PLC控制实验--机械手控制

合集下载

机械手的PLC控制-PLC课程设计

机械手的PLC控制-PLC课程设计

一、要求机械手的PLC控制1.设备基本动作:机械手的动作过程分为顺序的8个工步:既从原位开始经下降、夹紧、上升、右移、下降、放松、上升、左移8个动作后完成一个循环(周期)回到原位。

并且只有当右工作台上无工件时,机械手才能从右上位下降,否则,在右上位等待。

2.控制程序可实现手动、自动两种操作方式;自动又分为单工步、单周期、连续三种工作方式。

3.设计既有自动方式也有手动方式满足上述要求的梯形图和相应的语句表。

4. 在实验室实验台上运行该程序。

二参考1. “PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”2. “机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

3.“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式时手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

注解:“PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”例中只有手动和自动(连续)两种操作模式,使用顺序控制法编程。

PLC 机型选用CPM2A-40型,其内部继电器区和指令与CPM1A系列的CPM有所不同。

“机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

本例中的程序是用三菱公司的F1系列的PLC指令编制。

有手动、自动(单工步、单周期、连续)操作方式。

手动方式与自动方式分开编程。

参考其编程思想。

“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式有手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

用CPM1A编程。

这里“误操作禁止”是指当自动(单工步、单周期、连续)工作方式时,按一次操作按钮自动运行方式开始,此后再按操作按钮属于错误操作,程序对错误操作不予响应。

机械手控制系统实验总结

机械手控制系统实验总结

机械手控制系统实验总结一、实验目的机械手控制系统是现代工业中不可或缺的一部分,本次实验旨在通过实践,掌握机械手控制系统的基本原理和操作方法,提高学生的实践能力和实际应用能力。

二、实验原理机械手控制系统是由机械手、控制器和传感器组成的。

机械手是机械臂,可以模拟人的手臂进行各种动作,控制器是控制机械手运动的设备,传感器用于检测机械手的位置和状态。

本次实验采用的机械手控制系统是基于PLC控制器和伺服电机的,PLC控制器是一种可编程逻辑控制器,可以根据需要编程控制机械手的运动。

三、实验步骤1. 搭建机械手控制系统,连接PLC控制器和伺服电机。

2. 编写PLC程序,控制机械手的运动,包括机械手的起始位置、终止位置和运动轨迹等。

3. 调试机械手控制系统,检测机械手的运动是否符合要求,如有问题及时调整。

4. 测试机械手控制系统的稳定性和可靠性,检测机械手在长时间运行过程中是否会出现故障。

四、实验结果经过实验,机械手控制系统运行稳定,机械手的运动符合要求,能够顺利完成预定的任务。

在长时间运行过程中,机械手控制系统没有出现故障,表现出良好的可靠性和稳定性。

五、实验总结通过本次实验,我深刻理解了机械手控制系统的基本原理和操作方法,掌握了PLC编程技能和机械手调试技巧。

同时,我也认识到了机械手控制系统在现代工业中的重要性,更加深入了解了现代工业的发展趋势和未来发展方向。

六、实验心得本次实验让我深刻认识到了实践的重要性,只有通过实践才能真正掌握知识和技能。

在实验过程中,我遇到了许多问题,但是通过不断尝试和调试,最终成功解决了问题。

这让我更加坚信,只要有决心和毅力,就能够克服任何困难,实现自己的目标。

简易机械手PLC控制

简易机械手PLC控制

简易机械手PLC控制简介在制造业中,机械手是一种关键的工业自动化设备,用于处理和搬运物品。

机械手的控制非常重要,它决定了机械手的精度和效率。

PLC (可编程逻辑控制器)是一种常用的控制设备,它可以编程来控制机械手的运动和动作。

本文将介绍如何使用PLC控制一个简易机械手的运动。

所需硬件和软件•一台简易机械手•一个PLC设备•一个用于编程的PLC软件步骤步骤一:连接PLC设备和机械手首先,将PLC设备连接到机械手控制器上。

确保连接正确,以便PLC能够发送指令给机械手控制器。

步骤二:安装PLC软件并编程在电脑上安装PLC软件,并启动软件。

创建一个新的项目,并选择适当的PLC类型和通信配置。

然后,开始编程。

步骤三:设置输入输出(IO)点在PLC软件中,设置适当的输入输出(IO)点,以接受和发送信号。

例如,设置一个输入点来接收机械手的位置信号,以便PLC可以确定机械手的当前位置。

同时,设置一个输出点来发送控制信号给机械手,以控制它的动作。

步骤四:编写程序逻辑使用PLC软件编写机械手的控制程序。

根据机械手的需求,编写逻辑来控制机械手的运动和动作。

例如,如果机械手需要抓取一个物体并将其放置到另一个位置,那么编程逻辑应该包括机械手的移动和抓取指令。

确保编写的逻辑合理且有效。

步骤五:测试和调试在PLC软件中,模拟机械手的动作并进行测试。

确保PLC能够正确地控制机械手的运动。

如果发现错误或问题,进行调试并修正程序逻辑。

步骤六:上传程序到PLC当测试和调试完成后,将编写的程序上传到PLC设备中。

确保上传的程序可以在PLC上正确运行。

步骤七:运行机械手一切准备就绪后,运行机械手。

PLC将根据编写的逻辑控制机械手的运动和动作。

结论使用PLC控制机械手是一种常见的工业自动化方法。

通过编写合理的程序逻辑,PLC可以控制机械手的运动和动作,提高生产效率和精度。

希望本文能够帮助读者了解如何使用PLC控制简易机械手。

11.PLC控制气动机械手实训案例

11.PLC控制气动机械手实训案例

PLC控制气动机械手实训案例一、机械手的工作过程与控制要求1.机械手概况:搬运机械手将工件从左工作台搬往右工作台,机械手的结构和各部分动作的示意图如图8-59所示:图8-59 机械手工作过程示意图(1)机械手所有的动作均由气压驱动。

(2)它的上升与下降、左移与右移等动作均由二位五通双控电磁换向阀控制,即当下降电磁阀通电时,机械手下降;下降电磁阀断电时,机械手停止下降;只有当上升电磁阀通电时,机械手才上升。

(3)机械手的夹紧和放松用一个二位五通单控电磁换向阀来控制,线圈通电时夹紧,线圈断电时放松。

2.机械手的工作过程:机械手的动作顺序和检测元件、执行元件的布置示意图如图8-60所示:图8-60 机械手动作顺序和检测元件、执行元件布置示意图(1)机械手的初始位置停在原点,按下启动按钮后,机械手将依次完成下降—夹紧—上升—右移—再下降—放松—再上升—左移八个动作。

(2)机械手的下降、上升、右移、左移等动作的转换,是由相应的限位开关来控制的,而夹紧、放松动作的转换是由时间来控制的。

(3)为保证安全,机械手右移到位后,必须在右工作台上无工件时才能下降,若上一次搬到右工作台上工件尚未移走,机械手应自动暂时等待。

为此设置了一只光电开光,以检测“无工件”信号。

3.控制要求(1)手动工作方式:利用按钮对机械手每一动作单独进行控制。

例如,按“下降”按钮,机械手下降,按“上升”按钮,机械手上升。

用手动操作可以使机械手置于原位,还便于维修时机械手的调整;(2)单步工作方式:从原点开始,按照自动工作循环的步序,每按一下动按钮,机械手完成一步的动作后自动停止。

(3)单周期工作方式:按下启动按钮,从原点开始,机械手按工序自动完成一个周期的动作,返回原点后停止。

(4)连续工作方式:按下启动按钮,机械手从原点开始按工序自动反复连续循环工作,直到按下停止按钮,机械手自动停机。

或者将工作方式选择开关转换到“单周期”工作方式,此时机械手在完成最后一个周期的工作后,返回原点自动停机。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计机械手是由一组等效于人类手臂和手腕的机器人装置组成的机器人系统。

机械手广泛应用于生产线上的自动化生产中,能够执行各种任务,如抓取、搬运、装配和检测等。

在机械手系统中,控制系统是至关重要的组成部分,其中PLC控制系统是目前最常用的方案之一。

本文将介绍基于PLC的机械手控制设计方案,包括系统组成、工作原理、控制流程和注意事项等方面。

一、系统组成基于PLC的机械手控制系统包括以下几个组成部分:1. 机械手:包括机械臂、手腕、手指等组成部分,能够完成各种任务的工作。

2. 传感器:用于检测机械手的位置、速度、力量等参数,从而实现机械手的精确控制。

3. PLC:将传感器检测到的信号转换为数字控制量,控制机械手的移动和操作。

4. 电机驱动器:根据PLC信号控制电机的启停、速度和转动方向等。

5. 电源和通信线:为系统提供能量和通信所需的线路。

二、工作原理1. 将任务输入PLC系统:首先,将需要完成的任务输入PLC控制系统,如要求机械手从A点移动到B点,然后从B点抓取物品,最终将物品运输到C点等。

2. PLC分析任务并发出指令:PLC会根据输入的任务信息,分析机械手的当前位置和运动状态,并给出相应的指令,控制机械手的行动。

3. 传感器感知机械手状态变化:在机械手移动过程中,传感器会感知机械手的位置、速度和力量等参数,并反馈给PLC系统。

4. PLC根据传感器反馈调整控制策略:PLC会根据传感器反馈的信息,调整机械手的控制策略,保证机械手能够准确地完成任务。

5. 电机驱动器控制电机运动:PLC通过控制电机驱动器对电机进行启停、转速和转向等操作,从而控制机械手的移动和抓取等操作。

6. 任务完成反馈:当任务完成后,PLC会发出相应的反馈信息,以说明任务已经顺利完成。

三、控制流程1. 确定任务:首先需要确定需要机械手完成的任务,并将任务信息输入PLC系统。

2. 置初值:设置机械手的起始位置和状态,并将其作为控制的初始状态。

plc实验报告机械手

plc实验报告机械手

plc实验报告机械手PLC实验报告:机械手的控制与应用引言:PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,它能够根据预设的程序和输入信号,控制输出信号的状态,实现机械设备的自动化运行。

本实验报告将着重介绍PLC在机械手控制与应用方面的实验过程、结果和分析。

一、实验目的本次实验的目的是通过PLC控制机械手的运动,实现对物体的抓取和放置操作。

通过实验,我们可以了解PLC在机械手控制中的应用,掌握PLC编程的基本原理和方法。

二、实验装置与步骤实验装置包括PLC控制器、机械手、传感器和执行器等。

实验步骤如下:1. 连接PLC控制器和机械手,确保电气连接正确。

2. 编写PLC程序,包括机械手的运动控制和传感器的信号检测。

3. 将程序下载到PLC控制器中,进行调试和测试。

4. 通过输入信号触发PLC程序,观察机械手的运动情况。

三、实验结果与分析在实验过程中,我们成功地实现了对机械手的控制,完成了物体的抓取和放置操作。

通过编写PLC程序,我们可以根据传感器的信号状态来控制机械手的动作,实现对物体的精确控制。

在实验中,我们还发现了一些问题和改进空间。

首先,机械手的运动速度有待提高,特别是在高速运动时,存在一定的抖动和不稳定性。

其次,对于不同形状和重量的物体,机械手的抓取效果有所差异,需要进行进一步的优化和调整。

四、实验应用与展望机械手在工业生产中有着广泛的应用前景。

通过PLC的控制,机械手可以实现对各种物体的抓取、搬运和放置操作,提高生产效率和质量。

未来,随着科技的不断发展,机械手的应用领域将进一步扩大,包括医疗、物流、仓储等领域。

此外,我们还可以进一步改进机械手的控制算法和机械结构,提高其运动速度和精度。

通过引入视觉传感器和人工智能技术,机械手可以更加智能化地进行操作,适应更复杂的环境和任务需求。

结论:本次实验通过PLC控制机械手的运动,实现了对物体的抓取和放置操作。

实验结果表明,PLC在机械手控制中具有重要的应用价值。

简易机械手PLC控制

简易机械手PLC控制
3、显示操纵
Y0------下落Y1------夹紧、放松Y2------上升
Y3------右移Y4------左移
参考0------下落
X1下限
X2上限Y1------夹紧、放松
X3右限
X4左限Y2------上升
X5手动/自动
X6下落Y3------右移
X7夹紧、放松
X10上升Y4------左移
X11右移
X12左移Y5------原点
X13原点
X14急停/复位
(2) PLC输进、输出图
+—
12V
〔3〕状态流程图(4)步进状态图
X5
CJP0
X6M8000
Y0X14ZRSTS20S28
X7
Y1ZRSTY0Y5
X10X2
Y2X4
X11SETY1
Y3Y5
X12X0
Y4Y0
FEND
P0X1
自动程序RSTY1
RETT0K20
ENDT0
Y2
X2
Y3
X3
Y0
X1
SETY1
T1K20
T1
Y2
X2
Y4
X4
S20
〔5〕编写程序
LDX5
SETS22
CJP0
STLS22
LDX6
RSTY1
OUTY0
OUTT0K20
LDX7
LDT0
OUTY1
SETS23
LDX10
STLS23
简易机械手PLC操纵
示意图如下:
QS
左行限位
右行限位
上限位
下限位夹紧放松
讲明:1、机械手的工作是从A点将工件移到B点

PLC实验——机械手控制

PLC实验——机械手控制

1. 机械手控制
搬运纸箱的机械手结构示意图如图1所示, 它的气动系统原理图如图2所示。

机械手的主要运动机构是升降气缸和回转气缸。

升降挡铁初始时处于行程开关SQ1处, 吸盘在A处正上方。

系统启动后, 如果光电开关TD检测出A处有纸箱, 则升降气缸使机械手的升降杆下降, 当升降挡铁碰到行程开关SQ2时, 吸盘恰好接触到纸箱上表面, 继续让升降杆下降, 以挤出吸盘和纸箱表面围成的空腔内的空气, 形成负压。

持续几秒钟, 升降杆停止下降, 升降气缸使升降杆上升, 吸盘带着纸箱上升, 当升降挡铁碰到SQ1时, 停止上升。

回转气缸使回转臂顺时针转180°, 吸盘运动至B处正上方, 回转挡铁碰到行程开关SQ4时停止回转, 吸盘下降, 当升降挡铁碰到SQ2时, 停止下降, 并且停止几秒钟, 这时, 电磁阀HF3开启, 吸盘放松纸箱。

之后, 吸盘上升, 当升降挡铁碰到SQ1时, 吸盘逆时针转180°回到A处正上方, 回转挡铁碰到行程开关SQ3时停止回转, 如果TD未检测出A处有纸箱, 则机械手停止等待;若TD检测出A处有纸箱, 则机械手重复上述工作过程。

机械手的I/O连接图、流程图、梯形图分别如图2、图3、图4所示。

图1 机械手
图2 I/O连接图图3 流程图
图4 梯形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验九机械手控制
一、实验目的
掌握机械手控制系统的接线、调试、操作
二、实验设备
三、控制要求
1.总体控制要求:机械手将A处工件抓取并放到B处。

2.机械手回到初始状态,SQ4=SQ2=1,SQ3=SQ1=0,原位指示灯HL点亮,按下“SB1”启动开关,下降指示灯YV1点亮,机械手下降,(SQ2=0)下降到A处后(SQ1=1)夹紧工件,夹紧指示灯YV2点亮。

3.夹紧工件后,机械手上升(SQ1=0),上升指示灯YV3点亮,上升到位后(SQ2=1),机械手右移(SQ4=0),右移指示灯YV4点亮。

4.机械手右移到位后(SQ3=1)下降指示灯YV1点亮,机械手下降。

5.机械手下降到位后(SQ1=1)夹紧指示灯YV2熄灭,机械手放松。

6.机械手放松后上升,上升指示灯YV3点亮。

7.机械手上升到位(SQ2=1)后左移,左移指示灯YV5点亮。

8.机械手回到原点后再次运行。

四、程序流程图
五、端口分配表
六、操作步骤
1.检查实验设备中器材及调试程序。

2.按照端口分配表完成PLC与实验模块之间的接线,认真检查,确保正确无误。

3.打开示例程序或用户自己编写的控制程序,进行编译,有错误时根据提示信息修改,直
至无误,用通讯编程电缆连接计算机串口与PLC通讯口,打开PLC主机电源开关,下载程序至PLC中。

4.将左限位开关SQ4、右限位开关SQ3打向左、上限位开关SQ2、下限位开关SQ1打向上,
机械手回到初始状态,原位指示灯HL点亮。

5.打上“SB1”启动开关,下降指示灯YV1点亮,模拟机械手下降,上限位开关SQ2打下,
下降到A处后次下限位开关SQ1打下,开始夹紧工件,夹紧指示灯YV2点亮。

6.夹紧工件后,机械手上升,上升指示灯YV3点亮,将下限位开关SQ1打上,机械手上升
到位后,上限位开关SQ2打上。

7.右移指示灯YV4点亮,机械手开始右移,左限位开关SQ4打向右。

8.机械手右移到位后,右限位开关SQ3打向右,下降指示灯YV1点亮,机械手下降,上限
位开关SQ2打下。

9.机械手下降到位后,下限位开关SQ1打下,夹紧指示灯YV2熄灭,机械手放松。

10.机械手放松后上升,上升指示灯YV3点亮,下限位开关SQ1打上,机械手上升到位后,
上限位开关SQ2打上。

11.机械手上升到位后左移指示灯YV5点亮,右限位开关SQ3打向左。

12.机械手左移到位后,左限位开关SQ4打向左,机械手完成一个动作周期。

七、实验总结
总结记录PLC与外部设备的接线过程及注意事项。

相关文档
最新文档