求随机变量均值的常用方法

合集下载

第六节 离散型随机变量的均值与方差

第六节 离散型随机变量的均值与方差

所以
mn=0.06;
D(X)=E(X2)-(E(X))2=0.7-0.25=0.45.
答案:0.06 0.45
高频考点突破
考点一 离散型随机变量的均值与方差
[例1] 设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分, 取出一个黄球得2分,取出一个蓝球得3分. (1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个 球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;
考点二 与两点分布、二项分布有关的均值、方差 [例2] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分 布直方图,如图所示.
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量 低于50个的概率;
又因为 p= 1 ,所以 q= 5 .
4
12
(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后
他们中至少有一人获利的概率大于 4 ,求 p 的取值范围; 5
解:(2)记事件 A 为“甲投资股市且盈利”,事件 B 为“乙购买基金且盈利”,事
件 C 为“一年后甲、乙两人中至少有一人投资获利”,则 C=A B ∪ A B∪AB,且 A,B
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何 种方案抽奖,累计得分的数学期望较大?
解:(2)设小明、小红都选择方案甲抽奖中奖次数为 X1,都选择方案乙抽奖中奖次数 为 X2,则这两人选择方案甲抽奖累计得分的数学期望为 E(2X1),选择方案乙抽奖累计
得分的数学期望为 E(3X2).由已知可得,X1~B(2, 2 ),X2~B(2, 2 ),

高考数学一轮复习---离散型随机变量的均值与方差、正态分布

高考数学一轮复习---离散型随机变量的均值与方差、正态分布

离散型随机变量的均值与方差、正态分布一、基础知识1.均值一般地,若离散型随机变量X的分布列为:则称E(X)=x1p1+x2p2i i n n.它反映了离散型随机变量取值的平均水平.(1)期望是算术平均值概念的推广,是概率意义下的平均.,(2)E(X)是一个实数,由X的分布列唯一确定,即作为随机变量,X是可变的,可取不同值,而E(X)是不变的,它描述X取值的平均状态.,(3)E(X)=x1p1+x2p2+…+x n p n直接给出了E(X)的求法,即随机变量取值与相应概率分别相乘后相加.2.方差设离散型随机变量X的分布列为:则(x i-E(X))2描述了x i(i=)=(x i-E(X))2p i为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根D(X)为随机变量X的标准差.(1)随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.D(X)越大,表明平均偏离程度越大,X的取值越分散.反之,D(X)越小,X的取值越集中在E(X)附近.,(2)方差也是一个常数,它不具有随机性,方差的值一定是非负.3.两个特殊分布的期望与方差4.正态分布(1)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(2)正态分布的三个常用数据①P (μ-σ<X ≤μ+σ)≈0.682 6;②P (μ-2σ<X ≤μ+2σ)≈0.954 4;③P (μ-3σ<X ≤μ+3σ)≈0.997 4.二、常用结论若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则 (1)E (k )=k ,D (k )=0,其中k 为常数; (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ); (3)E (X 1+X 2)=E (X 1)+E (X 2); (4)D (X )=E (X 2)-(E (X ))2;(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2).(6)若X ~N (μ,σ2),则X 的均值与方差分别为:E (X )=μ,D (X )=σ2. 三、考点解析考点一 离散型随机变量的均值与方差例、为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).跟踪训练1.随机变量X 的可能取值为0,1,2,若P (X =0)=15,E (X )=1,则D (X )=( )A.15B.25C.55D.1052.随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率; (2)若从这10名购物者中随机抽取3名,设X 表示抽到倾向于选择网购的男性购物者的人数,求X 的分布列和数学期望.考点二 二项分布的均值与方差例、某部门为了解一企业在生产过程中的用水量情况,对其每天的用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨).若用水量不低于95吨,则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天的用水量超标的概率;(2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数,记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列、数学期望和方差.[解题技法]二项分布的期望与方差(1)如果ξ ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (a ξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (a ξ+b ),同样还可求出D (a ξ+b ).跟踪训练1.设X 为随机变量,且X ~B (n ,p ),若随机变量X 的数学期望E (X )=4,D (X )=43,则P (X =2)=________.(结果用分数表示)2.一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望(以直方图中的频率作为概率).考点三 均值与方差在决策中的应用例、某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立. (1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. ①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; ②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?[解题技法]离散型随机变量的期望和方差应用问题的解题策略(1)求离散型随机变量的期望与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望、方差公式进行计算.(2)要注意观察随机变量的概率分布特征,若属于二项分布,可用二项分布的期望与方差公式计算,则更为简单.(3)在实际问题中,若两个随机变量ξ1,ξ2,有E (ξ1)=E (ξ2)或E (ξ1)与E (ξ2)较为接近时,就需要用D (ξ1)与D (ξ2)来比较两个随机变量的稳定程度.即一般地将期望最大(或最小)的方案作为最优方案,若各方案的期望相同,则选择方差最小(或最大)的方案作为最优方案.跟踪训练某投资公司在2019年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.考点四 正态分布例、(1)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A.P (Y ≥μ2)≥P (Y ≥μ1)B.P (X ≤σ2)≤P (X ≤σ1)C.对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t ,P (X ≥t )≥P (Y ≥t ) (2)已知随机变量X 服从正态分布N (3,1),且P (X ≥4)=0.158 7,则P (2<X <4)=( ) A.0.682 6 B.0.341 3 C.0.460 3 D.0.920 7(3)某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.[解题技法]正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.跟踪训练1.已知随机变量ξ服从正态分布N (μ,σ2),若P (ξ<2)=P (ξ>6)=0.15,则P (2≤ξ<4)等于( ) A.0.3 B.0.35 C.0.5 D.0.72.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. ①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =9.97,s ≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.课后作业1.口袋中有编号分别为1,2,3的三个大小和形状完全相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.832.已知随机变量X 服从正态分布N (a,4),且P (X >1)=0.5,P (X >2)=0.3,则P (X <0)=( ) A.0.2 B.0.3 C.0.7 D.0.83.已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5) A.4 093件 B.4 772件 C.6 827件 D.8 186件4.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( )A.3B.83C.2D.535.某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中两个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E (ξ)=( )A.1B.43C.53D.26.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________.7.若随机变量ξ的分布列如表所示,E (ξ)=1.6,则a -b =________.8.一个人将编号为1,2,3,4每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数为ξ,则ξ的期望值为________. 9.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2018年享受此项政策的自主创业人员中抽取了100人进行调查统计,选择的贷款期限的频数如下表:. (1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;(2)设给某享受此项政策的自主创业人员的补贴为X 元,写出X 的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.10.某厂有4台大型机器,在一个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.提高练习1.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A.0.7B.0.6C.0.4D.0.32.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ 没有零点的概率是12,则μ等于( )A.1B.2C.4D.不能确定 3.已知离散型随机变量X 的分布列如表所示,若E (X )=0,D (X )=1,则P (X <1)=________.4.甲、乙两家外卖公司,元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从记录甲公司的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望E(X);②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.5.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?。

均值、方差、正态分布__学生用

均值、方差、正态分布__学生用

§12.6 离散型随机变量的均值与方差、正态分布1.离散型随机变量的均值与方差 若离散型随机变量X(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根DX 为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布(1)正态曲线:函数φμ,σ(x )=12πσe -x -μ22σ2,x ∈(-∞,+∞),其中μ和σ为参数(σ>0,μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称;③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为__1__;⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称随机变量X 服从正态分布,记作X ~N (μ,σ2).正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.682_6; ②P (μ-2σ<X ≤μ+2σ)=0.954_4; ③P (μ-3σ<X ≤μ+3σ)=0.997_4.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( ) 2.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( )A .5B .8C .10D .163.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ) A .1B .2C .3D .44.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X 表示取到次品的件数,则D (X )=________.5.在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是________.题型一 离散型随机变量的均值、方差例1 (2013·浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、期望和方差;(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.题型二二项分布的均值、方差例2(2012·四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为110和p.(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及数学期望E(ξ).假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.题型三正态分布的应用例3在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.在某次数学考试中,考生的成绩ξ服从正态分布,即ξ~N (100,100),已知满分为150分.(1)试求考试成绩ξ位于区间(80,120]内的概率;(2)若这次考试共有2 000名考生参加,试估计这次考试及格(不小于90分)的人数.离散型随机变量的均值与方差问题典例:(12分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和均值.思维启迪 (1)概率的应用,知甲袋中总球数为10和摸1个为红球的概率,求红球.(2)利用方程的思想,列方程求解.(3)求分布列和均值,关键是求ξ的所有可能值及每个值所对应的概率. 规范解答解 (1)设甲袋中红球的个数为x ,依题意得x =10×25=4.[3分](2)由已知,得25m +2mP 23m =13,解得P 2=310.[6分](3)ξ的所有可能值为0,1,2,3. P (ξ=0)=35×45×45=48125,P (ξ=1)=25×45×45+35×C 12×15×45=56125, P (ξ=2)=25×C 12×15×45+35×⎝ ⎛⎭⎪⎫152=19125, P (ξ=3)=25×⎝ ⎛⎭⎪⎫152=2125.[8分]所以ξ的分布列为[10分]所以E(ξ)=0×48125+1×56125+2×19125+3×2125=45. [12分]求离散型随机变量的均值和方差问题的一般步骤:第一步:确定随机变量的所有可能值.第二步:求每一个可能值所对应的概率.第三步:列出离散型随机变量的分布列.第四步:求均值和方差.第五步:反思回顾.查看关键点、易错点和答题规范.温馨提醒(1)本题重点考查了概率、离散型随机变量的分布列、均值.(2)本题解答中的典型错误是计算不准确以及解答不规范.如第(3)问中,不明确写出ξ的所有可能值,不逐个求概率,这都属于解答不规范.方法与技巧1.均值与方差的常用性质.掌握下述有关性质,会给解题带来方便:(1)E(aξ+b)=aE(ξ)+b;E(ξ+η)=E(ξ)+E(η);D(aξ+b)=a2D(ξ);(2)若ξ~B(n,p),则E(ξ)=np,D(ξ)=np(1-p).2.基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.3.关于正态总体在某个区域内取值的概率求法(1)熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.(2)充分利用正态曲线的对称性和曲线与x轴之间面积为1.①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P (X <a )=1-P (X ≥a ),P (x <μ-a )=P (X ≥μ+a ). (3)3σ原则在实际应用中,通常认为服从正态分布N (μ,σ2)的随机变量只取(μ-3σ,μ+3σ]之间的值,取该区间外的值的概率很小,通常认为一次试验几乎不可能发生.失误与防范1.在没有准确判断分布列模型之前不能乱套公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.A 组 专项基础训练一、选择题1.正态总体N (1,9)在区间(2,3)和(-1,0)上取值的概率分别为m ,n ,则( )A .m >nB .m <nC .m =nD .不确定2.已知某一随机变量X( )A.5B .6C .7D .83.(2013·湖北) 如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125D.754.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4005.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4二、填空题6.从装有3个红球、2X 个红球,则随机变量X 的分布列为7.已知随机变量ξ的分布列为P(ξ=k)=2k-1,k=1,2,3,…,n,则P(2<ξ≤5)=________.8.已知某次英语考试的成绩X服从正态分布N(116,64),则10 000名考生中成绩在140分以上的人数为________.三、解答题9.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和数学期望.10.为了某项大型活动能够安全进行,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A能够入选的概率;(2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3 000元的训练经费),求该基地得到训练经费的分布列与数学期望.。

高中数学选择性必修三 7 3 1 离散型随机变量的均值

高中数学选择性必修三 7 3 1  离散型随机变量的均值

P(Y≤6 | X≥300)=P(X<900 | X≥300)= ( ≤ < ) = . =
( ≥ )
.

故在降水量至少是300 mm的条件下,工期延误不超过6天的概率是

.
课堂练习
7.盒子中装有编号为1,2,3,4,5,6的六个球.
(1)从中任意取出两个球,求这两个球的编号之和为偶数的概率;
例题讲解
例4 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为
0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到
小洪水时要损失10000元.为保护设备,有以下3种方案:
方案1:运走设备,搬运费为3800元;
方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水;
(3)写出分布列;
(4)利用E(X)的计算公式计算E(X).
例题讲解
例1 在篮球比赛中,罚球命中1次得1分,不中得0分. 如果某运动员罚球
命中的概率为0.8,那么他罚球1次的得分X的均值是多少?
解:因为P(X=1)=0.8,P(X=0)=0.2,
所以E(X)=0 x 0.2 + 1 x 0.8=0.8.
7.3.1 离散型随机变量的均值
人教A版(2019)
选择性必修第三册
新知导入
甲、乙两名射箭运动员射中目标箭靶的环数的分布列如下表所示.
环数X
甲射中的环数
7
0.1
8
0.2
9
0.3
10
0.4
乙射中的环数
0.15
0.25
0.4
0.2
思考:如何比较甲、
乙两人射箭水平的高
低?

离散型随机变量的均值与方差

离散型随机变量的均值与方差
离散型随机变量的均值与方差
(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n

D(X)=

i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).

12.5 离散型随机变量的均值与方差

12.5  离散型随机变量的均值与方差

考点1
考点2
考点3
-12-
参考公式:χ2=(������+������)(������������+(������������������)-(���������������+���)2������)(������+������),其中 n=a+b+c+d. 参考临界值:
P(χ2>k0) k0
0.05 3.841
考点1
考点2
考点3
-22-
思考如何求离散型随机变量X的均值与方差? 解题心得1.求离散型随机变量X的均值与方差的步骤: (1)理解X的意义,写出X的全部可能取值. (2)求X取每个值的概率. (3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX. 2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量 aX+b的均值是aEX+b,方差为a2DX.
种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆
2.205
kg.已知每粒豆苗种子成活的概率为
1 2
(假设种子之间及外部
条件一致,发芽相互没有影响).
(1)求恰好有3株成活的概率;
(2)记成活的豆苗株数为ξ,收成为η(kg),求随机变量ξ的分布列及η
的均值Eη.
考点1
考点2
考点3
-17-
解 (1)设每株豆子成活的概率为 P0,

40
50
90
合计
120
80
200
又 χ2=20102×0(8×08×05×01-1300××9400)2≈16.498>6.635, 所以有 99%的把握认为性别与“为 A 类学生”有关.

随机变量的均值

随机变量的均值

离散型随机变量的均值学习目标 1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量取值水平,解决一些相关的实际问题.知识点一离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg.思考1任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案X=5,6,7.思考2X取上述值时,对应的概率分别是多少?答案P(X=5)=412,P(X=6)=312,P(X=7)=512.思考3每个西瓜的平均重量如何求?答案5×4+6×3+7×512=5×412+6×312+7×512.1.离散型随机变量的均值或数学期望若离散型随机变量X的分布列为则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.均值的性质:若Y=aX+b,其中a,b为常数,X是随机变量,①Y也是随机变量;②E(aX+b)=aE(X)+b.知识点二两点分布、二项分布的均值1.两点分布:若X服从两点分布,则E(X)=p.2.二项分布:若X~B(n,p),则E(X)=np.类型一 离散型随机变量的均值公式与性质的简单应用 例1 已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3.(1)求b ; (2)求a ;(3)若η=2ξ-3,求E (η).解 (1)由随机变量的分布列的性质,得 0.5+0.1+b =1, 解得:b =0.4.(2)E (ξ)=4×0.5+a ×0.1+9×0.4=6.3. 解得:a =7.(3)由公式E (aX +b )=aE (X )+b得:E (η)=E (2η-3)=2E (η)-3=2×6.3-3=9.6反思与感悟 离散型随机变量均值的公式与性质的计算往往与分布列性质,结合起来考虑. 跟踪训练1 已知随机变量X 的分布列为且Y =aX +3,若E (Y )=-2,求a 的值. 解 E (X )=1×12+2×13+3×16=53,∴E (Y )=E (aX +3)=aE (X )+3=53a +3=-2,∴a =-3.类型二 两点分布及二项分布的均值 例2 某人投篮命中的概率为P =0.4.(1)求投篮一次,命中次数X的均值;(2)求重复10次投篮时命中次数Y的数学期望.解(1)投篮1次,命中次数X的分布列如下表:则E(X)=0.4.(2)由题意知,重复10次投篮,命中次数Y服从二项分布即Y~B(10,0.6)E(Y)=np=10×0.4=4.反思与感悟 1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.跟踪训练2根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中甲、乙两种保险都不购买的车主数,求X的均值.解设该车主购买乙种保险的概率为p,由题意知p×(1-0.5)=0.3,解得p=0.6.(1)设所求概率为P1,则P1=1-(1-0.5)×(1-0.6)=0.8.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.(2)对每位车主甲、乙两种保险都不购买的概率为(1-0.5)×(1-0.6)=0.2.∴X ~B (100,0.2),∴E (X )=100×0.2=20. 所以X 的均值是20人. 类型三 超几何分布的均值例3 一个口袋内有n (n >3)个大小相同的球,其中有3个红球和(n -3)个白球.已知从口袋中随机取出一个球是红球的概率是35.不放回地从口袋中随机取出3个球,求取到白球的个数ξ的期望E (ξ).解 p =35,∴3n =35,∴n =5,∴5个球中有2个白球.方法一 白球的个数ξ可取0,1,2.P (ξ=0)=C 33C 35=110,P (ξ=1)=C 23C 12C 35=35,P (ξ=2)=C 13C 22C 35=310.E (ξ)=110×0+35×1+310×2=65.方法二 取到白球个数ξ服从参数为N =5,M =2,n =3的超几何分布,则E (ξ)=nM N =3×25=65. 反思与感悟 1.超几何分布模型一般地,在含有M 件次品的N 件产品中,任取n 件,其中含有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *. 2.超几何分布均值的计算公式若一个随机变量X 的分布列服从超几何分布,即X ~H (n ,M ,N ),则E (X )=nMN.跟踪训练3 设在15个同类型的零件中有2个次品,每次任取1个,共取3次,并且每次取出后不再放回,若以X 表示取出次品的个数,求均值E (X ). 解 方法一 P (X =0)=C 313C 315=2235,P (X =1)=C 12C 213C 315=1235,P (X =2)=C 22C 113C 315=135,E (X )=0×2235+1×1235+2×135=25.方法二 由题意可知,X 服从N =15,M =2,n =3的超几何分布. ∴E (X )=Mn N =2×315=25.1.若随机变量X 服从二项分布B ⎝⎛⎭⎫4,13,则E (X )的值为( ) A.43 B.83 C.133 D.89 答案 A解析 E (X )=np =4×13=43.2.某射手射击所得环数ξ的分布列如下表:已知E (ξ)=8.9,则y =答案 0.4解析 由题意知⎩⎪⎨⎪⎧x +0.1+0.3+y =17x +8×0.1+9×0.3+10y =8.9,解得:y =0.4,x =0.2.3.随机抛掷一枚骰子,则所得骰子点数ξ的均值为________. 答案 3.5解析 抛掷骰子所得点数ξ的分布列为所以,E (ξ)=1×16+2×16+3×16+4×16+5×16+6×16=(1+2+3+4+5+6)×16=3.5.4.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的分布列、均值;(2)若η=aξ+4,E (η)=1,求a 的值. 解 (1)ξ的分布列为ξ的均值:E (ξ)=0×12+1×120+2×110+3×320+4×15=32.(2)E (η)=aE (ξ)+4=1,又E (ξ)=32,则a ×32+4=1,∴a =-2.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值; (2)写出分布列,并检查分布列的正确与否; (3)根据公式写出均值.2.若X 、Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.一、选择题1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A.2×0.44 B.2×0.45 C.3×0.44 D.3×0.64答案 C解析 因为ξ~B (n,0.6),所以E (ξ)=n ×0.6, 故有0.6n =3,解得n =5,P (ξ=1)=C 15×0.6×0.44=3×0.44.2.设ξ的分布列为又设η=2ξ+5,则E (η)等于( ) A.76 B.176 C.173 D.323 答案 D解析 E (ξ)=1×16+2×16+3×13+4×13=176,E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=323.3.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X ,则X 的均值是( ) A.20 B.25 C.30 D.40 答案 B解析 抛掷一次正好出现3枚反面向上,2枚正面向上的概率为C 2525=516.所以X ~⎝⎛⎭⎫80,516,故E (X )=80×516=25.4.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X ,则E (X )等于( ) A.0.765 B.1.75 C.1.765 D.0.22答案 B解析 P (X =0)=(1-0.9)×(1-0.85)=0.1×0.15=0.015; P (X =1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22; P (X =2)=0.9×0.85=0.765.∴E (X )=0×0.015+1×0.22+2×0.765=1.75.5.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验3次均失败,则放弃试验.若此人每次试验成功的概率为23,则此人试验次数ξ的均值是( )A.43B.139C.53D.137 答案 B解析 试验次数ξ的可能取值为1,2,3, 则P (ξ=1)=23,P (ξ=2)=13×23=29,P (ξ=3)=13×13×⎝⎛⎭⎫23+13=19. 所以ξ的分布列为∴E (ξ)=1×23+2×29+3×19=139.6.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.75答案 B解析 125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆, ∴从中随机取一个正方体,涂漆面数X 的均值E (X )=27125×0+54125×1+36125×2+8125×3=150125=65. 二、填空题7.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________. 答案 48解析 设小王选对的个数为X ,得分为Y =5X , 则X ~B (12,0.8),E (X )=np =12×0.8=9.6, E (Y )=E (5X )=5E (X )=5×9.6=48.8.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________. 答案 2解析 令“?”为a ,“!”为b ,则2a +b =1, ∴E (ξ)=a +2b +3a =2(2a +b )=2.9.袋中有3个红球,7个白球,这些球除颜色不同外完全相同,从中无放回地任取5个,取出几个红球就得几分,则平均________分. 答案 1.5解析 用X 表示所得分数,则X 也是取得红球数,X 服从超几何分布,于是E (X )=n ·M N =5×310=1.5.10.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________. 答案 53解析 ∵P (X =0)=112=(1-p )2×13,∴p =12.随机变量X 的可能值为0,1,2,3,因此P (X =0)=112,P (X =1)=23×⎝⎛⎭⎫122+23×⎝⎛⎭⎫122=13,P (X =2)=23×⎝⎛⎭⎫122×2+13×⎝⎛⎭⎫122=512,P (X =3)=23×⎝⎛⎭⎫122=16,因此E (X )=1×13+2×512+3×16=53.三、解答题11.盒中装有5节同牌号的五号电池,其中混有两节废电池.现有无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及均值. 解 X 可取的值为1,2,3,则P (X =1)=35,P (X =2)=25×34=310,P (X =3)=25×14×1=110.抽取次数X 的分布列为E (X )=1×35+2×310+3×110=1.5.12.一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分,学生甲选对任意一题的概率为0.9,学生乙则在测验中对每题都从各选项中随机地选择一个,分别求学生甲和学生乙在这次测验中的成绩的均值.解 设学生甲和学生乙在这次单元测验中选对的题数分别是X 1和X 2,则X 1~B (20,0.9),X 2~B (20,0.25),所以E (X 1)=20×0.9=18,E (X 2)=20×0.25=5.由于每题选对得5分,所以学生甲和学生乙在这项测验中的成绩分别是5X 1和5X 2.这样,他们在测验中的成绩的期望分别是: E (5X 1)=5E (X 1)=5×18=90, E (5X 2)=5E (X 2)=5×5=25.13.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.解 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67.所以取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是高中数学优质学案专题训练(附经典解析)随机变量X的数学期望E(X)=1×135+2×435+3×27+4×47=175.。

三种常用分布均值、方差公式的应用

三种常用分布均值、方差公式的应用

三种常用分布均值、方差公式的应用摘要:高中数学选修2-3中,介绍了三种典型分布。

笔者通过已知分布特征,求其均值;求实际问题中特殊分布的均值;求实际问题中特殊分布的方差;求实际问题分布的方差。

并用知识点结合例析的方式进行研究。

关键词:两点分布二项分布超几何分布分布特征均值方差在高中数学选修2~3中,介绍了三种典型分布。

即两点分布。

超几何分布和二项分布,在高考中以选填题的考察为主,但在实际问题的处理过程中也会出现解答题,笔者现以例析的方式谈谈它们的应用:一、已知分布特征,求其均值欲求教学期望,首先要得到分布如果题中离散型随机变量符合两点分布。

二项分布,超几何分布,可直接代入公式求得期望。

常见的三种分布的均值,设p为一次试验中成功的概率,则①两点分布E(x)=P。

②二项分布E(x)=np ③超几何分布E(x)=例1:若随机变量X~B(100,0.1),则E(X)=解析. X~B(100,0.1) E(x)=100×0.1=10例2:若随机变量X服从n=2.M=3. N=6的超几何分布。

则E(x)=解析:由E(x)=知E(x)= =1二、求实际问题中特殊分布的均值在实际问题中要分清两点分布与二项分布,它们的相同点是在一次试验中要么发生要么不发生,它们的不同点是:a.随机变量的取值不同,两点分布中随机变量的取值为0.1,二项分布中随机变量的取值x=0,1,2……n.b.它们试验次数不同,两点分布一般只有一次试验,二项分布则进行几次试验。

在处理问题中先审清题意,确认分布类型,若是特殊分布,借助相应的均值公式求其均值。

例3:甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分,假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为、、,且各人回答的正确与否相互之间不影响,(1)若用表示甲队的总得分,求的教学期望。

解析,由题得知的可能取值分别为0,1,2,3则服从二项分布,不是两点分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档