材料力学02轴向拉伸与压缩_2应力
材料力学(机械类)第二章 轴向拉伸与压缩

二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
材料力学S02拉压

B
qx
l
C
F1
F1
23
第二章
轴向拉伸和压缩
拉压变形计算例题
例7: 支架,F=20kN, E=200GPa ,杆1截面d=0.022m, θ0=30°;杆2长度为l2=2m,截面为No.10工字钢, A2=1.435×10-3m2 。试计算结构中的最大应力和A点位 移。 d
B
(1)
FN 1
C
( 2)
l l
(a)
第二章
d
轴向拉伸和压缩
(b)
34
2. 低碳钢的拉伸力学性质
2.1 学习重点 材料的拉伸曲线(应力-应变或载荷-位移曲线) 重要参数 D 2.2 曲线 F 四个阶段: B 弹性,屈服 C 强化,颈缩 A
' '
轴向拉伸和压缩
F
b
b b
F
泊松比ν
第二章
l
20
拉压变形计算例题
F
例6: A 如图直径为d的圆截面的桩被外力F打入土中, 假设土对桩体的阻力为均匀分布,其线分布 B 集度为qx,土对桩头的阻力F1=0.3qxl,桩体 材料的弹性模量为E。试计算桩体最大应力 和总变形量。 q
F
O
x
x
该杆件上的载荷力系关于杆件中截面C反对称,FN的分 布关于杆件中截面C也是反对称的。
第二章 轴向拉伸和压缩 9
第三节
应力 拉压应力
Fi1
1. 应力 单位截面积上作用着的内力 平均应力 p ΔF
m
m
ΔA
ΔFn
ΔFt
一点应力
ΔA ΔF ΔF m n m t ΔA ΔA ΔF p lim ΔA 0 ΔA ΔF ΔF lim n lim t ΔA0 ΔA ΔA0 ΔA
材料力学笔记(第二章)

材料力学(土)笔记第二章 轴向拉伸和压缩1.轴向拉伸和压缩的概念拉(压)杆:作用于等直杆上的外力(或外力的合力)的作用线与杆件轴线重合变形特征是杆将发生纵向伸长或缩短2.内力法·截面法·轴力及轴力图2.1 内力内力:由外力作用引起的、物体内相邻部分之间分布内力系的合成 在物体内部相邻部分之间的相互作用的内力,实际上是一个连续分布的内力系分布内力系的合成(力或力偶),简称内力2.2 截面法·轴力及轴力图轴力:杆件任意横截面上的内力,其作用线与杆的轴线重合,即垂直于横截面并其通过形心 规定用记号N F 表示用截面法,内力N F 的数值由平衡条件求解,已知一端外力为F由平衡方程0=∑x F ,0=-F F N得F F N =规定引起纵向伸长变形的轴力为正,称为拉力规定引起纵向缩短变形的轴力为负,称为压力截面法包含以下三个步骤①截开:在需求内力的截面处,假想地将杆分为两部分②代替:将两部分上的任意一部分留下,吧弃去部分的作用代之以作用在截开面上的内力 ③平衡:对留下的部分建立平衡方程,根据已知外力来计算在截开面上的未知力截开面上的内力对留下部分而言已属外力静力学中的力(或力偶)的可移性原理,在截面法求内力的过程中是有限制的将杆上的荷载用一个静力等效的相当力来替代,也是有所限制的轴力图:用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,从而绘成表示周丽与截面位置关系的图线。
正值的轴力滑上侧,负值画下侧3.应力·拉(压)杆内的应力3.1 应力的概念应力:受力杆件某一横截面上分部内力在一点处的集度考察M 处的应力,在M 点周围取一微小的面积A ∆设A ∆面积上分布内力的合力为F ∆在面积A ∆上内力F ∆的平均集度为AF p m ∆∆=m p 称为面积A ∆上的平均应力 为表明分布内力在M 点处的集度,令微小面积A ∆无限缩小趋于零,则其极限值dAdF A F p A =∆∆=→∆0lim 即为M 点处的内力集度,称为截面m-m 上M 点处的总应力F ∆是矢量,总应力p 也是矢量,其方向一般既不与截面垂直,也不与截面相切通常将总应力p 分解为与截面垂直的法向分量σ和与截面相切的切向分量τ法向分量σ称为正应力切向分量τ称为切应力应力具有如下特征:①应力定义在受力物体的某一截面上的某一点处讨论应力必须明确是在哪一个截面上哪一点处②在某一截面上一点处的应力是矢量对于应力分量,通常规定离开截面的正应力为正,反之为负③应力的量纲为21--T ML ,应力单位为Pa1 Pa=1N/㎡,工程中常采用MPa ,1 MPa=610Pa④整个截面上各点处的应力与微面积dA 之乘积的合成,即为该截面上的内力3.2 拉压杆横截面上的应力与轴力相应的只可能是垂直于截面的正应力考察杆件受力后表面上的变形情况,由表及里地作出杆件内部变形情况的几何假设,再根据力与变形间的物理关系,得到应力在截面上的变化规律,然后再通过应力与dA 之乘积的合成即为内力的静力学关系,得到与内力表示的应力计算公式平面假设:假设原为平面的横截面在杆变形后仍为平面根据平面假设,拉杆变形后两横截面将沿杆轴线作相对平移拉杆在其任意两个横截面之间纵向线段的伸长变形是均匀的假设材料是均匀的,杆的分布内力集度由于杆纵向线段的变形相对应因而拉杆横截面上的正应力σ呈均匀分布,即各点处的正应力相等按应力与内力间的静力学关系A A d dA F AA N σσσ===⎰⎰ 即得拉杆横截面上正应力σ的计算公式AF N =σ 式中,N F 为轴力,A 为杆的横截面面积 对于轴向压缩的杆,上式同样适用这一结论实际上只在杆上离外力作用点稍远的部分才正确圣维南原理:力作用于杆端的方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响当等直杆受几个轴向外力作用时,由轴力图可求得其最大轴力max ,N F代入公式即得杆内得最大正应力为A F N max,max =σ最大轴力所在的横截面称为危险截面危险截面上正应力称为最大工作应力3.3 拉(压)杆斜截面上的应力与横截面成α角的任意斜截面k-k 上的应力用一平面沿着斜截面k-k 将杆截分为二,并研究左段杆的平衡得斜截面k-k 上的内力αF 为F F =α得到斜截面上各点处的总应力αpαααA F p =αA 是斜截面面积,αA 与横截面面积关心为ααcos /A A =代入可得ασααcos cos 0==A F p 其中AF =0σ即拉杆在横截面(0=α)上的正应力 总应力αp 是矢量,分解成两个分量:沿截面法线方向的正应力和沿截面切线方向的切应力 分别用ασ,ατ表示两个分量可以表示为ασασαα20cos cos ==p ασαταα2sin 2sin 0==p 其中角度α以横截面外向法线至斜截面外向法线为逆时针转向时为正,反之为负①当0=α时,0σσα=是ασ中的最大值,即通过拉杆内某点的横截面上的正应力,是通过该点的所有不同方位截面上正应力中的最大值②当o 45=α时,20στα=是ατ中的最大值,即与横截面呈45°的斜截面上的切应力,是拉杆所有不同方位截面上切应力中的最大值单元体:在拉杆表面任意一点A 处用横截面、纵截面及表面平行的面貌截取一各边长均为无穷小的正六面体应力状态:通过一点的所有不同方位截面上应力的全部情况单轴应力状态:在研究的拉杆中,一点处的应力状态由其横截面上的正应力0σ即可完全确定4.拉(压)杆的变形·胡克定律设拉杆原长为l ,承受一对轴向拉力F 的作用而伸长后,其长度增为1l则杆的纵向伸长为l l l -=∆1杆件变形程度可以每单位长度的纵向伸长(l l /∆)来表示线应变:每单位长度的伸长(或缩短),用ε表示拉杆的纵向线应变为ll ∆=ε 拉杆的纵向伸长l ∆为正,压杆的纵向缩短l ∆为负 研究一点处的线应变,可围绕该点取一个很小的正六面体设所取正六面体沿x 轴方向AB 边的原长为x ∆变形后其长度的改变量为x δ∆对于非均匀变形比值x x ∆∆/δ为AB 边的平均线应变当x ∆无限趋于零时,其极限值称为A 点处沿x 轴方向的线应变dxd x x x x x δδε=∆∆=→∆0lim拉杆在纵向变形的同时将有横向变形设拉杆为圆杆,原始直径为d ,受力变形后缩小为1d则其横向变形为d d d -=∆1在均匀变形情况下,拉杆的横向线应变为dd ∆='ε 拉杆的横向线应变为负,即与其纵向线应变的正负号相反拉(压)杆的变形量与其所受力之间的关系与材料性能有关,只能通过实验来获得 当杆内应力不超过材料的某一极限值(比例极限)时杆的伸长l ∆与其所受外力F 、杆的原长l 成正比,与其横截面面积A 成反比AFl l ∝∆ 引进比例常数E ,则 EAFl l =∆ 由于N F F =,上式改写为 EAl F l N =∆ 此关系称为胡克定律,式子中比例常数E 称为弹性模量,其量纲为21--TML ,单位为PaE 的数值随材料而异,其值表征材料抵抗弹性变形的能力EA 称为杆的拉伸(压缩)刚度对于相等且受力相同的拉杆,其拉伸刚度越大拉杆变形越小将上述公式改写成 AF E l l N ⨯=∆1 可得胡克定律的另一种表达方式 E σε=它不仅适用于拉(压)杆,而且还可以更普遍地用于所有的单轴应力状态称其为单轴应力状态下的胡克定律对于横向线应变'ε,实验结果指出当拉(压)杆的应力不超过材料的比例极限时,它与纵向线应变ε的绝对值之比为一常数 此比值称为横向变形因数或泊松比,通常用υ表示,即εευ'= υ是量纲为一的量,其数值随材料而异,也是通过实验测定的纵向线应变与横向线应变的正负号恒相反,故有υεε-='Eσυε-=' 一点处横向线应变与该点处得纵向正应力成正比,但正负号相反例题2-5计算结点A 的位移为计算位移A ∆,假想地将两杆在A 点处拆开,并沿两杆轴线分别增加长度1l ∆和2l ∆ 分别以B 、C 为圆心,以两杆伸长后长度1BA ,2CA 为半径作园,交点''A 为A 点新位置3.拉(压)杆内的应变能应变能:伴随着弹性变形的增减而改变的能量在弹性体的变形过程中,积蓄在弹性体内的应变能εV 在数值上等于外力做功WW V =ε上式称为弹性体的功能原理,应变能εV 的单位为J (1 J=1 N ·m )推导拉杆应变能计算公式在静荷载F 的作用下,杆伸长l ∆力对该位移所作的功等于F 与l ∆关系图线下的面积弹性变形范围内F 与l ∆成线性关系,可得F 所做的功W 为l F W ∆=21 积蓄在杆内的应变能为 2222222121l lEA EA l F EA l F l F l F V N N ∆===∆=∆=ε 由于拉杆各横截面上所有点处的应力均相同故杆的单位体积内所积蓄的应变能就等于杆的应变能εV 除以体积V应变能密度:单位体积内的应变能,用εv 表示σεεε2121=∆==Al l F V V v 公式表明应变能密度可以视作正应力σ在其相应的线应变ε上作的功 2222εσεE E v == 应变能的单位为J/m ³只适用于应力与应变成线性关系的先弹性范围内能量法:利用应变能的概念可以解决与结构或构件的弹性变形有关的问题例题2-6εV P A =∆216.材料在拉伸和压缩时的力学性能6.1 材料的拉伸和压缩试验标距:圆截面标准试样的工作段长度l标准比例d l 10=和d l 5=万能试验机:使试样发生变形(伸长或缩短)并测定试样抗力变形仪:将微小变形放大,测量试样变形6.2 低碳钢试样的拉伸图及其力学性能低碳钢是工程上最广泛使用的材料拉伸图:横坐标表示试样工作段的伸长量l ∆,纵坐标表示试样承受的荷载F低碳钢在整个拉伸试验过程中其工作段伸长量与荷载间的关系大致可分为四个阶段 ①弹性阶段:试样变形时完全弹性的,全部卸除载荷后,试样将恢复原长低碳钢在此阶段内,其伸长量与荷载之间成正比,即胡克定律表达式②屈服阶段:试样的伸长量急剧地增加,而荷载读数在很小范围内波动屈服:试样的荷载在很小的范围内波动,而其变形却不断增大的现象屈服阶段出现的变形,是不可恢复的塑性变形滑移线:试样经过抛光,则在试样表面将可看到大约与轴线成45°方向的条纹,是由材料沿试样的最大切应力面发生滑移而引起的③强化阶段:试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断发生强化,因而试样中的抗力不断增长。
材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学——2拉伸和压缩

反面看:危险,或 失效(丧失正常工作能力) (1)塑性屈服 (2)脆性断裂
28
• 正面考虑 —— 应力 为了—— 安全,或不失效
( u — Ultimate, n — 安全因数 Safety factor)
(1)塑性 n =1.5 - 2.5 (2)脆性 n = 2 - 3.5 • 轴向拉伸或压缩时的强度条件 ——
截面法(截、取、代、平) 轴力 FN(Normal) 1.轴 力
Fx 0
得
FN P 0 FN P
5
•轴力的符号
由变形决定——拉伸时,为正 压缩时,为负
注意: • 1)外力不能沿作用线移动——力的可传性不
成立 变形体,不是刚体
6
2. 轴 力 图
• 纵轴表示轴力大小的图(横轴为截面位 置) 例2-1 求轴力,并作轴力图
哪个杆先破坏?
§2-2 拉 ( 压 ) 杆 的 应 力
杆件1 —— 轴力 = 1N, 截面积 = 0.1 cm2 杆件2 —— 轴力 = 100N, 截面积 = 100 cm2
哪个杆工作“累”?
不能只看轴力,要看单位面积上的力—— 应力 • 怎样求出应力?
思路——应力是内力延伸出的概念,应当由 内力 应力
材料力学
Mechanics of Materials
1
2
§2-1 概念及实例
• 轴向拉伸——轴力作用下,杆件伸长 (简称拉伸)
• 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
3
拉、压的特点:
• 1.两端受力——沿轴线,大小相等,方向相反
• 2. 变形—— 沿轴线的伸长或缩短
材料力学第2章轴向拉伸与压缩

图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
材料力学 第2章轴向拉伸与压缩

A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学第二章-轴向拉伸与压缩

1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
FN2 a2
17.3103 N 202 106 m2 43.3MPa
压
7
[例2] 图示压杆,已知轴向压力 F = 25 kN,横截面面积 A = 200 mm2 ,试求 m - m 斜截面上的正应力与切应力。
n 50
解: 横截面上的正应力
FN A
25103 N 200106 m2
125 MPa
m - m 斜截面的方位角
50
8
125 MPa 50
n
50
50
50
代入公式即得该斜截面上的正应力与切应力分别为
cos2 125 MPa cos2 50 51.6 MPa 50
sin 2 125 MPa sin100 61.6 MPa
FN1 20 kN 拉 FN2 17.3kN 压
FN1
FN 2
30
A
F
6
FN1 20 kN 拉 FN2 17.3kN 压
2)计算两杆应力
AB 杆:
1
FN1 πd2
4 20103 N π 152 106 m2
113.2 MPa
拉
4
AC 杆:
50 2
2
9
m
n
x
m
斜截面的方位角 : 截面外法线 n 与 x 轴之间的夹角,并规定以
x 轴为始边,逆时针转向的 角为正,反之为负
在拉(压)杆的斜截面上,既有正应力,又有切应力,其计算公
式为
cos2
2
2
cos 2
cos
sin
2
sin 2
式中, 为斜截面的方位角 ; 为横截面上的正应力 ◆ 计算时应注意 与 的正负号
4
cos2
2
2
cos
2
cos sin sin 2
2
m
n
xm讨论:源自1)当 = 0°,即在横截面上,max =
90
2)当 = 45°,即在 45°斜截面上,max = / 2
3)切应力互等定理: + 90° = - ,即在任意两个相互垂直的
F
FN 为横截面上的轴力
三、圣维南原理 作用于杆端的外力的分布 方式,会影响杆端局部区 域的应力分布,其影响区 至杆端的距离大致等于杆 的横向尺寸
h/4 1 2 3
1
F
2.575
1 0.198
2
F
1.387
2 0.668
F
F A
3
F
1.027 3 0.973
3
四、拉(压)杆斜截面上的应力
第三节 拉(压)杆的应力
一、应力 定义: 截面上分布内力的集度 如图,分布内力在 k 点的集度
p lim F A0 A
称为 k 点的应力
F
k
A
1
表达方式: 应力常用其一对正交分量表示, 其中
垂直于截面的法向应力分量称为正应力,记作 ,
并规定拉正压负;
相切于截面的切向应力分量称为切应力,记作 ,
并规定顺时针转向为正、逆时针转向为负。
单位: 在国际单位制中,应力的单位 为 Pa。1 Pa = 1 N/m2 ,常用 MPa,有时用 GPa
2
二、拉(压)杆横截面上的应力
拉(压)杆横截面上只存在正应力;
拉(压)杆横截面上的正应力均匀分布,即有
FN
A
式中,A 为横截面的面积
h/2 123
斜截面上,切应力大小相等、转向相反
5
[例1] 如图,已知 AB 为直径 d = 15 mm 的圆截面杆,AC 为边长 a = 20 mm 的正方形截面杆,F = 10 kN,试计算两杆横截面上的应力。
解: 1)计算两杆轴力 利用截面法,截取结点 A 为研究 对象并作受力图 列平衡方程,解得两杆轴力