专题4网格作图题(人教版含答案)
专题5:无刻度的直尺作图(四)-人教版九年级数学中考复习专题练

中考复习专题5:无刻度的直尺作图(四)1.如图,已知四边形ABCD为平行四边形,请仅用无刻度直尺完成下列画图,并回答问题,保留作图痕迹(用虚线画出画图过程,实现表示画图结果)(1)如图1,画一条直线既能平分四边形ABCD的周长,也能平分ABCD的面积;(2)如图2,若AB=AD,点E为AD上的一点,请在CB上截取一点M,使得AE=CM,并说明理由;(3)如图3,在(2)的条件下,若∠ABC=90°,连接BD,点F为BD上的一点,请以AF为边构造一个菱形,并说明理由.【解答】(1)如图,直线l即为所求.(2)如图,连接AC,BD交于点O,连接EO延长EO交BC于M,点M即为所求.理由:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠AEO=∠CMO,∵∠AOE=∠COM,∴△AEO≌△CMO(AAS),∴AE=CM.(3)如图3中,连接AC交BD于O,延长AF交CD于M,连接MO,延长MO交AB于N,连接CN 交BD于K,连接AK,CK,CF,则四边形AKCF是菱形.同法可证:AM=AN,∵AN∥CM,∴四边形ANCM是平行四边形,∴AF∥CK,∴∠AFO=∠CKO,∵OA=OC,∠AOF=∠COK,∴△AOF≌△COK(AAS),∴AF=CK,∵AB=BC,∠ABF=∠CBF=45°,BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,同法可证:AK=CK,∴AF=FC=CK=AK,∴四边形AKCF是菱形.2.如图,在Rt△OBC中,∠B=90°,∠C=60°,OB与⊙O相交于点A,且OA=BC.(1)请你在图1中,用无刻度的直尺在⊙O上找出一点P,使CP∥OB;(2)请你在图2中,用无刻度的直尺在⊙O上找出一点P,使BP∥OC.【解答】(1)如图1:点P即为所求作的点,使CP∥OB;(2)如图2:点P即为所求作的点,使BP∥OC.3.已知四边形ABCD内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺完成以下作图(保留作图痕迹,不写作法,写明答案).(1)在图1中,已知AD=CD,在⊙O上求作一个度数为30°的圆周角;(2)在图2中,已知AD≠CD,在⊙O上求作一个度数为30°的圆周角.【解答】(1)如图1所示:∠ABD=30°或∠CBD=30°;(2)如图2所示:∠CAE=30°.4.如图,在△ABC中,已知AB=AC,AD⊥BC于点D.(1)如图①,点P为AB上任意一点,请你用无刻度的直尺在AC上找出一点P′,使AP=AP′.(2)如图②,点P为BD上任意一点,请你用无刻度的直尺在CD上找出一点P′,使BP=CP′.【解答】(1)如图①,点P'为所求作的图形,理由:∵AB=AC,AD⊥BC,∴∠ABC=∠ACB,BD=CD,∴AD是BC的垂直平分线,连接CP,交AD于H,连接BH并延长交AC于P',∴BH=CH,∴∠HBC=∠HCB,∴∠ABP'=∠ACP,∵AB=AC,∠BAP'=∠CAP,∴△ABP'≌△ACP,∴AP'=AP,(2)如图②,点P'为所求作的图形,理由:同(1)的方法即可得出,BP=CP'.5.如图,在▱ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).(1)在图1中,过点A画出△ABF中BF边上的高AG;(2)在图2中,过点C画出C到BF的垂线段CH.【解答】(1)如图1,AG即为所求.(2)如图2,连接AC,BD交于点O,作射线EO,交AD于G,连接CG,交BF于H,则CH即为所求.理由是:如图3,连接AE,∵四边形ABCD是平行四边形,∴OA=OC,AG∥CE,∴∠AGO=∠CEO,∵∠AOG=∠COE,∴△AOG≌△COE(AAS),∴OG=OE,∴四边形AECG是平行四边形,∴AE∥CG,∵AE⊥BF,∴CG⊥BF,即CH⊥BF.6.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.【解答】(1)如图,DM为所作;(2)如图,AN为所作.7.用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.【解答】(1)连接AB,EF,交点设为P,射线AP即为所求;(2)如图所示,平行四边形MBCN即为所求.8.在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.【解答】如图所示:(1)连接AC交BD于点O,则点O即为所求的点;(2)连EO并延长交CD于H,连AH,延长AH、BC交于点F,连DF,则△DCF即为所求.9.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【解答】(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形.10.如图,▱ABCD的顶点A、B、D均在⊙O上,请仅用无刻度的直尺按要求作图.(1)AB边经过圆心O,在图(1)中作一条与AD边平行的直径;(2)AB边不经过圆心O,DC与⊙O相切于点D,在图(2)中作一条与AD边平行的弦.【解答】(1)连接AC、BD交于点K,过点O、K作直径EF.EF为所求.(2)连接OD,DO的延长线交AB于T,连接AC、BD交于K,过T、K作弦GH,GH为所求.11.已知矩形ABCD,请仅用无刻度的直尺按下列要求作图(不写作法)(1)如图1,点P为CD的中点,画出AB的垂直平分线l.(2)如图2,在矩形ABCD中,以对角线AC为一边构造一个正方形ACFE,画出EF的中点M.【解答】12.在△ABC中,AB=AC,点A在以BC为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图①中作弦EF,使EF∥BC;(2)在图②中过点A作线段BC的中垂线.【解答】(1)如图①中,线段EF即为所求.(2)如图②中,直线AG即为所求.13.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.(3)如图③,△ABC的外接圆的圆心是点O,D是弧AC的中点,画一条直线把△ABC分成面积相等的两部分.【解答】(1)如图①,对称轴m即为所求;∵AB=AD,∠B=∠D,AC=AC,∴△ABC≌△ABD(SAS),∴AC所在直线为四边形ABCD的对称轴m;(2)如图②,直线n即为所求.四边形ABCD中,∵AD∥BC,∠A=∠D,∴四边形ABCD是等腰梯形,∴AD的垂直平分线n即是BC边的垂直平分线;(3)如图③,BE所在直线把△ABC分成面积相等的两部分.连接OD,交AC于点E,∵△ABC的外接圆的圆心是点O,D是弧AC的中点,∴点E是AC的中点,连接BE,∴BE所在直线把△ABC分成面积相等的两部分.。
中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。
中考数学专题复习网格作图题重点突破练习(三)

1.(1) ;(2)图见解析;取格点 , , , ,连接 , ,它们分别与网格线相交于点 , ,取格点 ,连接 , ,它们相交于点 ,则点 即为所求;取格点 , ,连接 ,与网格线相交于点 ,连接 ,与网格线相交于点 ,则点 即为所求.
【解析】
【分析】
(1)根据勾股定理先求出AB的长,再利用中位线定理可得出DP的长;
【解析】
【分析】
(1)先根据网格确定AB、BC的长,然后根据勾股定理即可解答;
(2)利用格点构造全等三角形CB'=FH=3,EF⊥AC,A'B'=4,从而点E、F、M、N,作直线EF,直线MN,MN与EF交于点A',EF与AC交于点B',连接CA'即可.
【详解】
解:(1)根据网格可知:
AB=4,BC=3,
(2)如图1,设P为AC上任意一点,过点P′作P′C′⊥CB交其延长线与点C′,易得△CDP≌△C′P′D,得出P′C′=CD= ,从而可得出点P′一定在直线l上,再找出点B关于直线l的对称点K,连接DK与l的交点即可点P′,此时 的值最小,因此根据平行四边形的判定与性质以及全等三角形的判定与性质先作出直线l(或在直线l上的线段),利用轴对称的性质可得出点K,进而可得出点 ;利用旋转的性质以及全等三角形的判定与性质在AC上找一点P,使△CDP≌△QKP′,则有DP=KP′=DP′,即可得出点P.
∴AC= =5,
故答案为:5;
(2)取格点E,F,M,N,作直线EF,直线MN,
MN与EF交于点A′,
EF与AC交于点B′,
连接CA′.
△A'B'C即为所求.
【点睛】
本题考查了作图——旋转变换,掌握旋转的性质和全等三角形的判定与性质是解答本题的关键.
2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图

解:(1)如图①中,△ABC 即为所求(答案不唯一).
解:(2)如图②中,四边形 ABDE 即为所求.
5.(2021·长春)图①、图②、图③均是 4×4 的正方形网格,每个 小正方形的边长均为 1,每个小正方形的顶点称为格点,点 A, B,C 均为格点,只用无刻度的直尺,分别在给定的网格中找 一格点 M,按下列要求作图:
(1)在图①中,连结 MA,MB,使 MA=MB; (2)在图②中,连结 MA,MB,MC,使 MA=MB=MC; (3)在图③中,连结 MA,MC,使∠AMC=2∠ABC.
解:(1)(2)(3)如图.
6.(2021·绥化)如图,在网格中,每个小正方形的边长均为 1 个 单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系 的原点,矩形 OABC 的 4 个顶点均在格点上,连接对角线 OB.
八、解答题专练——网格作图
1.(2021·深圳)如图,在正方形网格中,每个小正方形的边长为 1 个单位. (1)过直线 m 作四边形 ABCD 的对称图形; (2)求四边形 ABCD 的面积.
解:(1)如图所示,四边形积=S△ABD+S△BCD
解:(1)如图①,四边形 ABCD 即为所求(答案不唯一).
解:(2)如图②,四边形 AEBF 即为所求.
3.(2021·丽水)如图,在 5×5 的方格纸中,线段 AB 的端点均在格 点上,请按要求画图.
(1)如图①,画出一条线段 AC,使 AC=AB,C 在格点上; (2)如图②,画出一条线段 EF,使 EF,AB 互相平分,E,F 均在格点上; (3)如图③,以 A,B 为顶点画出一个四边形,使其是中心对 称图形,且顶点均在格点上.
人教版2023-2024学年六年级上册数学寒假专项过关练:作图题专训(基础篇)(含解析)

人教版2023-2024学年六年级上册数学寒假专项过关练:作图题专训(基础篇)学校:___________姓名:___________班级:___________1.根据描述在图上表示出位置。
(1)实验学校在中心广场南偏东45°方向600米处。
(2)少年宫在中心广场北偏西30°方向400米处。
2.小明家在学校南偏东60°,距离300米处,小东家在学校北偏西50°。
距离500米处。
请在平面图中画出小名和小东家的位置。
3.贝贝从学校出发,先向北偏西方向走,200米后到达医院,再向正西方向走400米到达书店,最后向南偏东方向走300米就到家了。
40︒30︒根据贝贝的描述,画出她行走的路线图。
4.按照教官的描述,请你画出行军路线图。
5.一艘军舰为完成一次护航任务,从起点向东偏北60°行驶12千米后,向东行驶36千米,再向北偏西30°行驶12千米到达终点,把军舰行驶的路线图画完整。
6.彤彤在操场玩,她先向南偏东30°方向走了60m,接着向东偏北45°方向走了80m,最后再向东偏南40°方向走了50m。
请根据以上描述,画出彤彤运动的路线图。
7.根据对称轴画出轴对称图形的另外一半。
8.在下面的方格图中,请你先在这个长方形中涂色或画斜线表示的;再在这个正方形中画一个最大的圆。
(每个小方格的边长是9.在下面的方格图中按要求画图(每个小方格边长是(1)画一个面积是18平方厘米的平行四边形,底和高的比是(2)画一个周长是20厘米的长方形,长和宽的比是10.根据下面的描述,在方框里画出小明爸爸上班的路线示意图。
38(1)描出O 点的位置。
(2)以O 点为圆心画出一个周长为(3)过圆外一点画出这个圆的对称轴13.下面是文明镇的平面图,请你在图中画出所有场所的位置。
(1)中心小学在小宇家的正西方向()5,5()9,1A15.小鸭子想去河里洗澡,它先从家出发,就到河边了。
中考数学题型专项(六)网格作图题(含答案)

题型专项(六) 网格作图题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意练习即可.1.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.2.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转90度.解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.3.山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2;(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标(2,1).解:(1)①如图:△A1B1C1即为所求.②如图:△A2B2C2即为所求.4.拟)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2,C2两点的坐标.解:(1)△AB1C1如图所示.(2)如图所示,A(0,1),C(-3,1).(3)△A2B2C2如图所示,B2(3,-5),C2(3,-1).5.如图,在平面直角坐标系中,点A、B、C的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达点A2的路径总长.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)OA1=42+42=42,点A 经过点A 1到达A 2的路径总长为52+12+90·π·42180=26+22π. 6.拟)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2BC 2即为所示, 线段BC 旋转过程中所扫过的面积S =90×13π360=13π4. 7.龙区二模)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 先向左,再向下都平移5个单位长度后得到的△A 1B 1C 1;(2)请画出将△ABC 绕O 按逆时针方向旋转90°后得到的△A 2B 2C 2;(3)在x 轴上求作一点P ,使△PAB 周长最小,请画出△PAB 并直接写出点P 的坐标.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)如图,△PAB 即为所求,P(2,0).8.拟)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)以点O 为位似中心,在方格图中画出将△ABC 放大为原来的2倍得到的△A ′B ′C ′;(2)△A ′B ′C ′绕点B ′顺时针旋转90°,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.解:(1)如图,△A′B′C′即为所求.(2)如图,△A″B′C″即为所求.S=90360π(22+42)=14π·20=5π.。
山东省数学八年级上学期期中复习专题4 尺规作图

山东省数学八年级上学期期中复习专题4 尺规作图姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016八上·宁江期中) 下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .2. (2分) (2018八上·洪山期中) 如图,已知AB=AC=BD,则∠1与∠2的关系是()A . 3∠1﹣∠2=180°B . 2∠1+∠2=180°C . ∠1+3∠2=180°D . ∠1=2∠23. (2分) (2019七下·广安期中) 在同一平面内,a、b、c是直线,下列说法正确是()A . 若a∥b,b∥c 则a∥cB . 若a⊥b,b⊥c,则a⊥cC . 若a∥b,b⊥c,则a∥cD . 若a∥b,b∥c,则a⊥c4. (2分) (2019八上·绍兴月考) 如图,依据尺规作图的痕迹,计算∠α=()A . 56°B . 68°C . 28°D . 34°5. (2分)在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于EF长为半径作弧,两弧交于点M;③作射线BM交AC于点D,则∠BDC的度数为()A . 100°B . 65°C . 75°D . 105°6. (2分)(2016·河北) 如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧 1 ;步骤2:以B为圆心,BA为半径画弧 2 ,将弧 1 于点D;步骤3:连接AD ,交BC延长线于点H.下列叙述正确的是()A . BH垂直分分线段ADB . AC平分∠BADC . S△ABC=BC·AHD . AB=AD7. (2分)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于()A . 17B . 18C . 19D . 208. (2分)小聪用直尺和圆规作角平分线,方法如下:①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON;②分别过M、N作OM、ON的垂线,交于点P;③作射线OP,则OP为∠AOB的平分线,小聪用尺规作角平分线时,用到的三角形全等的判定方法是()A . SSSB . SASC . ASAD . HL9. (2分)如图的尺规作图是作()A . 线段的垂直平分线B . 一个半径为定值的圆C . 一条直线的平行线D . 一个角等于已知角10. (2分) (2017八下·汶上期末) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A . 4B . 6C . 8D . 10二、填空题 (共8题;共8分)11. (1分)如图,AB=AC=4cm,DB=DC,若∠ABC为60度,则BE为________.12. (1分) (2020八下·潜江期末) 已知的对角线,相交于点,是等边三角形,且,则的长为________.13. (1分) (2021八上·汉寿期末) 如图,在中,,,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;⑤作射线AF.若AF与PQ的夹角为,则________°.14. (1分)如图,是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为________.15. (1分)阅读下面材料:在数学课上,老师提出如下问题:尺规作如图1:作∠A'O'B'=∠AOB.已知:∠AOB.小米的作法如图2:⑴作射线O′A′;⑵以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;⑶以点O′为圆心,OC为半径作弧C′E′,交O′A′于点C′;⑷以点C′为圆心,CD为半径作弧,交弧C′E′于D′;⑸过点D′作射线O′B′.所以∠A′O′B′就是所求作的角.老师说:“小米的作法正确.”请回答:小米的作图依据是________.16. (1分) (2021九上·越城期末) 如下框内是“已知一条直角边和斜边作直角三角形”的尺规作图过程.已知:线段a、b,求作:使得斜边, .作法:如图.作射线AP,截取线段;以AB为直径,作;以点A为圆心,a的长为半径作弧交于点C;连接AC、CB.即为所求作的直角三角形.请您写出上述尺规作图的依据:________.17. (1分) (2019八上·江海期末) 如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是________cm.18. (1分)已知∠A和线段AB,要作一个唯一的△ABC,还需给出一个条件是________.三、解答题 (共3题;共20分)19. (5分)已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?20. (5分)按要求用尺规作图,保留作图痕迹,不写作法(1)请在图①的正方ABCD内,画出一个P满足∠APB=90°(2)请在图②的正方ABCD内(含边),画出满足∠APB=90°的所有的P,并一句话说明理由.21. (10分)如图,已知线段AB,分别以A、B为圆心,大于线段AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC,求∠ADC的度数.四、作图题 (共3题;共25分)22. (10分) (2020八上·中山期中) 在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积23. (10分) (2016九上·萧山期中) 如图,在△ABC中,已知∠ABC=120°,AC=4,(1)用直尺和圆规作出△ABC的外接圆⊙O(不写作法,保留作图痕迹);(2)求∠AOC的度数;(3)求⊙O的半径.24. (5分)(2021·九台模拟) 如图,在的正方形网格中每个小正方形的边长均为1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.⑴在图1中画一个面积为6的三角形,使它的三边长都是有理数;⑵在图2中画一个面积为6的三角形,使它的三边长都是无理数;⑶在图3中画一个面积为6的中心对称图形,但不是轴对称图形.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共3题;共20分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:四、作图题 (共3题;共25分)答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:。
2022-2023学年人教版九年级上册数学期中复习之作图专题练习

期中复习之作图题模块一:无刻度直尺作图1.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(2,1),B(5,4),C(1,8)都是格点。
(1)直接写出△ABC的形状;(2)要求在下图中仅用无刻度的直尺作图:将△ABC绕点A顺时针旋转角度a得到△AB1C1,a=∠BAC,其中B,C的对应点分别为B1,C1,操作如下:第一步:找一个格点D,连接AD,使∠DAB=∠CAB;第二步:找两个格点C1,E,连接C1E交AD于点B1;第三步:连接AC1,则△AB1C1即为作出的图形。
请你按步骤完成作图,并直接写出D,C1,E三点的坐标。
2.如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求用无刻度的直尺作图,并解决问题:(1)作点D关于BC的对称点O;(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,画出旋转后的△EFG(其中A,B,C三点旋转后的对应点分别是E,F,G)。
3.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图.(1)在图1中,作△ABC关于点O对称的△A1B1C1;(2)在图2中,作△ABC绕点A顺时针旋转90°后得到的△AB2C2.4.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.5.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.模块二:网格作图10 的网格中的位置如图所示1.⊿ABC与点O在10(1)画出⊿ABC绕点O逆时针旋转90°后的图形;(2)若⊙M能盖住⊿ABC,则⊙M的半径最小值为 .2.如图,ABC ∆的顶点坐标分别为(0,1)A ,(3,3)B ,(1,3)C . (1)画出ABC ∆关于点O 的中心对称的△111A B C . (2)画出ABC ∆绕点O 顺时针旋转90︒后的222A B C . (3)求(2)中线段BC 扫过的面积.3.如图所示,正方形网格中,ABC ∆为格点三角形(即三角形的顶点都在格点上). (1)把ABC ∆沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的△111A B C ; (2)把△111A B C 绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的△122A B C ; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.4.如图,在边长为1的小正方形组成的网格中,△AOB 的三个顶点均在格点上,点A 、B 的坐标分别为 A (﹣2,3)、B (﹣3,1).(1)画出坐标轴,画出△AOB 绕点O 顺时针旋转90°后的△A 1OB 1; (2)点A 1的坐标为 ; (3)四边形AOA 1B 1的面积为 .5.如图,边长为1的方格纸中建立直角坐标系,△OAB旋转得到△OA'B′,观察图形并回答问题:(1)请将作图过程补充完整;并说明△OAB是如何旋转得到△OA'B'.(2)填空:△OAA′的形状是.模块三:非网格作旋转图形1.如图,菱形ABCD和Rt△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网格作图题
网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意联系即可.1.(2015·安徽)如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).
(1)请画出△ABC关于直线l对称的△A1B1C1;
(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.
2.(2015·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.
(1)请在图中画出对称中心O;
(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;
(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.3.(2015·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).
(1)请按下列要求画图;
①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2.
在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标________.4.(2015·贵港)如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).
(1)请按要求画图:
①画出△ABC向左平移5个单位长度后得到的△A1B1C1;
②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.
(2)请写出直线B1C1与直线B2C2的交点坐标.
5.(2015·崇左)如图,△A1B1C1是△ABC向右平移4个单位长度得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).
(1)请画出△ABC,并写出点A,B,C的坐标;
(2)求出△AOA1的面积.
6.(2015·昆明盘龙区二模)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC先向左,再向下都平移5个单位长度后得到的△A1B1C1;
(2)请画出将△ABC绕O按逆时针方向旋转90°后得到的△A2B2C2;
(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB并直接写出点P的坐标.
7.(2013·海南)如图,在正方形网格中,△ABC各顶点都在格点上,点A、C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△ABC关于原点O对称的△A2B2C2;
(3)点C1的坐标是________;点C2的坐标是________;过C,C1,C2三点的圆的圆弧的长是________(保留π).
8.(2015·南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).
参考答案
1.(1)如图:△A1B1C1即为所求.
(2)如图:△A2B2C2即为所求.
2.(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)90
3.(1)①如图:△A 1B 1C 1即为所求.②如图:△A 2B 2C 2即为所求.
(2)(2,1)
4.(1)①如图:△A 1B 1C 1,即为所求;②如图:△A 2B 2C 2如图所示.
(2)(-1,-4).
5.(1)如图:△ABC 即为所求.A(-3,1),B(0,2),C(-1,4). (2)连接OA ,OA 1,AA 1即得△AOA 1,图略.S
△AOA 1=12×4×1=2.
6.(1)如图:△A 1B 1C 1即为所求. (2)如图:△A 2B 2C 2即为所求. (3)如图:△PAB 即为所求,P(2,0).
7.(1)如图:△A 1B 1C 1即为所求.
(2)如图:△A 2B 2C 2即为所求. (3)(1,4) (1,-4) 17π
8.(1)如图:△A 1B 1C 1即为所求.
(2)如图:△A 2BC 2即为所求.S =134π.。