高中数学-集合单元测试

合集下载

(压轴题)高中数学必修一第一单元《集合》测试题(含答案解析)(1)

(压轴题)高中数学必修一第一单元《集合》测试题(含答案解析)(1)

一、选择题1.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =2.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个3.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,04.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b5.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .46.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .617.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .48.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .79.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .10.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .111.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.已知函数2()1f x x=-M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<二、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 15.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______.16.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________17.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.18.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________ 19.已知集合{}A a =-,,2||b a B a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

高中数学 集合单元测试题

高中数学 集合单元测试题

集合单元测试题单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明一、选择题1.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},那么以下图中阴影表示的集合为〔 〕A .{2}B .{3}C .{-3,2}D .{-2,3} 2.当x ∈R ,以下四个集合中是空集的是〔 〕 A. {x|x 2-3x+2=0} B. {x|x 2<x} C. {x|x 2-2x+3=0} C. {x|sinx+cosx=65} 3.设集合{}25, log (3)A a =+,集合{, }B a b =,假设{2}AB =, 那么A B 等于〔 〕 A.{}1,2,5 B.{}1,2,5- C.{}2,5,7 D.{}7,2,5- 4.设集合{}2|1A y y x ==-,{}2|1B x y x ==-,那么以下关系中正确的选项是〔 〕A .AB = B .A B ⊆C .B A ⊆D .[1,)A B ⋂=+∞5.设M ,P 是两个非空集合,定义M 与P 的差集为M-P={x|x ∈M 且x ∉p},那么M-〔M-P 〕等于〔 〕 A. P B. MP C. MP D. M6.{}{}2230,A x x x B x x a =--<=<, 假设A ⊆/B , 那么实数a 的取值范围是( ) A. (1,)-+∞ B. [3,)+∞ C. (3,)+∞ D. (,3]-∞ 7.集合M ={x |x =sin 3πn ,n ∈Z},N ={ x |x =cos 2πn ,n ∈Z },M ∩N = 〔 〕A .}{1,0,1- B .}{0,1 C .{0} D .∅8.集合M ={x |Z k k x ∈+=,412},N ={x │Z k k x ∈+=,214},那么〔 〕A .M =NB .M NC .M ND .M ⋂N =φ9. 设全集∪={x |1≤x <9,x ∈N},那么满足{}{}1,3,5,7,81,3,5,7U C B ⋂=的所有集合B的个数有 〔 〕A .1个B .4个C .5个D .8个 10.集合M ={(x ,y )︱y =29x -},N ={(x ,y )︱y =x +b },且M ∩N =∅,那么实数b 应满足的条件是〔 〕 A .︱b ︱≥23 B .0<b <2C .-3≤b ≤23D .b >23或者b <-3 二、填空题11.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,那么实数k 的取值范围是 . 12.设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,那么右图中阴影局部表示的集合为 .13.集合A={}4,3,2,1,那么A 的真子集的个数是 .14.假设集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈-⎪⎭⎫ ⎝⎛==R x ,121y |y S x,{}1x ),1x (log y |y T 2->+==,那么T S 等于 . 15.满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是_______个.16.集合1{|3}2P x x =≤≤,函数22()log (22)f x ax x =-+的定义域为Q. 〔1〕假设12[,),(2,3]23P Q P Q ==-,那么实数a 的值是 ;〔2〕假设P Q φ=,那么实数a 的取值范围为 .三、解答题17.函数1()2x f x x +=-的定义域集合是A,函数22()lg[(21)]g x x a x a a =-+++的定义域集合是B〔1〕求集合A 、B 〔2〕假设A B=B,务实数a 的取值范围.18.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;假设φ=B A C U )(,求m 的值.19.设集合}4232/1{≤≤=-xx A ,{}012322<--+-=m m mx x x B . (1)当Z x ∈时,求A 的非空真子集的个数;(2)假设B=φ,求m 的取值范围;(3)假设B A ⊇,求m 的取值范围.20. 对于函数f(x),假设f(x)=x ,那么称x 为f(x)的“不动点〞,假设x x f f =))((,那么称x为f(x)的“稳定点〞,函数f(x)的“不动点〞和“稳定点〞的集合分别记为A和B,即xxfxA==)(|{},})]([|{xxffxB==.(1) 求证:A⊆B(2) 假设2()1(,)f x ax a R x R=-∈∈,且A B=≠φ,务实数a的取值范围.单元测试参考答案一、选择题1.答案:A 2.答案:C 3.答案:A 4.提示:{|0}A y y =≥,{|11}B x x x =≥≤-或.答案: D5.答案:B 6.答案:B 7. 由3πn 与2πn 的终边位置知M ={23-,0,23},N ={-1,0,1},应选C.8.C 9.D 10.D 11.提示:2121k k -<+, ∴B ≠∅,答案:112k -≤≤12.答案:(0,2),(,1)A B ==-∞,图中阴影局部表示的集合为[1,2)UAB =,13.答案:15 14. 答案:{|1}y y ≥- 15. 答案:7 16. 答案:32a =-;(,4]a ∈-∞- 17. 解:〔1〕A ={}|12x x x ≤->或B ={}|1x x a x a <>+或〔2〕由A B =B 得A⊂B ,因此112a a >-⎧⎨+≤⎩所以11a -<≤,所以实数a的取值范围是(]1,1-18. 解:{}2,1A =--,由(),U C A B B A φ=⊆得,当1m =时,{}1B =-,符合B A ⊆;当1m ≠时,{}1,B m =--,而B A ⊆,∴2m -=-,即2m =∴1m =或者2.19. 解:化简集合A={}52≤≤-x x ,集合B 可写为{}0)12)(1(<--+-=m x m x x B (1){}5,4,3,2,1,0,1,2,--=∴∈A Z x ,即A 中含有8个元素,∴A 的非空真子集数为254228=-〔个〕.(1)显然只有当m-1=2m+1即m=--2时,B=φ. (2)当B=φ即m=-2时,A B ⊆=φ;当B φ≠即2-≠m 时〔ⅰ〕当m<-2 时,B=(2m-1,m+1),要A B ⊆只要⎩⎨⎧≤≤-⇒≤--≥+62351212m m m ,所以m 的值不存在;〔ⅱ〕当m>-2 时,B=〔m-1,2m+1〕,要A B ⊆只要⎩⎨⎧≤≤-⇒≤+-≥-2151221m m m .综合,知m 的取值范围是:m=-2或者.21≤≤-m20.证明(1).假设A =ϕ,那么A ⊆B 显然成立;假设A ≠ϕ,设t ∈A ,那么f(t)=t ,f(f(t))=f(t)=t ,即t ∈B ,从而 A ⊆B.解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠ϕ,知 a =0 或者 ⎩⎨⎧≥+=∆≠0410a a即41-≥aB 中元素是方程 x ax a =--1)1(22即 0122243=-+--a x x a x a 的实根由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为0)1)(1(222=+-+--a ax x a x ax因此,要A =B ,即要方程0122=+-+a ax x a ①要么没有实根,要么实根是方程012=--x ax ②的根.假设①没有实根,那么0)1(4222<--=∆a a a ,由此解得43<a假设①有实根且①的实根是②的实根,那么由②有 a ax x a +=22,代入①有 2ax +1=0.由此解得a x 21-=,再代入②得 ,012141=-+a a 由此解得43=a .故 a 的取值范围是 ]43,41[-。

(压轴题)高中数学必修一第一单元《集合》测试题(有答案解析)(2)

(压轴题)高中数学必修一第一单元《集合》测试题(有答案解析)(2)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个3.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =4.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞5.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集6.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,37.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]210.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .111.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<< 12.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)二、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______17.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____. 三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-.(1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围. 22.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.23.已知集合A ={x |12x -≤≤},B ={x |123m x m +≤≤+} (1)当m =1时,求AB ;(2)若B A ⊆,求实数m 的取值范围24.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求AB ;(2)若不等式的解集A B ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.4.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.5.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.6.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A.【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.7.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.9.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.10.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.11.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.12.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案. 【详解】A B ⋂≠∅ ∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾; ②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}Bx x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}-- 【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.17.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据M N N =列不等式组,解不等式求得a 的取值范围. 【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题.18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅.因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,AB =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和.【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈, ∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况20.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或.(2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+, {}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系. 23.(1){}2;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【分析】(1)根据集合的交集运算求解即可;(2)讨论集合B 是否为空集,根据包含关系列出不等式,即可得出实数m 的取值范围.【详解】(1)当m =1时,B ={x |2≤x ≤5},因此A B ={2} (2)A B ⇔B A ⊆,则①当B =∅时,即123m m +>+,即2m <-,符合题意②当B ≠∅时,要满足B A ⊆,则12311232m m m m +≤+⎧⎪+≥-⎨⎪+≤⎩2212m m m ⎧⎪≥-⎪⇒≥-⎨⎪⎪≤-⎩122m ⇒-≤≤- 综上所述,当B A ⊆时,实数m 的取值范围时1(,2)2,2⎡⎤-∞-⋃-⎢⎥⎣⎦=1,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于中档题. 24.(1)9,8⎛⎤-∞ ⎥⎝⎦;(2){}90,8⎡⎫⋃+∞⎪⎢⎣⎭【分析】(1)对a 分类讨论:0a =,解出即可判断出是否满足题意.0a ≠时,A 中至少有一个元素,满足0∆,解得a 范围即可得出.(2)对a 分类讨论:0a =,直接验证是否满足题意.0a ≠时,由A 中至多有一个元素,可得0∆≤,解得a 范围即可得出.【详解】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得98a ,0a ≠. 综上可得:a 的取值范围是9,8⎛⎤-∞ ⎥⎝⎦. (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得98a. 综上可得:a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】 本题考查了集合的性质、一元二次方程的实数根与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.25.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】 由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可;(2)由A B ⊆,判断a 与集合B 的端点的位置即可.【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤, 因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤,所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤,因为A B ⊆,所以132a -≤< 【点睛】 本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式.。

高中数学《必修一》《集合》单元测试(基础卷)

高中数学《必修一》《集合》单元测试(基础卷)

高中数学《必修一》《集合》单元测试(基础卷)考试时间:120分钟满分:*120分一、单选题(共12题;共48分)1.已知集合,则()A. {0,x,1,2}B. {2,0,1,2}C. {0,1,2}D. 不能确定2.已知全集U=R,集合,,则等于( )A. B. C. D.3.集合,若,则a的值为()A. 0B. 1C. 2D. 44.若集合,,则等于()A. B.C. D.5.若U={-2,-1,0,1,2},M={-1,0,1},N={-2,-1,2},则=( )A. B. {0,1} C. {-2,0,1,2} D. {-1}6.设集合.若则a的范围是( )A. a<1B.C. a<2D.7.已知集合A={x|1<x<10,x∈N}.B={x|x= ,n∈A}.则A∩B=()A. {1,2,3}B. {x|1<x<3}C. {2,3}D. {x|1<x<}8.已知集合,则()A. B.C. 且D.9.若集合,则集合A∩B为()A. B. C. D.10.集合A={﹣1,0,1,3},集合B={x|x2﹣x﹣2≤0,x∈N},全集U={x||x﹣1|≤4,x∈Z},则A∩(∁U B)=()A. {3}B. {﹣1,3}C. {﹣1,0,3}D. {﹣1,1,3}11.已知集合,若,实数m=( )A. 3B. 2C. 2或3D. 0或2或312.设全集U=R,集合M={x|x>0},N={x|x2≥x},则下列关系中正确的是()A. M∪N⊆MB. M∪N=RC. M∩N∈MD. (∁U M)∩N=∅二、填空题(共4题;共16分)13.若集合A={﹣1,0,1,2},B={x|x+1>0},则A∩B=________.14.已知集合A=(﹣2,4),B=(﹣∞,a],若A∩B=∅,则实数a的取值范围是________.15.已知集合A=(﹣2,1],B=[﹣1,2),则A∪B=________.16.满足{3}∪A={1,3,5}的集合A可以是________.三、解答题(共6题;共56分)17.已知集合A可表示为{a,a2, },求实数a应满足的条件.18.已知全集U=R,集合A={x|2<x<9},B={x|﹣2≤x≤5}.(1)求A∩B;B∪(∁U A);(2)已知集合C={x|a≤x≤a+2},若C⊆∁U B,求实数a的取值范围.19.设全集,集合或.求(1);(2)记,且,求的取值范围.20.已知集合A={x|﹣1<x<2},B={0,1,2}.(1)求A∩B,A∪B;(2)设函数f(x)=log3(x﹣1)的定义域为集合C,求(∁R C)∩A;(3)设集合M={x|a<x≤a+2},且M⊆A,求实数a的取值范围.21.已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函数f(x)= 在(0,+∞)上是增函数}.(1)求A,B,C;(2)求A∩C,(∁U B)∪C.22.已知全集U=R,集M={x|x﹣3≥0},N={x|﹣1≤x<4}.(1)求集合M∩N,M∪N;(2)求集合∁U N,(∁U N)∩M.答案解析部分一、单选题1.【答案】C【解析】本题主要考查的是集合的运算。

高中数学必修第一册,第1章 集合与常用逻辑用语单元测试题(2)

高中数学必修第一册,第1章 集合与常用逻辑用语单元测试题(2)

第一章集合与常用逻辑用语单元测试题总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④3.设命题,则为().A.B.C.D.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要6.设全集,,,则()A.B.C.D.7.下列各式中,正确的个数是:①;②;③;④;⑤;⑥.A.1B.2C.3D.48.已知集合A={x|y,x∈Z},则集合A的真子集个数为()A.32B.4C.5D.319.已知M,N都是U的子集,则图中的阴影部分表示()A.M∪N B.∁U (M∪N)C.(∁U M)∩N D.∁U (M∩N)10.设M ,P 是两个非空集合,定义M 与P 的差集M -P ={x |x ∈M 且x ∉P },则M -(M -P )等于()A.PB.MC.M ∩PD.M ∪P11.已知集合M 满足{1,2}⊆M ⊆{1,2,3,4,5},那么这样的集合M 的个数为()A.5B.6C.7D.812.对于实数,“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题(总分16分,每题4分)13.若,且,则的可能取值组成的集合中元素的个数为_____.14.已知集合,则A 中元素的个数为_____.15.已知集合,,且,则实数的取值范围是_________。

16.有下列命题:①“若,则”的否命题;②“矩形的对角线相等”的否命题;③“若,则的解集是”的逆命题;④“若是无理数,则是无理数”的逆否命题.其中正确命题的序号是____________三、解答题(总分56分,17、18、19每题8分,20、21题10分,22每题12分.)17.已知集合,或.(1)若,求;(2)若,求实数的取值范围.18.若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m,n的值.19.已知全集,集合,.(1)求;(2)若,求实数的取值范围.20.已知集合,.(1)当时,求,;(2)若,求实数a的取值范围.21.已知集合,集合.(1)当时,求;(2)设,若“”是“”的必要不充分条件,求实数的取值范围.22.求证:方程有两个同号且不相等的实根的充要条件是.第一章集合与常用逻辑用语(答案与解析)总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.【答案】B【解析】∵,∴.故选B.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④【答案】B【解析】①不是正整数,∴N*错误;②是无理数,∴正确;③是有理数,∴正确;④π是无理数,∴π∈Q错误;∴表示正确的为②③.故选:B.3.设命题,则为().A.B.C.D.【答案】C【解析】命题,则为:,故选C.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}【答案】C【解析】由题意,全集,集合,所以或,故选C.5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要【答案】C【解析】因为,但是,所以,是的充分不必要条件,故选C。

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .0B .1-C .1D .1或1-3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,35.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,16.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]28.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.设集合{}21xA y y ==-,{}1B x x =≥,则()R AC B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.已知{|}A x x =>,{|(3)(3)0}B x x x x =-+>,则A B =________ 16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.17.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____. 18.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设{}{},1,05U R A x x B x x ==≥=<<,求()U A B 和()U A B ∩22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤(1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围. 23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.25.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.B解析:B【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.4.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.8.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B.【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-. 故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20xx >-≥⎪⎩,解得1x <,则{}|1A x x =<,因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<, 故答案为:{|30}-<<x x 【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.96【分析】对分三种情况讨论求出X1+X2+X3取最小值39X1+X2+X3取最大57即得解【详解】由题意集合M ={x ∈N*|1≤x≤15}={123456789101112131415}当A1={解析:96 【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解. 【详解】由题意集合M ={x ∈N*|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96. 【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.18.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案.【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾;②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}B x x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x -≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤≤组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.23.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<.(1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.24.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.25.(1)(){|24}R A B x x ⋂=≤<(2)1a =【分析】 化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围.【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}R A B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a = 综上,实数a 的取值范围是1a =.【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

2020届人教A版__集合_单元测试

2020届人教A版__集合_单元测试

集合一、单选题 1.设集合,则( )A .{1,2}B .{3,4}C .{1}D .{-2,-1,0,1,2} 【答案】C【解析】本题主要考查的是集合运算。

由条件可知,所以。

应选C 。

2.已知集合()(){|120}A x Z x x =∈+-≤, {|22}B x x =-<<,则A B ⋂=( ) A .{|12}x x -≤< B .{}1,1- C .{}0,1,2 D .{}1,0,1- 【答案】D【解析】{}{|12,}1,0,1,2A x x x Z =-≤≤∈=- ,所以{}1,0,1A B ⋂=-,选D. 3.设集合A ={x |2221<<x },B ={x |0lg >x },则A ∪B =( ) A .{x |1->x } B .{x |11<<-x }C .∅D .{x |11<<-x 或1>x } 【答案】D 【解析】试题分析:集合A 化简得{}|11x x -<<,集合B 化简得{}|1x x >{}|111A B x x x ∴=-<<>或考点:集合的交集运算及解不等式4.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤【答案】D 【解析】试题分析:{}{}22002x x x x x B =-≤=≤≤,所以{}01x x AB =≤≤,故选D .考点:1、一元二次不等式;2、集合的交集.5.已知集合{}1,2,3,4,5,6U =,{}1,2,4M =,则=( ) A .{2,4,6} B .{1,3,5} C .{3,5,6} D .U 【答案】C 【解析】试题分析:因为{}1,2,4M =,{}1,2,3,4,5,6U =,所以{}3,5,6u C M =. 考点:1、集合间的基本运算;2、补集的定义.6.已知全集U R =,集合2{|560}A x x x =--≤,集合()2{|log 31}B x x =-≤,则()U A C B ⋂=( )A .[](]1,35,6-⋃B .[)(]1,35,6-⋃C .(]5,6 D .∅ 【答案】A 【解析】由题意2{|560}{|16}A x x x x x =--≤=-≤≤,()2{|log 31}{|35}B x x x x =-≤=≤≤又{3U C B x =<或6}x >,所以(){|13U A C B x x ⋂=-≤≤或56}x <≤,故选A . 7.已知集合均为全集的子集,且,则= ( )A .B .C .D .∅【答案】A 【解析】 【详解】试题分析:∵C U (A ∪B)={4}∴A ∪B ={1,2,3}∵B ={1,2}∴3∈A ∵1,2∉C U B ,所以={3}考点:集合的交并补运算8.若集合A ={x|0≤x ≤2},B ={x|x 2>1},则A ∩B =( ) A .{x|0≤x ≤1} B .{x|x >0或x <−1} C .{x|1<x ≤2} D .{x|0<x ≤2} 【答案】C【解析】试题分析:,U C M,故答案为C.考点:集合的交集.9.设全集{},0U R A x x ==, {}1B x x =,则U A C B ⋂= ( ) A .{|01}x x <≤ B .{|01}x x ≤< C .{|0}x x < D .{}1x x 【答案】A【解析】由{}A x x =,{}1B x x =得: {}| 1 U C B x x =≤,则{|01}U A C B x x ⋂=<≤,故选A.10.已知集合{}{}2|60,,|4,A x x x x R B x x Z =+-≤∈=≤∈,则A B ⋂=( )A .()0,2B .[]0,2 C .{}0,2 D .{}0,1,2 【答案】D【解析】试题分析: []3,2A =-, []{}0,16,B x x Z =∈∈,所以{}0,1,2A B ⋂=. 考点:集合交集,一元二次不等式.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.在求交集时注意区间端点的取舍.熟练画数轴来解交集、并集和补集的题目.11.已知集合{|12513}A x x =≤+≤,3{|2,}2B y y x x A ==+∈,则A B 等于( ) A.∅ B.[1,4]- C.[2,4]- D.[4,2]- 【答案】B 【解析】试题分析:∵[2,4]A =-,∴[1,8]B =-,则[1,4]A B =-,故选项为B.考点:集合的运算.12.下列关系正确..的是( )A .{}10,1∈B .{}10,1∉C .{}10,1⊆D .{}{}10,1∈ 【答案】A【解析】由集合与元素的关系可得: {}10,1∈, 由集合与集合的关系可得: {}{}10,1⊆, 结合所给选项可知只有A 选项正确. 本题选择A 选项.二、填空题13.已知集合A ={-2,3,6m -9},集合B ={3,2m }.若B ⊆A ,则实数m = 【答案】3 【解析】试题分析:因为集合A ={-2,3,6m -9},集合B ={3,2m }且B ⊆A ,所以962-=m m 即3=m 符合题意.考点:集合间的基本关系.14.已知{}x x ,1,02∈,则实数x 的值是 .【答案】-1 【解析】试题分析:220,111(1)x x x x x x ≠≠⇒≠⇒=⇒=-舍去 考点:元素互异性【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.15.已知M={1,2, a 2-3a -1 },N={-1,a ,3},M∩N={3},则实数a 的取值的集合是 . 【答案】{4} 【解析】略16.已知a 是实数,若集合{x | ax =1}是任何集合的子集,则a 的值是___ 【答案】0【解析】试题分析:因为集合{}是任何集合的子集,所以,即方程无解,所以.考点:集合间的关系.三、解答题17.(12分)设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①B A ⋂=B A ⋃,求a 的值; ②φB A ⋂,且C A ⋂=φ,求a 的值;③B A ⋂=C A ⋂≠φ,求a 的值;【答案】①a=5②a=2③a=-3 【解析】解:①此时当且仅当B A =,有韦达定理可得5=a 和6192=-a 同时成立,即5=a ;②由于}3,2{=B ,}24{,-=C ,故只可能3A ∈。

新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)

新版高中数学第一册第一章单元测试卷---集合与常用逻辑用语(含答案)

新版高中数学第一册第一章单元测试卷--集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W 型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.参考答案与试题解析一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}【解答】解:由题意知,N={0,2,4},故M∩N={0,2},故选:D.2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]【解答】解:∵Q={y|y=cos x,x∈R},∴Q={y|﹣1≤y≤1},又∵P={﹣1,0,1},∴P∩Q={﹣1,0,1}.故选:A.3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤2【解答】解:根据题意,A⊆B,而A={x|1≤x≤2},在数轴上表示可得,必有a≤1,故选:B.4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8【解答】解:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选:C.5.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}【解答】解:∵集合A={x|﹣1<x<1},B={x|x≥1},∴A∪B={x|x>﹣1},∴∁R(A∪B)={x|x≤﹣1},故选:C.6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选:B.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}【解答】解:由已知可求得P={(1,m)},Q={(1﹣n,1+n)},再由交集的含义,有⇒,所以选A.8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n【解答】解法一:∵(∁U A)∪(∁U B)中有n个元素,如图所示阴影部分,又∵U=A∪B中有m个元素,故A∩B中有m﹣n个元素.解法二:∵(∁U A)∪(∁U B)=∁U(A∩B)有n个元素,又∵全集U=A∪B中有m个元素,由card(A)+card(∁U A)=card(U)得,card(A∩B)+card(∁U(A∩B))=card(U)得,card(A∩B)=m﹣n,故选:D.9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C 的所有元素之和为()A.3B.9C.18D.27【解答】解:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.故选:C.二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有6个元素.【解答】解:由(x﹣1)2<3x+7得x2﹣5x﹣6<0,∴A=(﹣1,6),因此A∩Z={0,1,2,3,4,5},共有6个元素.故答案是611.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B={1,2,5}.【解答】解:∵A∩B={2},∴log2(a+3)=2.∴a=1.∴b=2.∴A={5,2},B={1,2}.∴A∪B={1,2,5},故答案为{1,2,5}.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B={﹣1,1}.【解答】解:根据题意,A={x|y=,x∈Z},∴有1﹣x2≥0,且x∈Z,解得x=﹣1,0或﹣1,故A={﹣1,0,1},由B={y|y=2x﹣1,x∈A},解得y=﹣3,﹣1,1故B={﹣3,﹣1,1},于是A∩B={﹣1,1}.故答案为{﹣1,1}13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M的所有子集是∅、{1}、{2}、{1,2}.【解答】解:∵A∪(∁I A)=I,∴{2,3,a2+2a﹣3}={2,5,|a+1|},∴|a+1|=3,且a2+2a﹣3=5,解得a=﹣4或a=2.∴M={log22,log2|﹣4|}={1,2}.故答案为:∅、{1}、{2}、{1,2}14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=0或.【解答】解:由A∩B=A∪B知A=B,又根据集合元素的互异性,所以有或,解得或,故a=0或.答案:0或三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?【解答】解:若5个数字不含0,则共有种不同选择,不妨假设组成5位数的数字为1,2,3,4,5,①若千位为3,百、万位排1,2,则十位为5,则有2个;②若千位为4,百、万位排3,2 或3,1或1,2,则十位即为1,2,3,则有2+2+2=6个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,1,则十位排3,有1个;百、万位排3,2,或3,1或1,2,则十位排4,则有2+2+2=6个;“倒W型数”有:2+6+1+1+6=16个.故不含0的“倒W型数”有:16×=2016个,若5个数字含0,则共有种不同选择,不妨假设组成5位数的数字为0,2,3,4,5,①若千位为3,百、万位排0,2,则十位为5,则有1个;②若千位为4,百、万位排3,2 或0,3或0,2,则十位即为0,2,3,则有2+1+1=4个;③若千位为5,百、万位不排4,3,排2,4,则十位排3,有1个;百、万位排4,0,则十位排3,有1个;百、万位排3,2,或0,3或0,2,则十位排4,则有2+1+1=4个;“倒W型数”有:2+4+1+1+4=12个.故不含0的“倒W型数”有:12×=1512个,综上共有2016+1512=3528个倒W型数16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.【解答】解:(1)由题意可知:f(x+1)>2f(x),即﹣(x+1)2+a(x+1)>2(﹣x2+ax)对一切[3,+∞)恒成立,整理得:(x﹣1)a<x2﹣2x﹣1,∵x≥3,∴a<==x﹣1﹣,令x﹣1=t,则t∈[2,+∞),g(t)=t﹣在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m•2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=m n f(x﹣n)=m n•2x﹣n,即x∈[n,n+1)时,f(x)=m n•2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n﹣n≥m n﹣1•2n﹣(n﹣1),即m≥2.(3)问题(Ⅰ)∵当x∈[0,4]时,y∈[﹣4,0],且有f(x+4)=mf(x),∴当x∈[4n,4n+4],n∈Z时,f(x)=mf(x﹣4)=…=m n f(x﹣4n)=m n[(x﹣4n)2﹣4(x﹣4n)],当0<m≤1时,f(x)∈[﹣4,0];当﹣1<m<0时,f(x)∈[﹣4,﹣4m];当m=﹣1时,f(x)∈[﹣4,4];当m>1时,f(x)∈(﹣∞,0];当m<﹣1时,f(x)∈(﹣∞,+∞);综上可知:﹣1≤m<0或0<m≤1.问题(Ⅱ):由已知,有f(x+T)=Tf(x)对一切实数x恒成立,即cos k(x+T)=T cos kx对一切实数恒成立,当k=0时,T=1;当k≠0时,∵x∈R,∴kx∈R,kx+kT∈R,于是cos kx∈[﹣1,1],又∵cos(kx+kT)∈[﹣1,1],故要使cos k(x+T)=T cos kx恒成立,只有T=±1,当T=1时,cos(kx+k)=cos kx得到k=2nπ,n∈Z且n≠0;当T=﹣1时,cos(kx﹣k)=﹣cos kx得到﹣k=2nπ+π,即k=(2n+1)π,n∈Z;综上可知:当T=1时,k=2nπ,n∈Z;当T=﹣1时,k=(2n+1)π,n∈Z.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.【解答】解:U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},{1,3,5,7}⊆A,而B中不包含{1,3,5,7},用Venn图表示如图∴B={0,2,4,6,8,9,10}.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.【解答】解:(1)∵9∈(A∩B),∴9∈B且9∈A,∴2a﹣1=9或a2=9,∴a=5或a=±3.检验知:a=5或a=﹣3.(2)∵{9}=A∩B,∴9∈(A∩B),∴a=5或a=﹣3.当a=5时,A={﹣4,9,25},B={0,﹣4,9},此时A∩B={﹣4,9}与A∩B={9}矛盾,所以a=﹣3.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.【解答】解:由4y+9≥0,得y≥﹣,∴A={y|y≥﹣}.∵y=﹣x+1,且x>1,∴y<0,∴B={y|y<0},∴A⊖B={y|y≥0},B⊖A={y|y<﹣},∴A⨁B=(A⊖B)∪(B⊖A)={y|y<﹣或y≥0}.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.【解答】解:(I)由,得P={x|﹣1<x<3}.(II)Q={x||x﹣1|≤1}={x|0≤x≤2}.由a>0,得P={x|﹣1<x<a},又Q⊆P,结合图形所以a>2,即a的取值范围是(2,+∞).第1页(共1页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-集合单元测试【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.共120分,考试时间90分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.设S 、T 是两个非空集合,且S ⃘T ,T ⃘S ,若S∩T =M ,则S∪M 等于A .SB .TC .∅D .M2.集合{x|0<|x -1|<4,x∈N }的真子集的个数为A .32B .31C .16D .153.已知U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则A .M∩N={4,6}B .M∪N=UC .(∁U N)∪M=UD .(∁U M)∩N=N4.若A∪B=∅,则A .A =∅或B =∅ B .B =∅或A≠∅C .A =B =∅D .A≠∅或B≠∅5.若A 、B 、C 为三个集合,A∪B=B∩C,则一定有A .A ⊆CB .C ⊆AC .A≠C D.A =∅6.设全集U ={1,2,3,4,5},集合A ={1,a -2,5},∁U A ={2,4},则a 的值为A .3B .4C .5D .67.设数集M ={x|m≤x≤m+34},N ={x|n -13≤x≤n},且M 、N 都是集合{x|0≤x≤1}的子集,如果把b -a 叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是A.13B.23C.112D.5128.设集合P ={x|x =2m +1,m∈Z },Q ={y|y =2n ,n∈Z },若x 0∈P,y 0∈Q,a =x 0+y 0,b =x 0y 0,则A .a∈P,b∈Q B.a∈Q,b∈PC .a∈P,b∈P D.a∈Q,b =Q9.设集合M ={2,3,a 2+1},N ={a 2+a -4,2a +1,-1},M∩N={2},则a 的取值集合为A .{3}B .{2,-3}C .{-3,12}D .{-3,2,12} 10.已知A∩B=∅,M ={A 的子集},N ={B 的子集},则下列关系式成立的是A .M∩N=∅B .A∪B=M∪NC .M∩N={∅}D .A∪B ⊆M∪N第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.若A ={x|x =2n ,n∈N },B ={x|x =3n ,n∈N },C ={x|x =4n +2,n∈N },则(A∪C)∩B =__________.12.已知全集U ={1,2,3,4,5,6,7,8,9},A∩B={2},(∁U A)∩(∁U B)={1,9},(∁U A)∩B ={4,6,8},则集合A =__________,集合B =__________. 13.设P 和Q 是两个集合,定义集合P -Q ={x|x∈P,且x ∉Q},若P ={1,2,3,4},Q ={x|x +12<2,x∈R },则P -Q =__________. 14.若集合A ={x|x 2+5x -6=0},B ={x|ax +1=0},若B A ,则实数a 的可能取值为__________.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)已知集合A ={x|mx 2-2x +3=0},若A 中至多只有一个元素,求m 的取值范围.16.(本小题满分10分)设A 为实数集,满足a∈A ⇒11-a∈A,且1∉A. (1)若2∈A,求A ;(2)A 能否为单元素集?若能,把它求出来;若不能,请说明理由;(3)求证:若a∈A,则1-1a∈A.17.(本小题满分10分)已知正整数集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1<a 2<a 3<a 4,A∩B={a 1,a 4},且a 1+a 4=10,A∪B 中所有元素之和为124,求A.18.(本小题满分12分)已知A ={2,4,x 2-5x +9},B ={3,x 2+ax +a},C ={x 2+(a+1)x -3,1},a ,x∈R .求:(1)使2∈B,B A 的a 、x 的值;(2)使B =C 的a ,x 的值.19.(本小题满分12分)设A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0,a∈R }.(1)若A∩B=B ,求实数a 的值;(2)若A∪B=B ,求实数a 的值.答案与解析1.A 依题意画出韦恩图:,可得S∪M=S.2.D {x∈N |0<|x -1|<4}={0,2,3,4}=M ,故集合M 的真子集的个数为24-1=15个.3.B 把M 、N 代入验证可知只有B 正确.4.C A∪B=∅,由并集的定义可知A =B =∅.5.A ∵A ⊆A∪B 且C∩B ⊆C ,又A∪B=B∩C,∴A ⊆C.6.C由题意可知a -2=3,∴a=5.7.C 根据定义,可知集合M 、N 的长度一定,分别为34、13,要使集合M∩N 的“长度”最小,应取m =0,n =1,得M∩N={x|23≤x≤34},其区间长度为34-23=112. 8.A 设x 0=2m 0+1,m 0∈Z ,y 0=2n 0,n 0∈Z ,则a =x 0+y 0=2m 0+1+2n 0=2(m 0+n 0)+1∈P;b =x 0·y 0=(2m 0+1)·2n 0=2(2m 0n 0+n 0)∈Q.9.C 方法一:可代入验证a =-3,a =2,a =12是否满足M∩N={2}; 方法二:∵M∩N={2},∴a 2+a -4=2或2a +1=2.①当a 2+a -4=2时,a =2或a =-3.若a =2,则M ={2,3,5},N ={2,5,-1}与M∩N={2}矛盾. 若a =-3,则M ={2,3,10},N ={2,-5,-1}满足M∩N={2}.②当2a +1=2时,a =12,此时M ={2,3,54},N ={-134,2,-1},满足M∩N={2}. ∴a=-3或a =12. 10.C ∵A∩B=∅,∴A 与B 无公共元素.∴A 的子集与B 的子集中只有∅为公共元素.∴M∩N={∅}.11.{x|x =6n ,n∈N } ∵A∪C=A ,∴(A∪C)∩B=A∩B,它表示的是能被2和3整除的自然数.∴(A∪C)∩B={x|x =6n ,n∈N }.12.{2,3,5,7} {2,4,6,8} 由韦恩图易得.13.{4} 由题意Q ={x|0≤x+12<4}={x|-12≤x<72}, ∴P-Q ={x|x∈P 且x ∉Q}={4}.14.-1,0,16 ∵A={-6,1},B A ,∴B=∅或B ={-1a},当B =∅时,a =0;当B ={-1a }时,-1a =1或-1a =-6,∴a=-1或a =16.∴a=-1,0,16. 15.解:(1)当m =0时,原方程化为-2x +3=0,x =32,符合题意. (2)当m≠0时,方程mx 2-2x +3=0为一元二次方程,由题意Δ=4-12m≤0,得m≥13. 由(1)(2)可得m =0或m≥13. 16.解:(1)∵2∈A,∴11-2=-1∈A. ∴11-(-1)=12∈A.∴11-12=2∈A. ∴A={2,-1,12}. (2)设A ={a},∵11-a ∈A,∴11-a=a ,即a 2-a +1=0,无实数解.∴A 不能为单元素集.(3)a∈A,∴11-a ∈A.∴11-11-a=1-1a ∈A. 17.解:∵A∩B={a 1,a 4}且a 1<a 2<a 3<a 4,∴a 1=a 21.∴a 1=1,由a 1+a 4=10,得a 4=9,∴3∈A.①或a 2=3,依题意有1+3+a 3+9+a 23+81=124,∴a 3=5或a 3=-6(舍去).②若a 3=3,依题意有1+a 2+3+9+a 22+81=124,∴a 2=5或a 2=-6(舍去),此时a 2=5>a 3=3,与题意矛盾.综上,A ={1,3,5,9}.18.解:(1)∵2∈B,∴x 2+ax +a =2.① ∵B A ,∴x 2-5x +9=3.②由①②,可得⎩⎪⎨⎪⎧ x =2,a =-23或⎩⎪⎨⎪⎧x =3,a =-74.(2)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1,x 2+(a +1)x -3=3. 解得⎩⎪⎨⎪⎧ x =-1,a =-6或⎩⎪⎨⎪⎧x =3,a =-2. 19.解:(1)易得A ={0,-4},由A∩B=B ,得B ⊆A ,∴B=∅,{0},{-4},{0,-4}.①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,∴a<-1;②当B ={0}时,⎩⎪⎨⎪⎧ Δ=0,a 2-1=0,∴a=-1;③当B ={-4}时,⎩⎪⎨⎪⎧ Δ=0,a 2-8a +7=0,此方程组无解,∴B≠{-4}; ④当B ={0,-4}时,⎩⎪⎨⎪⎧ a 2-1=0,a 2-8a +7=0,∴a=1.综上可知a =1或a≤-1.(2)∵A∪B=B ,∴A ⊆B.又∵A={0,-4},B 中至多有两个元素,∴B=A ={0,-4}.由(1)知,此时a =1.。

相关文档
最新文档