九年级数学几何模型压轴题中考真题汇编[解析版]

九年级数学几何模型压轴题中考真题汇编[解析版]
九年级数学几何模型压轴题中考真题汇编[解析版]

九年级数学几何模型压轴题中考真题汇编[解析版]

一、初三数学旋转易错题压轴题(难)

1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.

(1)如图①,若∠B、∠ADC都是直角,把ABE

△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;

(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有

EF=BE+DF;

(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3

【解析】

【分析】

(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;

(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即

180

ADG ADF

∠+∠=?,即180

B D

∠+∠=?;

(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.

【详解】

(1)解:如图,

∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,

∴AE=AG,∠BAE=∠DAG,BE=DG,

∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°,

∴∠DAG+∠DAF=45°,

即∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

(2)解:∠B+∠D=180°,

理由是:

如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,

∵∠B+∠ADC=180°,

∴∠ADC+∠ADG=180°,

∴F、D、G在一条直线上,

和(1)类似,∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

故答案为:∠B+∠D=180°;

(3)解:∵△ABC中,2BAC=90°,

∴∠ABC=∠C=45°,由勾股定理得:22

AB AC

+,

如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF . 则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE , ∵∠DAE=45°,

∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°, ∴∠FAD=∠DAE=45°, 在△FAD 和△EAD 中

AD AD FAD EAD AF AE =??

∠=∠??=?

∴△FAD ≌△EAD , ∴DF=DE , 设DE=x ,则DF=x , ∵BD=1,

∴BF=CE=4﹣1﹣x=3﹣x , ∵∠FBA=45°,∠ABC=45°, ∴∠FBD=90°,

由勾股定理得:222DF BF BD =+,

22(3)1x x =-+,

解得:x=53

, 即DE=

53. 【点睛】

本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.

2.已知如图1,在ABC 中,90ABC ∠=?,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.

(1)写出线段ED 与线段EB 的关系并证明;

(2)如图2,将CDF 绕点C 逆时针旋转(

)

090a α?

<

(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的

范围.

【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22= 最小值32

2

=. 【解析】 【分析】

(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;

(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值. 【详解】

(1)∵DF ⊥AC ,点E 是AF 的中点 ∴DE=AE=EF ,∠EDF=∠DFE ∵∠ABC=90°,点E 是AF 的中点 ∴BE=AE=EF ,∠EFB=∠EBF ∴DE=EB ∵AB=BC , ∴∠DAB=45°

∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°

∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB) =360°-2×135°=90° ∴DE ⊥EB

(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H

∵ME=EB,点E是AF的中点

∴四边形MFBA是平行四边形

∴MF∥AB,MF=AB

∴∠MHB=180°-∠ABC=90°

∵∠DCA=∠FCB=a

∴∠DCB=45°+a,∠CFH=90°-a

∵∠DCF=45°,∠CDF=90°

∴∠DFC=45°,△DCF是等腰直角三角形

∴∠DFM=180°-∠DFC-∠CFH=45°+a

∴∠DCB=∠DFM

∵△ABC和△CDF都是等腰直角三角形

∴DC=DF,BC=AB=MF

∴△DCB≌△DFM(SAS)

∴∠MDF=∠BDC,DB=DM

∴∠MDF+∠FDB=∠BDC+∠FDB=90°

∴△DMB是等腰直角三角形

∵点E是MB的中点

∴DE=EB,DE⊥EB

(3)当点F在AC上时,CF有最大值,图形如下:

∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32

∴CE=CF+FE=CF+1

2AF92

2

=

当点F在AC延长线上时,CE有最小值,图形如下:

同理,CE=EF-CF

32

2 =

【点睛】

本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.

3.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

操作发现

(1)某小组做了有一个角是120?的等腰三角形DAC和等边三角形GEB纸片,

DA DC

=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC

和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________; 数学思考

(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90?,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由; 类比探索

(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;

②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.

【答案】(1)3EF DF =,DF EF ;

(2)3EF DF =,DF EF ,理由见解析;

(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DF

EF 始终成立.

【解析】 【分析】

(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;

②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.

【详解】

解:(1)3EF DF =,DF

EF ;

如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,

AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.

()1

2

MF CF NC NB AC AM CB MC NC +=++=+=+∴.

MF NC NB ∴==,CF CN FN AM +==. 设DM a =,2GB b =,

120ADC ∠=?,DA DC =,

3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =?==∠.

在DMF 和FNE 中,

3

3DM FN a ==

, 3

3MF NE b

==

, 又

90DMF FNE ∠=∠=?, DMF FNE ∴∽.

MDF NFE ∴∠=∠,

3

DF DM FE FN ==

,即3EF DF =. 90MDF DFM ∠+∠=?,

90DFM NFE ∴∠+∠=?. 90DFE ∴∠=?.

3EF DF ∴=且DF

EF .

(2)3EF DF =,DF

EF .

理由如下:

如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90?时,则90ACB ∠=?,在

Rt ACB △中,点F 是AB 的中点,

CF BF ∴=.

CE EB

=,

EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=?.

DF EF ∴⊥,//AC EF .

DA DC =,120ADC =∠?,30DCA ∴∠=?. GEB 为等边三角形, 60ECB ∴∠=?.

∴∠DCA+∠ACB+∠ECB=180^° ∴D ,C ,E 三点共线.

30DCA DEF ∴∠=∠=?.

∴在Rt DEF △中,3tan 3

3

DE DF F F E DF

===∠; (3)①3EF DF =,DF EF .

选择题图进行证明:

如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,

在ADF 和BNF 中,

AF BF AFD BFN DF NF =??

∠=∠??=?

, ()SAS ADF BNF ∴?.

AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.

18060O ADC ∴∠=?-∠=?.

又CPO BPE ∠=∠,60O CEB ∠=∠=?, OCP OBE ∴∠=∠. DCE NBE ∴∠=∠. 又GEB 是等边三角形, GE BE ∴=,

又AD BN CD ==,

()

SAS

DCE NBE

∴?.

DE NE

∴=,BEN CED

∠=∠.

BEN BED CED BED

∴∠+∠=∠+∠,

即60

NED BEC

∠=∠=?.

DEN

∴是等边三角形.

又DF FN

=,

DF EF

∴⊥,60

FDE

∠=?.

tan3

E E

F DF DF

FD

∴∠

=?=.

或选择图进行证明,证明如下:

如解图,延长DF并延长到点N,使得FN DF

=,

连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF 和BNF中,

AF BF

AFD BFN

DF NF

=

?

?

∠=∠

?

?=

?

()

SAS

ADF BNF

∴?.

AD NB

∴=,ADF BNF

∠=∠.

//

AD NB

∴.

120

NOC ADC

∴∠=∠=?.

60

BOJ

∴∠=?,60

JEC

∠=?.

又OJB EJC

∠=∠,

OBE ECJ

∴∠=∠.

AD CD

=,AD NB

=,

CD NB

∴=.

又GEB是等边三角形,

CE BE

∴=.

()

SAS

DCE NBE

∴?.

DE NE

∴=,BEN CED

∠=∠.

BEN BED CED BED

∴∠-∠=∠-∠,

即60

NED BEC

∠=∠=?.

DEN

∴是等边三角形.

又DF FN

=,

DF EF ∴⊥,60FDE ∠=?. tan 3E E F DF DF FD ∴∠=?=.

②旋转过程中3EF DF =,DF EF 始终成立.

【点睛】

本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.

错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.

4.如图,△ABC 和△DEC 都是等腰三角形,点C 为它们的公共直角顶点,连接AD 、BE ,F 为线段AD 的中点,连接CF .

(1)如图1,当D 点在BC 上时,BE 与CF 的数量关系是__________;

(2)如图2,把△DEC 绕C 点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;

(3)如图3,把△DEC 绕C 点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.

【答案】(1)BE=2CF ;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析. 【解析】

试题分析:(1)根据“SAS ”证明△ACD ≌△BCE ,可得AD =BE ,又因为AD =2CF ,从而BE=2CF ;

(2)由点F 是AD 中点,可得AD =2DF ,从而AC = 2DF +CD ,又由△ABC 和△CDE 是等腰直角三角形,可知BC =2DF +CE ,所以BE = 2(DF +CE ),CF = DF +CD ,从而BE =2CF ; (3)延长CF 至G 使FG =CF ,即:CG=2CF ,可证△CDF ≌△GAF ,再证明△BCE ≌△ACG ,从而BE =CG =2CF 成立.

解:(1)∵△ABC 是等腰直角三角形, ∴AC=BC ,

∵△CDE 是等腰直角三角形, ∴CD=CE ,

在△ACD和△BCE中,,

∴△ACD≌△BCE,

∴AD=BE,在Rt△ACD中,点F是AD中点,

∴AD=2CF,

∴BE=2CF,

故答案为BE=2CF;

(2)(1)中的关系是仍然成立,

理由:∵点F是AD中点,

∴AD=2DF,

∴AC=AD+CD=2DF+CD,

∵△ABC和△CDE是等腰直角三角形,

∴AC=BC,CD=CE,

∴BC=2DF+CE,

∴BE=BC+CE=2DF+CE+CE=2(DF+CE),

∵CF=DF+CD=DF+CD,

∴BE=2CF;

(3)(1)中的关系是仍然成立,理由:如图3,

延长CF至G使FG=CF,即:CG=2CF,

∵点F是AD中点,

∴AF=DF,

在△CDF和△GAF中,,

∴△CDF≌△GAF,

∴AG=CD=CE,∠CDF=∠GAF,

∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,

∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,

连接BE,

在△BCE和△ACG中,,

∴△BCE≌△ACG,

∴BE=CG=2CF,

即:BE=2CF.

点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.

5.(1)问题发现

如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.

填空:线段AD,BE之间的关系为 .

(2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.

(3)解决问题

如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.

【解析】

【分析】

(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE

交AD于点F,由垂直定义得AD⊥BE.

(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;

(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】

(1)结论:AD=BE,AD⊥BE.

理由:如图1中,

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .

理由:如图2中,设AD 交BE 于H ,AD 交BC 于

O .

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中

AC BC

ACD BCE

CD

CE

?

?

∠∠

?

?

?

∴△ACD≌△BCE(SAS),

∴AD=BE,∠CAD=∠CBE,

∵∠CAO+∠AOC=90°,∠AOC=∠BOH,

∴∠BOH+∠OBH=90°,

∴∠OHB=90°,

∴AD⊥BE,

∴AD=BE,AD⊥BE.

(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,

图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,

即5-32≤PC≤5+32.

【点睛】

本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.

6.请认真阅读下面的数学小探究系列,完成所提出的问题:

()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B

顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为

2

1.(2

a 提示:过点D 作BC

边上的高

DE ,可证ABC ≌)BDE

()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺

时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.

()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针

旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.

【答案】(1)详见解析;(2)BCD 的面积为

2

12

a ,理由详见解析;(3)BCD 的面积为

2

14a . 【解析】 【分析】

()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出

ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;

()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出

ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;

()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形

的性质可以得出1

BF BC 2

=

,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】

()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,

BED ACB 90∠∠∴==,

由旋转知,AB AD =,ABD 90∠=,

ABC DBE 90∠∠∴+=,

A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, AC

B BED A DBE AB BD ∠=∠??

∠=∠??=?

ABC

∴≌()BDE AAS BC DE a ∴==,

BCD 1

S BC DE 2=?,

2BCD 1

S a 2

∴=;

()2BCD 的面积为21a 2

理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,

BED ACB 90∠∠∴==,

线段AB 绕点B 顺时针旋转90得到线段BE ,

AB BD ∴=,ABD 90∠=, ABC DBE 90∠∠∴+=,

A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, AC

B BED A DBE AB BD ∠=∠??

∠=∠??=?

, ABC ∴≌()BDE AAS , BC DE a ∴==,

BCD 1

S BC DE 2=?,

2BCD 1

S a 2

∴=;

()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,

AFB E 90∠∠∴==,11BF BC a 22

==, FAB ABF 90∠∠∴+=,

ABD 90∠=,

ABF DBE 90∠∠∴+=,

FAB EBD ∠∠∴=,

线段BD 是由线段AB 旋转得到的,

AB BD ∴=,

在AFB 和BED 中,

AFB E FAB EBD AB BD ∠=∠??

∠=∠??=?

, AFB ∴≌()BED AAS , 1BF DE a 2

∴==, 2BCD

1111

S

BC DE a a a 2224

=

?=??=, BCD ∴的面积为21

a 4

【点睛】

本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.

7.两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB=∠DCE=90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.

(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为______和位置关系为______;

(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由; (3)如图3,将图1中的△DEC 绕点C 顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.

【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.

【解析】

试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1

2

AD,FH∥AD,FG=

1

2

BE,

FG∥BE,即可推出答案;

(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:

(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,

∴BE=AD,

∵F是DE的中点,H是AE的中点,G是BD的中点,

∴FH=1

2

AD,FH∥AD,FG=

1

2

BE,FG∥BE,

∴FH=FG,

∵AD⊥BE,

∴FH⊥FG,

故答案为相等,垂直.

(2)答:成立,

证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE

∴AD=BE,

由(1)知:FH=1

2

AD,FH∥AD,FG=

1

2

BE,FG∥BE,

∴FH=FG,FH⊥FG,

∴(1)中的猜想还成立.

中考数学几何典型例题

几何综合题 一图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

2、正方形中的基本图形 3、基本辅助线 (1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;【参见(一)1;(二)1;西城中考总复习P57例6】* (2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;【参见(一)2、3、4、5】* (3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;【参见(一)6,7,8,9】 (4)特殊图形的辅助线及其迁移 .... ——梯形的辅助线(什么时候需要这样添加?)等【参见(一)7】 作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学压轴题动态几何题型精选解析

2013中考数学压轴题动态几何题型精选解析(三) 例题如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为,点E的坐标为. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. 思路分析: (1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标; (2)利用待定系数法求出抛物线的解析式; (3)本问非常复杂,须小心思考与计算: ①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考; ②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标. 解:(1)由题意可知:OB=2,OC=1. 如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G. 易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3); 同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2). ∴D(﹣1,3)、E(﹣3,2). (2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2), 则 解得

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

中考数学几何辅助线大全及常考题型解析

2017年中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法 等腰三角形 1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法; 2. 作一腰上的高; 3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。 梯形 1. 垂直于平行边 2. 垂直于下底,延长上底作一腰的平行线 3. 平行于两条斜边 4. 作两条垂直于下底的垂线 5. 延长两条斜边做成一个三角形 菱形 1. 连接两对角 2. 做高 平行四边形 1. 垂直于平行边 2. 作对角线——把一个平行四边形分成两个三角形 3. 做高——形内形外都要注意 矩形 1. 对角线 2. 作垂线 很简单。无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。还有一些关于平方的考虑勾股,A 字形等。 三角形 图中有角平分线,可向两边作垂线(垂线段相等)。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 解几何题时如何画辅助线? ①见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 ②在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 ③对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线 初中数学辅助线的添加浅谈

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学几何题总汇

一轮复习—中考几何解决方案 1.三角形的有关概念 知识考点: 理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。关键是正确理解有关概念,学会概念和定理的运用。应用方程知识求解几何题是这部分知识常用的方法。 精典例题: 【例1】已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( ) A 、b L a 33>> B 、a L b a 2)(2>>+ C 、a b L b a +>>+262 D 、b a L b a 23+>>- 分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。 答案:B 变式与思考:在△ABC 中,AC =5,中线AD =7,则AB 边的取值范围是( ) A 、1<AB <29 B 、4<AB <24 C 、5<AB <19 D 、9<AB <19 评注:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。 【例2】如图,已知△ABC 中,∠ABC =450,∠ACB =610,延长BC 至E ,使CE =AC ,延长CB 至D ,使DB =AB ,求∠DAE 的度数。 分析:用三角形内角和定理和外角定理,等腰三角形性质,求出∠D +∠E 的度数,即可求得∠DAE 的度数。 略解:∵AB =DB ,AC =CE ∴∠D = 21∠ABC ,∠E =2 1 ∠ACB ∴∠D +∠E =2 1 (∠ABC +∠ACB )=530 ∴∠DAE =1800-(∠D +∠E )=1270 探索与创新: 【问题一】如图,已知点A 在直线l 外,点B 、C 在直线l 上。 (1)点P 是△ABC 内任一点,求证:∠BPC >∠A ; (2)试判断在△ABC 外,又和点A 在直线l 的同侧,是否存在一点Q ,使∠BQC >∠A ,并证明你的结论。 n m ? l l 问题一图 C B A C A 分析与结论: (1)连结AP ,易证明∠P >∠A ; (2)存在,怎样的角与∠A 相等呢?利用同弧上的圆周角相等,可考虑构造△ABC 的外接⊙O ,易知弦BC 所对且顶点在弧A m B ,和弧A n C 上的圆周角都与∠A 相等,因此点Q 应在弓形A m B 和A n C 内,利用圆的有关性质易证明(证明略)。 【问题二】如图,已知P 是等边△ABC 的BC 边上任意一点,过P 点分别作AB 、AC 的垂线PE 、PD ,垂足为E 、D 。问:△AED 的周长与四边形EBCD 的周长之间的关系? 分析与结论: (1)DE 是△AED 与四边形EBCD 的公共边,只须证明AD +AE =BE +BC +CD (2)既有等边三角形的条件,就有600的角可以利用;又有垂线,可造成含300角的直角三角形,故本题可借助特殊三角形的边角关系来证明。 略解:在等边△ABC 中,∠B =∠C =600 例2图 E D C B A A

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

2017重庆中考数学第25题几何专题训练

G F E D C B A M 证明题 1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD⊥BC,垂足是D ,AE 平分∠BAD,交BC 于点E .在△ABC 外有一点F ,使FA⊥AE,FC⊥BC. (1)求证:BE=CF ; (2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME⊥BC;②DE=DN. 2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。 求证:(1)AF =CG ; (2)CF =2DE 3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC。 (1)求证:OE=OF ; (2)若BC=23,求AB 的长。 4.已知,如图,在?ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2. (1)若CF=2,AE=3,求BE 的长; (2)求证:∠CEG=∠AGE .

5.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。 (1)如图1,若点H是AC的中点,AC= 23 ,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由。 6.如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE. (1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长; (2)若AF是△ABE的高,延长AF交BC于点G. ①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE; ②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变, 如果不变,请求出∠DFG的度数;如果要变,请说明理由. 7.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC (或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证: 1 CF 2 BE AB +=; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:3() BE CF BE CF +=-. 8.已知在四边形ABCD中,180 ABC ADC ∠+∠=?,AB=BC. A B F D C E 25 B A F D C E G 25 A F D C E G 25

相关文档
最新文档