.5deb ,ε=2.3~3.0),如PS,NR ;极性(0.5deb <μ≤0.7deb ,ε=3.0~4.0),如PVC,PA,PVAc,PMMA ;强极性(μ>0.7deb ,ε=4.0~7.0),如PVA,PET,PAN,酚醛树脂,氨基树脂。
注意:聚合物的有效偶极矩与所带基团的偶极矩并不完全一致,结构对称性会导致偶极矩部分或全部抵消。
第10章聚合物的电性能

e和 的a 值不随温度而变化,仅取决于分子中电子云和原子
的分布情况。电子极化和原子极化在所有电介质中(包括极性介质和 非极性介质)都存在。
第六页,编辑于星期一:十六点 三十分。
取向极化或偶极极化
极性分子本身具有永久偶极矩,通常状态下由于分子的热运 动,各偶极矩的指向杂乱无章,因此宏观平均偶极矩几乎为零。
根据上式,我们可以通过测量电介质介电系数 求得分 子极化 率 。另外实验得知,对非极性介质,介电系数 与介质的光折射
率n的平方相等, ,此式联系着介质n2的电学性能和光学性能。
第十四页,编辑于星期一:十六点 三十分。
2、介电损耗
电介质在交变电场中极化时,会因极化方向的变化而损 耗部分能量和发热,称介电损耗。
对非极性聚合物而言,电导损耗可能是主要的。 对极性聚合物的介电损耗而言,其主要部分为极化损耗。
已知分子极化速率很快。电子极化所需时间约
1秒0,15原 1子0极13
化需略大于
秒。但取向10极1化3 所需时间较长,对小分子约大于
秒,对大分子更长一些。10 9
第十六页,编辑于星期一:十六点 三十分。
极性电介质在交变电场中极化时,如果电场的交变频率很 低,偶极子转向能跟得上电场的变化,如图9-3(a),介电损 耗就很小。
实数部分 I R C0V * 与交变电压同相位,相当于流过 “纯电阻”的电流,这部分电流损耗能量。
第二十一页,编”电流与“电容”电流之比表征介质的介电损耗:
tg I R C0V * IC C0V *
(9-10)
式中δ称介电损耗角, t称g介电损耗正切。 tg 的物理意义是在每个交变电压周期中,介质损耗的能量
聚合物的分子结构与物理性质

聚合物的分子结构与物理性质聚合物是由大量重复单元构成的高分子化合物。
随着科技的发展,聚合物在人类生产和生活中的应用越来越广泛。
然而,聚合物的性质和应用取决于其分子结构,因此对聚合物分子结构与物理性质的研究尤为重要。
一、聚合物的分子结构聚合物的分子结构与其化学和物理性质密切相关。
聚合物的分子结构与单体种类、聚合方法、反应条件以及控制试剂的种类和用量等有关。
聚合物的分子结构可以从宏观和微观两个层面进行描述。
从宏观上看,聚合物的分子结构可以分为线性、支化、交联和聚集态等。
线性聚合物的分子链呈直线状排列,没有分支;支化聚合物的分子链上存在分支,分支可以根据分支链的数量和长度不同分为两种:分子段分支和侧链分支;交联聚合物的分子链之间通过交联点互相连结,呈网络状结构;而聚集态分子则是由数个分子组成的复合物。
从微观上看,聚合物的分子结构是由化学键和官能团组成的。
根据化学键的性质,聚合物分子的结构可以分为三类:相邻两个重复单元之间的化学键称为主链键;主链键以外的化学键称为辅助键,辅助键决定了聚合物分子的分支情况;在分子中存在的其他化学基团称为官能团,它们通过化学反应与其他分子发生反应,改变聚合物分子的性质。
聚合物的分子结构图如下图所示:二、聚合物的物理性质聚合物的物理性质主要包括力学性质、热学性质、电学性质以及光学性质等。
力学性质是指聚合物在力的作用下发生的变形和断裂等现象。
聚合物的弹性模量、拉伸强度、抗拉伸应变、屈服强度、断裂伸长率等是衡量聚合物力学性质的重要指标。
热学性质是指聚合物在不同温度下表现出来的性质。
聚合物的热稳定性、玻璃转移温度、熔融温度、热膨胀系数等是衡量聚合物热学性质的指标。
电学性质是指聚合物在电场作用下表现出来的性质。
聚合物的电导率、介电常数、击穿场强等是衡量聚合物电学性质的指标。
光学性质是指聚合物在光的作用下表现出来的性质。
聚合物的透光性、发光性、荧光性等是衡量聚合物光学性质的指标。
三、聚合物分子结构的控制通过控制聚合物分子结构可以使聚合物具有更好的性能和更广泛的应用。
聚合物电学性能

Chapter10 聚合物的电性能
• 热合PVC等极性材料是适宜的。而PE薄膜等非极 性材料就很难用高频热合。
• 轮胎经高频热处理消除内应力,可大幅度延长使 用寿命。
• 塑料注射成型时常因含水而产生气泡,经高频干 燥能很好解决这个问题。
Chapter10 聚合物的电性能
(3)高聚物的介电松弛谱
□ 高分子分子运动的时间与温度依赖性可在其介电性质上得 到反映。借助于介电参数的变化可研究聚合物的松弛行为。
以上两种极化统称为变形极化或诱导极化 其极化率不随温度变化而变化,聚合物在高频区均能发生变 形极化或诱导极化
Chapter10 聚合物的电性能
• 偶极极化(取向极化):
是具有永久偶极矩的极性分子沿外场方向排列的现象。极 化所需要的时间长,一般为10-9s,发生于低频区域。
(a)无电场
(b)有电场
图1 偶极子在电场中取向
Chapter10 聚合物的电性能
三、影响聚合物介电性能的因素
• 高分子材料的介电性能首先与材料的极性有关。 这是因为在几种介质极化形式中,偶极子的取向 极化偶极矩最大,影响最显著。
• 决定聚合物介电损耗大小的内在因素: ①分子极性大小和极性基团的密度 ② 极性基团的可动性
Chapter10 聚合物的电性能
Chapter10 聚合物的电性能
• 介电损耗温度谱示意图
在这些图谱上,高聚物的介电损耗一 般都出现一个以上的极大值,分别对 应于不同尺寸运动单元的偶极子在电 场中的介电损耗(因偶极子的取向极化 过程伴随着分子运动过程,运动模式 各异,其松弛时间也不一致,其受阻程 度不同)按照这些损耗峰在图谱上出现 的先后,在温度谱上从高温到低温, 在频率谱上从低频到高频,依次用、 、命名。
聚合物电解质的电化学性质及其在电池中的应用

聚合物电解质的电化学性质及其在电池中的应用聚合物电解质(Polymer electrolyte)是一种电导率很高的聚合物体系,可以在电池中代替传统的无机盐电解液,具有较高的安全性、耐久性和稳定性等优点。
近年来,随着电动车市场的兴起和绿色能源的发展,聚合物电解质电池已经成为当前的热点研究领域。
一、聚合物电解质的电化学性质(一)离子传输机制传统的无机盐电解液是通过离子迁移实现电荷传输,而聚合物电解质是通过带声子谱线动力学相互作用实现离子传输。
这种传输机制的基本原理是聚合物链的空间结构对离子的合适尺寸造成筛选性渗透,可使电池中离子传输速率达到很高的水平。
(二)电解质衍生物稳定性聚合物电解质衍生物稳定性是指其在电解质和阳极、阴极反应中的稳定性。
聚合物电解质的衍生物稳定性直接影响电池的寿命和性能,因此,最新的研究已经将注意力集中在聚合物电解质衍生物的稳定性上。
(三)空气稳定性聚合物电解质的空气稳定性也是衡量其优劣的重要指标。
电化学稳定性和空气稳定性之间存在相当的联系,因为良好的电化学稳定性通常会导致较好的空气稳定性。
二、聚合物电解质在电池中的应用(一)锂离子电池目前使用最广泛的聚合物电解质就是用于锂离子电池中的聚合物电解液,由于其具有嗜水性和高点阵竞争,其导电性可与无机盐电解液相媲美。
聚合物电解质锂离子电池优点显著,首先是化学惰性和电化学稳定性好,能耐受锂电池的电化学反应;其次是其具有高离子导电性和低离子工程学阻力,能使锂离子电池的能量密度更高;此外,对于电池容量越来越大的应用需求,聚合物电解质中的离子不易聚集、不易沉积,能够满足电池高功率输出的需求。
因此,锂离子电池的发展离不开聚合物电解质。
(二)锂空气电池与锂离子电池不同,在锂空气电池中,聚合物电解质发挥的作用并不是很重要,反而是催化剂和空气电极的使用更加关键。
但是,由于聚合物电解质中的高离子导电性和空气稳定性,作为一种常见的电解质,可作为电池界面的陶瓷膜,在锂空气电池中起到了一定的加强作用。
高分子物理讲义提纲-第九章

第九章 聚合物的电学性质聚合物的电学性质:是指聚合物在外加电压或电场作用下的行为及其所表现出来的各种物理现象。
9.1 聚合物的介电性能介电性是指聚合物在电场作用下,表现出对静电能的储存和损耗的性质,通常电常数和介电损耗来表示。
(1)介电极化 绝大多数聚合物是优良的电绝缘体,有高的电阻率,低介电损耗、耐高频高的击穿强度。
但在外电场作用下,或多或少会引起价电子或原子核的相对,造成了电荷的重新分布,称为极化。
电介质在外电场下发生极化的现象,是其内部分子和原子的电荷在电场中运动的宏观表现。
主要有以下几种极化;①电子极化——分子中各原子的价电子云在外电场作用下,向正极方向偏移,发生了电子相对骨架的移动,使分子的正电荷中心的位置发生变化引起的。
②原子极化——是分子骨架在外电场下发生变形造成的。
分子弯曲极化是原子极化的主要形式。
③偶极极化——在外电场的作用下,极性分子沿电场的方向排列,产生分子的取向。
前两种产生的偶极矩诱导偶极矩,后一种为永久偶极矩的极化。
极化偶极矩(μ)的大小与外电场强度(E)有关,比例系数α称为分子极化率,l u E α=按照极化机理不同,有电子极化率e α,原子极化率a α(上述两者合称变形极化d e a ααα=+)和取向极化率u α,即:23u u kTα= 为永久偶极矩。
因而对于极性分子e a u a ααα=++,对于非极性分子e a a αα=+。
界面极化:由于在外电场作用下,电介质中的电子或离子在界面处堆集的结果,称为~。
根据聚合物中各种基团的有效偶极矩,可以把聚合物按极性大小分为四类。
非极性:PE、PP、PTFE;弱极性:PS、NR;极性:PVC、PA、PVAc PMMA;强极性:PVA、PET、PAN、酚醛树脂、氨基树脂。
聚合物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致极矩部分或全部相互抵消。
介电常数ε是表示聚合物极化程度的宏观物理量,它定义为介质电容器,容C 比真空电容器C 0的电容增加的倍数,即0000//Q Q Q Q Q U Q U Q C C ′+====ε 式中:0Q 为极板上的原有电荷,Q ′为感应电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合物的静电现象
任何两个固体,不论其化学组成是否相同,只要它们的物理状态不同,其内部结构中电荷载体能量的分布也就不同。
这样两个固体接触时,在固-固表面就会发生电荷的再分配。
在它们重新分离之后,每一固体将带有比接触或摩擦前更多的正(或负)电荷。
这种现象称为静电现象。
高聚物在生产、加工和使用过程中会与其他材料、器件发生接触或摩擦,会有静电发生。
由于高聚物的高绝缘性而使静电难以漏导,吸水性低的聚丙烯腈纤维加工时的静电可达15千伏以上。
电子从材料的表面逸出,需要克服原子核的吸引作用,它所需的最小能量可用功函数(即逸出功)来表征。
摩擦时电子从功函数小的一方转移到功函数大的一方,使两种材料分别带上不同的静电荷。
一些主要高分子的功函数及起电次序(tribo-electric series)见表10-1。
表10-1高聚物的摩擦起电序
物质在上述序列中的差距越大,摩擦产生的电量也越多。
一般认为摩擦起电序与有一定关系,大的带正电,小的带负电。
静电一般有害,主要是:
(1)静电妨碍正常的加工工艺;
(2)静电作用损坏产品质量;
(3)可能危及人身及设备安全。
因而需要消除静电。
目前较广泛采取的措施是将抗静电剂加到高分子材料中或涂布在表面。
抗静电剂是一些表面活化剂,如阴离子型(烷基磺酸钠、芳基磺酸酯等)、阳离子型(季胺盐、胺盐等)以及非离子型(聚乙二醇等)。
纤维纺丝工序中采取“上油”的办法,给纤维表面涂上一层吸湿性的油剂,增加导电性。
静电现象有时也能加以利用。
如静电复印、静电记录、静电印刷、静电涂敷、静电分离与混合、静电医疗等,都成功地利用了高分子材料的静电作用。
聚合物的其他电学性质
(1)力-电性
在机械力的作用下,高聚物的电学性质反映主要是压电效应。
将高聚物的试样置于两电极之间,在机械力的作用下,因发生形变(伸长线缩短)而发生极化,同时产生电场,这种现象称正压电效应。
反之,在高聚物试样上加上电场,试样发生相应的形变,同时产生应力,这个现象称为逆压电效应。
产生压电效应的高聚物主要结晶高聚物(单轴取向)和高分子驻极体。
如PVC、PC、PTFE和HDPE等。
利用高聚物的压电效应,可做成话筒、传感器等转换元件。
(2)热-电性
在热的作用下,高聚物材料具有热释电性,这是非常重要的电学性质。
驻极体:将电介质置于高压电场中极化,随即冻结极化电荷,可获得静电持久极化,这种长寿命的非平衡电矩的电介质称驻极体。
高聚物驻极体研究从上世纪四十年代开始,现已投入使用优点聚偏氟乙烯、PET、PP、PC等高聚物超薄薄膜驻极体,广泛用作电容器传声隔膜,计算机储存器、爆炸起爆器、血液凝固加速作用等方面。
高聚物驻极体的制备方法是:将高聚物薄膜夹在两个电极中,加热到聚合物的主转变温度以上,然后施加电场,使薄膜极化一段时间。
在电场作用下以一定速度缓慢冷却至室温(或低温),最后撤去外电场。
热释电流:将上述高聚物驻极体夹在两电极之间,接上微电流计再程序升温,在热的作用下,激发了分子链偶极的运动而发生解取向极化,释放出退极化电荷,在电流计上记录到退极化电流,测得的放电电流随温度的变化称为热释电流谱(TSC),又称为去极化介电谱或热刺激电流谱。
(3)光-电性
光电导性:光照射下高聚物的导电性能发生变化的现象。
如聚乙烯基咔唑、聚萘酯等吸收光能而放出光电子,使电导率增大。
在信息传递方面得到了一些应用。
本章还包括高分子的热性能、光学性能以及表面与界面性能。