浙江省杭州市育才中学2020-2021学年度第一学期九年级数学开学试卷
2024-2025学年浙江省杭州市育才中学数学九上开学调研模拟试题【含答案】

2024-2025学年浙江省杭州市育才中学数学九上开学调研模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若不等式组2111x x a -⎧⎨+⎩<>恰有两个整数解,则a 的取值范围是()A .-1≤a <0B .-1<a ≤0C .-1≤a ≤0D .-1<a <02、(4分)要使分式52x x +有意义,则x 的取值满足的条件是()A .2x =-B .2x ≠-C .0x =D .0x ≠3、(4分)在四边形ABCD 中,对角线AC 、BD 交于点O ,下列条件中,不能判定四边形ABCD 是平行四边形的是()A .AB =DC ,AD =BC B .AD ∥BC ,AD =BC C .AB ∥DC ,AD =BC D .OA =OC ,OD =OB 4、(4分)已知直线l 经过点A (4,0),B (0,3).则直线l 的函数表达式为()A .y =﹣34x +3B .y =3x +4C .y =4x +3D .y =﹣3x +35、(4分)一次函数y=kx+b (k ,b 是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A .x>-3B .x>0C .x<-2D .x<06、(4分)将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.2种B .4种C .6种D .无数种7、(4分)如图,某班数学兴趣小组利用数学知识测量建筑物DEFC 的高度.他们从点A 出发沿着坡度为i =1:2.4的斜坡AB 步行26米到达点B 处,此时测得建筑物顶端C 的仰角α=35°,建筑物底端D 的俯角β=30°.若AD 为水平的地面,则此建筑物的高度CD 约为()米.(参考数据:≈1.7,tan35°≈0.7)A .23.1B .21.9C .27.5D .308、(4分)下列各式中,属于分式的是()A .3x -B .x πC .3x D .()34x y +二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知关于x 的方程244x k x x =--会产生增根,则k 的值为________.10、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.11、(4分)已知二次函数y=-x -2x +3的图象上有两点A(-7,),B(-8,),则▲.(用>、<、=填空).12、(4分)如图,直线y mx =与双曲线k y x =交于A 、B 两点,过点A 作AM x ⊥轴,垂足为M ,连结BM ,若2ABM S =,则k 的值是______.13、(4分)如果分式23x x +有意义,那么x 的取值范围是____________.三、解答题(本大题共5个小题,共48分)14、(12分)阅读:所谓勾股数就是满足方程222x y z +=的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:2212x m n ()=-,y mn =,2212z m n =+(),其中0m n >>,m ,n 是互质的奇数.应用:当3n =时,求一边长为8的直角三角形另两边的长.15、(8分)如图,在△ABC 中,AB =AC ,AD 是BC 边的中线,过点A 作BC 的平行线,过点B 作AD 的平行线,两线交于点E .(1)求证:四边形ADBE 是矩形;(2)连接DE ,交AB 与点O ,若BC =8,AO =3,求△ABC 的面积.16、(8分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆B 位置的坐标;(2)若体育馆位置的坐标为C (-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.17、(10分)自2019年1月8日15日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,求这棵树折断之前的高度.18、(10分)已知:如图,在▱ABCD 中,E 、F 是对角线AC 上的两点,且AE=CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)x 取值范围是______.20、(4分)如图,在矩形ABCD 中,4,6AB BC ==,过矩形ABCD 的对角线交点O 作直线分别交AD 、BC 于点EF 、,连接AF ,若AEF 是等腰三角形,则AE =____.21、(4分)如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.22、(4分)如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.23、(4分)如图,在△ABC 中,∠A =∠B ,D 是AB 边上任意一点DE ∥BC ,DF ∥AC ,AC =5cm ,则四边形DECF 的周长是_____.二、解答题(本大题共3个小题,共30分)24、(8分)为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了A 、B 两种原材料,A 的单价为每件6元,B 的单价为每件3元.该同学的创意作品需要B 材料的数量是A 材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B 材料;(2)在该同学购买B 材料最多的前提下,用所购买的A ,B 两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2%(0)a a >标价,但无人问津,于是该同学在标价的基础上降低%a 出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了1%2a ,求a 的值.25、(10分)先化简:3221x x x x x x --⎛⎫-÷ ⎪⎝⎭,再从x <<中选取一个合适的代入求值.26、(12分)在▱ABCD 中,BCD ∠的平分线与BA 的延长线交于点E ,CE 交AD 于F ()1求证:AE AF =;()2若BH CE ⊥于点H ,D 50∠=,求CBH ∠的度数.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A 【解析】首先解不等式组求得不等式组的解集,然后根据不等式组有两个整数解即可确定整数解,从而得到关于a 的不等式,求得a 的范围.【详解】2111x x a -⎧⎨+⎩<①>②,解①得x <1,解②得x >a-1,则不等式组的解集是a-1<x <1.又∵不等式组有两个整数解,∴整数解是2,-1.∴-2≤a-1-<-1,解得:-1≤a <2.故选A .本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2、B 【解析】根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.【详解】由分式有意义的条件可得x+2≠0,解得x≠-2.故答案选B.本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.3、C【解析】根据平行四边形的判定方法逐一进行分析判断即可.【详解】A.AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;B.AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;C.AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;D.OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD 是平行四边形,故不符合题意,故选C.本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.4、A【解析】根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解【详解】解:∵A(4,0),B(0,3),∴直线l的解析式为:y=﹣34x+3;故选:A.此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键5、A【解析】由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.6、D 【解析】平行四边形的两条对角线交于一点,这个点是平行四边形的对称中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.【详解】∵平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,∴这样的折纸方法共有无数种.故选D .本题主要考查平行四边形的性质,掌握平行四边形是中心对称图形,是解题的关键.7、B 【解析】过点B 作BN ⊥AD ,BM ⊥DC 垂足分别为N ,M ,设BN =x ,则AN =2.4x ,在Rt △ABN 中,根据勾股定理求出x 的值,从而得到BN 和DM 的值,然后分别在Rt △BDM 和Rt △BCM 中求出BM 和CM 的值,即可求出答案.【详解】如图所示:过点B 作BN ⊥AD ,BM ⊥DC 垂足分别为N ,M ,∵i =1:2.4,AB =26m ,∴设BN =x ,则AN =2.4x ,∴AB x ,则2.6x =26,解得:x =10,故BN =DM =10m ,则tan 30°=DM BM =10BM =3,解得:BM =10,则tan 35°=CM BM =0.7,解得:CM ≈11.9(m ),故DC =MC +DM =11.9+10=21.9(m ).故选B .本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.8、C 【解析】根据分式的定义,可得出答案.【详解】A 、分母中不含未知数故不是分式,故错误;B 、是分数形式,但分母不含未知数不是分式,故错误;C 、是分式,故正确;D 、分母中不含未知数不是分式,故错误.故选C 本题考查了分式的定义,熟练掌握分式的概念是正确求解的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k 的值.【详解】解:方程两边都乘(x-4),得2x=k∵原方程增根为x=4,∴把x=4代入整式方程,得k=1,故答案为:1.此题考查分式方程的增根,解题关键在于掌握增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.10、y=﹣1 2x【解析】设正比例函数的解析式为y=kx(k≠0),然后将点(4,-2)代入该解析式列出关于系数k的方程,通过解方程即可求得k的值.【详解】解:设正比例函数的解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-2),∴-2=4k,解得,k=1 2-,∴此函数解析式为:y=12-x;故答案是:y=12-x.本题考查了待定系数法确定函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.11、>。
杭州育才中学2020—2021学年九年级数学 第一学期期中检测题(带答答)

杭州育才中学2020—2021学年九年级数学第一学期期中检测题(考试时间:120分钟满分:120分)姓名:________ 班级:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列图形是中心对称图形的是( )A B C D2.若一元二次方程x2+mx+2=0有两个相等的实数根,则m的值是( )A.2 B.±2 C.±8 D.±2 23.下列抛物线中,开口最大的是( )A.y=2x2B.y=-12x2+1 C.y=(x-1)2D.y=-(x+1)24.已知二次函数的图象经过(-1,0),(2,0),(0,2)三点,则该函数解析式为( ) A.y=-x2-x+2 B.y=x2+x-2C.y=x2+3x+2 D.y=-x2+x+25.关于二次函数y=x2-4x-4的说法,正确的是( )A.最大值为-4 B.最小值为-4C.最大值为-8 D.最小值为-86.抛物线y=3x2先向下平移1个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( )A.y=3(x+2)2-1 B.y=3(x-2)2+1C.y=3(x-2)2-1 D.y=3(x+2)2+17.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=( )A.2 B.3 C.4 D.58.如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)9.如图是一个正方体的表面展开图,已知正方体相对两个面上的数相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1 B.1或2 C.2 D.2或310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下结论中:①abc>0;②3a>2b;③m(am+b)≤a-b(m为任意实数);④4a-2b+c<0.正确的个数是( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.二次函数y=4(x-3)2+7,开口,对称轴为,顶点坐标为.12.若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m的值为.13.如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.14.已知抛物线y=x2+bx+c与x轴交点的坐标分别为(-1,0),(3,0),则一元二次方程x2+bx+c=0的根为.15.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t-0.5t2,飞机着陆后滑行m才能停下来.16.已知开口向上的抛物线y=x2-2x+3,在此抛物线上有A(-12,y1),B(2,y2)和C(3,y3)三点,则y1,y2和y3的大小关系为.17.已知某抛物线上部分点的横坐标x,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y … 5 0 -3 -4 -3 …那么该抛物线的顶点坐标是.18.★如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①DE平分∠ADB;②BE=2-2;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案二、填空题(每小题3分,共24分)得分:________11. ,,;12. ;13. ;14. ;15. ;16. ;17. ;18. ;三、解答题(共66分)19.(8分)解下列方程:(1)4x(1-x)=1;(2)2x2+6x-7=0.20.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.(8分)已知关于x的方程x2-(k+1)x+14k2+1=0有两个实数根.(1)求k的取值范围;(2)若方程的两实数根分别为x1,x2,且x21+x22=6x1x2-15,求k的值.22.(8分)2020年3月份以来,中国共报告发生9起非洲猪瘟疫情,此次猪瘟疫情发病急,蔓延速度快.某地政府和企业迅速进行了猪瘟疫情排查和处置,在疫情排查过程中,某农场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,3天后生猪发病头数会超过1 500头吗?23.(10分)某校九年级进行集体跳绳比赛.如图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G,绳子两端的距离AB约为8米,两名甩绳同学拿绳的手到地面的距离AC和BD基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G关于直线AB对称.(1)求抛物线G的解析式并写出自变量的取值范围;(2)如果身高为1.5米的小华站在C,D之间,且距点C的水平距离为m米,绳子甩过最高处时超过她的头顶,直接写出m的取值范围.24.(12分)(1)如图①,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1,再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C.连接C1B1,则C1B1与BC的位置关系为__________;(2)如图②,当△ABC是锐角三角形,∠ABC=α(α≠60°)时,将△ABC按照(1)中的方式旋转α.连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明.25.(12分)如图,二次函数y=-12x2+bx+c的图象经过A(-2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点的坐标为多少时,△BCP的面积最大,并求出这个最大面积;(3)在直线CD上有点E,作EF⊥x轴于点F,当以O,B,E,F为顶点的四边形是矩形时,直接写出E点坐标.参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列图形是中心对称图形的是( A)A B C D2.若一元二次方程x2+mx+2=0有两个相等的实数根,则m的值是( D) A.2 B.±2 C.±8 D.±2 23.下列抛物线中,开口最大的是( B)A.y=2x2B.y=-12x2+1 C.y=(x-1)2D.y=-(x+1)24.已知二次函数的图象经过(-1,0),(2,0),(0,2)三点,则该函数解析式为( D) A.y=-x2-x+2 B.y=x2+x-2C.y=x2+3x+2 D.y=-x2+x+25.关于二次函数y=x2-4x-4的说法,正确的是( D)A.最大值为-4 B.最小值为-4C.最大值为-8 D.最小值为-86.抛物线y=3x2先向下平移1个单位长度,再向左平移2个单位长度,所得的抛物线的解析式是( A)A.y=3(x+2)2-1 B.y=3(x-2)2+1C.y=3(x-2)2-1 D.y=3(x+2)2+17.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=( C)A.2 B.3 C.4 D.58.如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( D)A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)9.如图是一个正方体的表面展开图,已知正方体相对两个面上的数相同,且不相对两个面上的数值不相同,则“★”面上的数为( C)A.1 B.1或2 C.2 D.2或311.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下结论中:①abc>0;②3a>2b;③m(am+b)≤a-b(m为任意实数);④4a-2b+c<0.正确的个数是( C)A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.二次函数y=4(x-3)2+7,开口__向上__,对称轴为__直线x=3__,顶点坐标为__(3,7)__.12.若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m的值为__-1__.13.如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是__13__.14.已知抛物线y=x2+bx+c与x轴交点的坐标分别为(-1,0),(3,0),则一元二次方程x2+bx+c=0的根为__-1或3__.15.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t-0.5t2,飞机着陆后滑行__200__m才能停下来.16.已知开口向上的抛物线y=x2-2x+3,在此抛物线上有A(-12,y1),B(2,y2)和C(3,y3)三点,则y1,y2和y3的大小关系为__y2<y1<y3__.17.已知某抛物线上部分点的横坐标x,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y … 5 0 -3 -4 -3 …那么该抛物线的顶点坐标是__(1,-4)__.18.★如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①DE平分∠ADB;②BE=2-2;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是__①②③__.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案 A D B D D A C D C C二、填空题(每小题3分,共24分)得分:________11.__向上__直线x=3__(3,7)__12.__-1__13.__13__14.__-1或3__15.__200__16.__y2<y1<y3__17.__(1,-4)__18.__①②③__三、解答题(共66分)19.(8分)解下列方程:(1)4x(1-x)=1;解:∵4x(1-x)=1, ∴4x 2-4x +1=0, ∴(2x -1)2=0, ∴x 1=x 2=12.(2)2x 2+6x -7=0. 解:∵2x 2+6x -7=0, ∴2(x 2+3x)=7, ∴⎝⎛⎭⎪⎪⎫x +322=234,∴x =-32±232.20.(8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位长度,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2,C 2的坐标.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△AB 2C 2即为所求. 点B 2的坐标为(4,-2),点C 2的坐标为(1,-3). 21.(8分)已知关于x 的方程x 2-(k +1)x +14k 2+1=0有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为x 1,x 2,且x 21+x 22=6x 1x 2-15,求k 的值.解:(1)∵关于x 的方程x 2-(k +1)x +14k 2+1=0有两个实数根,∴Δ=[-(k +1)]2-4⎝ ⎛⎭⎪⎪⎫14k 2+1=2k -3≥0, 解得k ≥32.(2)∵方程的两实数根分别为x 1,x 2, ∴x 1+x 2=k +1,x 1x 2=14k 2+1.∵x 21+x 22=6x 1x 2-15,∴(x 1+x 2)2-8x 1x 2+15=0,∴k 2-2k -8=0,解得k 1=4,k 2=-2, 又∵k ≥32,∴k =4. 22.(8分)2020年3月份以来,中国共报告发生9起非洲猪瘟疫情,此次猪瘟疫情发病急,蔓延速度快.某地政府和企业迅速进行了猪瘟疫情排查和处置,在疫情排查过程中,某农场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,3天后生猪发病头数会超过1 500头吗?解:(1)设每头发病生猪平均每天传染x头生猪,依题意,得3(1+x)2=192,解得x1=7,x2=-9 (不合题意,舍去).答:每头发病生猪平均每天传染7头生猪.(2)192×(1+7)=1 536(头),1 536>1 500.答:若疫情得不到有效控制,3天后生猪发病头数会超过1 500头.23.(10分)某校九年级进行集体跳绳比赛.如图所示,跳绳时,绳甩到最高处时的形状可看作是某抛物线的一部分,记作G,绳子两端的距离AB约为8米,两名甩绳同学拿绳的手到地面的距离AC和BD基本保持1米,当绳甩过最低点时刚好擦过地面,且与抛物线G关于直线AB对称.(1)求抛物线G的解析式并写出自变量的取值范围;(2)如果身高为1.5米的小华站在C,D之间,且距点C的水平距离为m米,绳子甩过最高处时超过她的头顶,直接写出m的取值范围.解:(1)建立如图所示平面直角坐标系.由题意可知A(-4,0),B(4,0),顶点E(0,1).设抛物线G的解析式为y=ax2+1.∵A(-4,0)在抛物线G上,∴16a+1=0,解得a=-1 16 .∴y=-116x2+1.自变量的取值范围为-4≤x≤4.(答案不唯一)(2)当y=1.5-1=0.5时,-116x2+1=0.5,解得x=±22,∴m的取值范围是4-22<m<4+2 2.24.(12分)(1)如图①,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1,再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C.连接C1B1,则C1B1与BC的位置关系为__________;(2)如图②,当△ABC是锐角三角形,∠ABC=α(α≠60°)时,将△ABC按照(1)中的方式旋转α.连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明.解:(1)C1B1∥BC.(2)结论:C1B1∥BC.证明:作C1M⊥BC于M,B1N⊥BC于N.∵∠C1MB=∠B1NC=90°,∠C1BM=∠B1CN=α,C1B=CB1,∴△C1MB≌△B1NC(AAS),∴C1M=B1N.∵C 1M ∥B 1N ,∴四边形C 1MNB 1是平行四边形, ∴C 1B 1∥BC.25.(12分)如图,二次函数y =-12x 2+bx +c 的图象经过A(-2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D 的坐标;(2)若该抛物线与x 轴的另一个交点为C ,点P 为第一象限内抛物线上一点,求P 点的坐标为多少时,△BCP 的面积最大,并求出这个最大面积;(3)在直线CD 上有点E ,作EF ⊥x 轴于点F ,当以O ,B ,E ,F 为顶点的四边形是矩形时,直接写出E 点坐标.解:(1)由A(-2,0),B(0,4)求得这个二次函数的解析式为y =-12x 2+x +4,这个二次函数图象的顶点D 的坐标为⎝⎛⎭⎪⎪⎫1,92.(2)令y =0,解得x 1=4,x 2=-2,∴C(4,0). 又∵A(-2,0),B(0,4),x 轴⊥y 轴, ∴OC =4,OA =2,OB =4.设直线BC 的解析式为y =kx +b.∴⎩⎪⎨⎪⎧4k +b =0,b =4,解得⎩⎪⎨⎪⎧k =-1,b =4.∴直线BC 的解析式为y =-x +4.过点P 作PM ⊥x 轴交直线BC 于点M ,交x 轴于点N.设P ⎝ ⎛⎭⎪⎪⎫m ,-12m 2+m +4,则M(m ,-m +4),∴PM =⎝ ⎛⎭⎪⎪⎫-12m 2+m +4-(-m +4)=-12m 2+2m.∴S △BCP =12PM ·OC =12×⎝ ⎛⎭⎪⎪⎫-12m 2+2m ×4=-(m -2)2+4.∴当m =2时,△BCP 面积的最大值为4.此时点P 的坐标为(2,4). (3)由D ⎝⎛⎭⎪⎪⎫1,92,C(4,0)求得直线CD 的解析式为y =-32x +6,过点B 作BE ∥x 轴交CD 于点E ,过点E 作EF ⊥x 轴于点F ,则四边形OBEF 为矩形,∵B(0,4),∴EF =4.将y =4代入直线CD 的解析式得,4=-32x +6,∴x =43,∴E ⎝ ⎛⎭⎪⎪⎫43,4.。
浙江杭州拱墅锦绣育才2024-2025学年九年级数学第一学期开学经典试题【含答案】

浙江杭州拱墅锦绣育才2024-2025学年九年级数学第一学期开学经典试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列四个图案中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2、(4分)如图,已知D 、E 分别是△ABC 的AB 、AC 边上的一点,DE ∥BC ,△ADE 与四边形DBCE 的面积之比为1:3,则AD :AB 为()A .1:4B .1:3C .1:2D .1:53、(4分)把二次函数y=3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()A .y=3(x-2)2+1B .y=3(x+2)2-1C .y=3(x-2)2-1D .y=3(x+2)2+14、(4分)如图,正方形ABCD 的对角线相交于点O,点O 又是正方形A 1B 1C 1O 的一个顶点,且这两个正方形的边长都为1.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的面积为()A .16B .4C .1D .15、(4分)若分式23xx -无意义,则x 等于()A .﹣32B .0C .23D .326、(4分)计算:结果在()A .2.5与3之间B .3与3.5之间C .3.5与4之间D .4与4.5之间7、(4分)下列各点中,不在反比例函数12y x=图象上的点是()A .()3,4P -B .()3,4P C .()2,6P D .()2,6P --8、(4分)如图,在直角坐标系中,一次函数25y x =-+的图象1l 与正比例函数的图象2l 交于点(,3)M m ,一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 能围成三角形,则在下列四个数中,k 的值能取的是()A .﹣2B .1C .2D .3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.10、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.11、(4分)计算:3-2=;12、(4分)=_____;||=_____.13、(4分)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的番号).三、解答题(本大题共5个小题,共48分)14、(12分)解不等式组112789xx x+⎧⎪⎨⎪-≤⎩,并在数轴上把解集表示出来.15、(8分)如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB的反向延长线,OC 是∠AOD 的平分线。
2021-2022学年浙江省杭州市拱墅区锦绣育才教育集团九年级(上)期中数学试卷(解析版)

2021-2022学年浙江省杭州市拱墅区锦绣育才教育集团九年级第一学期期中数学试卷一、选择题本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知圆的半径为2cm,一点到圆心的距离是3cm,则这点在()A.圆外B.圆上C.圆内D.不能确定2.如图,已知A,B均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°3.不透明的袋子里装有7个只有颜色不同的球,其中3个黑球,4个白球,搅匀后任意摸出一个球,是白球的概率是()A.B.C.D.4.如果2a=5b,那么下列比例式中正确的是()A.B.C.D.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x﹣3)2﹣2B.y=(x﹣3)2+2C.y=(x+3)2﹣2D.y=(x+3)2+2 6.如图,已知△ADE∽△ACB,若AB=10,AC=8,AD=4,则AE的长是()A.3.2B.4C.5D.207.已知点A(3,y1),B(4,y2),C(﹣3,y3)均在抛物线y=﹣2x+m上,下列说法中正确的是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y38.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米9.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1 10.如图,H是△ABC的重心,延长AH交BC于D,延长BH交AC于M,E是DC上一点,且DE:EC=5:2,连结AE交BM于G,则BH:HG:GM等于()A.7:5:2B.13:5:2C.5:3:1D.26:10:3二、填空题:本题有6个小题,每小题4分,共24分.11.二次函数y=(x﹣1)2+3图象的顶点坐标是.12.已知圆的半径为2,则60°圆心角所对的弧长为.13.已知S=t2﹣2t﹣15,则S的最小值为.14.已知一个正多边形内角的度数为108°,则它的边数为.15.如图,已知△ABC内接于⊙O,AB=AC,∠BAC=36°,连结BO并延长,交⊙O于D,则∠ACD=度.16.一个球从地面竖直向上弹起时的速度为10m/s,经过t(s)时球的高度为h(m).已知物体竖直运动中,h=v0t﹣(v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s2).则球从弹起至回到地面的过程中,前后两次高度达到3.75m的时间间隔为s.三、解答题本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.18.(1)已知=,求的值;(2)已知点P是线段AB的黄金分割点,PA>PB,AB=2,求PA、PB的长.19.如图,半圆O的直径AB=20,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB 交于点P.(1)求AP的长;(2)求图中阴影部分的面积(结果保留π).20.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏40米.(1)不考虑墙体长度,问长方形的各边的长为多少米时,长方形的面积最大?(2)若11≤AB≤12,试求长方形面积S的取值范围.21.如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.(1)求证:AC=AD;(2)求证:△AEB∽△ACD;(3)当,AD=6时,求CD的长.22.在平面直角坐标系xOy中,A(1,m)和B(3,n)在抛物线y=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的解析式;(2)若A、B两点关于对称轴对称,点(﹣1,y1),(1,y2),(4,y3)在该抛物线上,比较y1,y2,y3的大小,并说明理由.(3)若该抛物线的对称轴为x=﹣1,求m,n满足的等量关系.23.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案一、选择题本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知圆的半径为2cm,一点到圆心的距离是3cm,则这点在()A.圆外B.圆上C.圆内D.不能确定【分析】根据点和圆的位置关系得出即可.解:∵2<3,∴点在圆外,故选:A.2.如图,已知A,B均为⊙O上一点,若∠AOB=80°,则∠ACB=()A.80°B.70°C.60°D.40°【分析】由同弧所对的圆心角和圆周角的关系可得,∠AOB=2∠ACB,则结果即可得出.解:由题意得,∠ACB=∠AOB=×80°=40°.故选:D.3.不透明的袋子里装有7个只有颜色不同的球,其中3个黑球,4个白球,搅匀后任意摸出一个球,是白球的概率是()A.B.C.D.【分析】直接根据概率公式求解即可.解:∵装有7个只有颜色不同的球,其中4个白球,∴从布袋中随机摸出一个球,摸出的球是白球的概率=.故选:C.4.如果2a=5b,那么下列比例式中正确的是()A.B.C.D.【分析】利用比例的性质对各选项进行判断.解:∵2a=5b,∴=,=.故选:A.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x﹣3)2﹣2B.y=(x﹣3)2+2C.y=(x+3)2﹣2D.y=(x+3)2+2【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.解:y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2﹣2.故选:C.6.如图,已知△ADE∽△ACB,若AB=10,AC=8,AD=4,则AE的长是()A.3.2B.4C.5D.20【分析】直接利用相似三角形的性质得出=,进而求出答案.解:∵△ADE∽△ACB,∴=,∵AB=10,AC=8,AD=4,∴=,解得:AE=5,故选:C.7.已知点A(3,y1),B(4,y2),C(﹣3,y3)均在抛物线y=﹣2x+m上,下列说法中正确的是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3【分析】求得抛物线对称轴为直线x=2,根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越大,即可得到答案.解:∵抛物线y=﹣2x+m,∴抛物线的开口向上,对称轴是直线x=﹣=2,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点C(﹣3,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.8.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米【分析】连接OC交AB于D,连接OA,根据垂径定理得到AD=AB,根据勾股定理求出OD,结合图形计算,得到答案.解:连接OC交AB于D,连接OA,∵点C为运行轨道的最低点,∴OC⊥AB,∴AD=AB=3(米),在Rt△OAD中,OD===(米),∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,故选:B.9.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=t=a+b+1.把点(﹣1,0)代入y=ax2+bx+1,a﹣b+1=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出t=a+b+1的变化范围.解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴易得:a﹣b+1=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①+②得:﹣1<a+b<1,在不等式两边同时加1得0<a+b+1<2,∵a+b+1=t代入得0<t<2,∴0<t<2.故选:B.10.如图,H是△ABC的重心,延长AH交BC于D,延长BH交AC于M,E是DC上一点,且DE:EC=5:2,连结AE交BM于G,则BH:HG:GM等于()A.7:5:2B.13:5:2C.5:3:1D.26:10:3【分析】过C作CF∥BM,交AE的延长线于F,设CF=a,则GM=a,依据CF∥BG,DE:EC=5:3,D是BC的中点,可得BG=6CF=6a,再根据H是△ABC的重心,即可得到BH=BM=a,HG=BG﹣BH=a,进而得到BH:HG:GM=a:a:a=26:10:3.解:如图,过C作CF∥BM,交AE的延长线于F,∵H是△ABC的重心,∴M是AC的中点,D是BC的中点,∴G是AF的中点,∴GM=CF,设CF=a,则GM=a,∵CF∥BG,DE:EC=5:2,D是BC的中点,∴=,∴BG=6CF=6a,∴BM=a,∵H是△ABC的重心,∴BH=BM=a,∴HG=BG﹣BH=6a﹣a=a,∴BH:HG:GM=a:a:a=26:10:3.故选:D.二、填空题:本题有6个小题,每小题4分,共24分.11.二次函数y=(x﹣1)2+3图象的顶点坐标是(1,3).【分析】根据题目中的函数解析式,可以直接写出该函数图象的顶点坐标.解:∵二次函数y=(x﹣1)2+3,∴该函数图象的顶点坐标为(1,3),故答案为:(1,3).12.已知圆的半径为2,则60°圆心角所对的弧长为.【分析】利用弧长公式直接计算即可.解:圆的半径为2,则60°圆心角所对的弧长==.故答案为:.13.已知S=t2﹣2t﹣15,则S的最小值为﹣16.【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.解:∵S=t2﹣2t﹣15=(t﹣1)2﹣16,∴当t=1时,S取得最小值为﹣16.故答案为:﹣16.14.已知一个正多边形内角的度数为108°,则它的边数为5.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解.解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:5.15.如图,已知△ABC内接于⊙O,AB=AC,∠BAC=36°,连结BO并延长,交⊙O于D,则∠ACD=18度.【分析】连接AD,利用等腰三角形的性质和三角形的内角和定理可求∠ABC=∠ACB=72°;利用直径所对的圆周角为直角,可得∠BAD=90°,则∠ABD=18°,利用同弧所对的圆周角相等即可求得结论.解:连接AD,如图,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB==72°.∵∠ADB=∠ACB,∴∠ADB=72°.∵BD是圆的直径,∴∠BAD=90°.∴∠ABD=90°﹣∠ADB=18°.∴∠ACD=∠ABD=18°.故答案为:18.16.一个球从地面竖直向上弹起时的速度为10m/s,经过t(s)时球的高度为h(m).已知物体竖直运动中,h=v0t﹣(v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s2).则球从弹起至回到地面的过程中,前后两次高度达到3.75m的时间间隔为1s.【分析】将v0=10,g=10,h=3.75代入h=v0t﹣求解.解:∵v0=10,g=10,∴h=10t﹣5t2,将h=3.75代入h=10t﹣5t2得3.75=10t﹣5t2,解得t1=0.5,t2=1.5,∴后两次高度达到3.75m的时间间隔为1.5﹣0.5=1(s).故答案为:1.三、解答题本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.18.(1)已知=,求的值;(2)已知点P是线段AB的黄金分割点,PA>PB,AB=2,求PA、PB的长.【分析】(1)设a=3k,则b=5k,代入,计算即可求解;(2)根据黄金分割点的定义,知AP是较长线段;则PA=AB,PB=AB,代入数据即可得出PA、PB的长.解:(1)∵=,∴可设a=3k,则b=5k,∴==;(2)∵点P是线段AB的黄金分割点,PA>PB,AB=2,∴PA=AB=﹣1,PB=AB=3﹣.19.如图,半圆O的直径AB=20,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB 交于点P.(1)求AP的长;(2)求图中阴影部分的面积(结果保留π).【分析】(1)先根据题意判断出△O′PB是等腰直角三角形,由锐角三角函数的定义求出PB的长,进而可得出AP的长;(2)根据S阴影=S扇形O′A′P+S△O′PB直接进行计算即可.解:(1)∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=BO,∴AP=AB﹣BP=20﹣10;(2)阴影部分面积为:S阴影=S扇形O′A′P+S△O′PB=×π×100+10×10×=25π+50.20.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏40米.(1)不考虑墙体长度,问长方形的各边的长为多少米时,长方形的面积最大?(2)若11≤AB≤12,试求长方形面积S的取值范围.【分析】(1)设AB,CD长为x,则BC=40﹣2x,通过矩形面积公式列出S与x的关系,通过配方求解.(2)由S与x的关系式可得x大于10时,S随x增大而减小,进而求解.解:(1)设AB,CD长为x,则BC=40﹣2x,∵0<40﹣2x<40,∴0<x<20.由题意得S=AB•BC=(40﹣2x)x=﹣2(x﹣10)2+200(0<x<20),∴x=10时,40﹣2x=20,S有最大值为200,即BC长20米,AB=CD=10米时,长方形面积最大值为200平方米.(2)∵11≤AB≤12,∴11≤x≤12,∵S=﹣2(x﹣10)2+200,∴x>10时,S随x增大而减小,当x=11时,S=﹣2×(11﹣10)2+200=198,当x=12时,S=﹣2×(12﹣10)2+200=196,∴196平方米≤S≤198平方米.21.如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.(1)求证:AC=AD;(2)求证:△AEB∽△ACD;(3)当,AD=6时,求CD的长.【分析】(1)由BA平分∠EBD,得∠ABE=∠ABD,再根据圆内接四边形的性质和圆周角定理可证∠ACD=∠ADC,即可证明;(2)由(1)知∠E=∠ABE=∠ACD=∠ADC,从而证明结论;(3)由△AEB∽△ACD,得,代入即可.【解答】(1)证明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)证明:∵AE=AB,∴∠E=∠ABE,∴∠E=∠ABE=∠ACD=∠ADC,∴△AEB∽△ACD;(3)解:由(2)知,△AEB∽△ACD,∴,∴CD==4.22.在平面直角坐标系xOy中,A(1,m)和B(3,n)在抛物线y=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的解析式;(2)若A、B两点关于对称轴对称,点(﹣1,y1),(1,y2),(4,y3)在该抛物线上,比较y1,y2,y3的大小,并说明理由.(3)若该抛物线的对称轴为x=﹣1,求m,n满足的等量关系.【分析】(1)将点(1,3),(3,15)代入解析式求解.(2)先求得抛物线的开口方向和对称轴,再根据各点到对称轴的距离判断y值大小;(3)根据题意二次函数经过点(﹣2,0),代入解析式即可求得b=2a,则抛物线为y =ax2+2ax,把A、B坐标代入即可求得m=a+2a=3a,n=9a+6a=15a,从而得出n=5m.解:(1)∵m=3,n=15,∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)代入y=ax2+bx得:,解得,∴抛物线的解析式为y=x2+2x;(2)∵A、B两点关于对称轴对称,∴对称轴为直线x==2,∴点(﹣1,y1)到对称轴的距离最大,点(1,y2)到对称轴的距离最小,∵a>0,∴抛物线开口向上,∴y1>y3>y2;(3)∵该抛物线的对称轴为x=﹣1,抛物线y=ax2+bx(a>0)经过点(0,0),∴抛物线y=ax2+bx(a>0)经过点(﹣2,0),∴4a﹣2b=0,∴b=2a,∴y=ax2+2ax(a>0),∵A(1,m)和B(3,n)在抛物线y=ax2+bx(a>0)上,∴m=a+2a=3a,n=9a+6a=15a,∴==,∴n=5m.23.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=AC•CD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.②∠COD=90°,∠BOC=90°,BC==,③∠OCD显然≠90°,不需要讨论.综上所述,BC=或.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.(也可以利用角平分线的性质定理:==,黄金分割点的性质解决这个问题)方法2、设OD=x,设△AOB的边上的高为h,则△AOD的边OD边上的高也为h,∴==,设S△AOB=a,∴S△AOD=ax,∵△AOB≌△AOC,∴S△AOC=S△AOB=a∴S△AOC=S△AOD+S△COD,∴S△COD=a﹣ax=a(1﹣x),∵S2是S1和S3的比例中项,∴S22=S1•S3,∴(ax)2=a×a(1﹣x),∴x=,∵OD>0,∴OD=.。
2020-2021杭州市育才中学高一数学上期中第一次模拟试卷(含答案)

2020-2021杭州市育才中学高一数学上期中第一次模拟试卷(含答案)一、选择题1.若35225a b ==,则11a b +=( ) A .12B .14C .1D .22.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .504.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>5.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>6.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]7.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z8.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3} 9.函数f(x)=23x x +的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)11.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a12.设0.13592,ln ,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >>B .a c b >>C .b a c >>D .b c a >>二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______. 14.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.15.函数的定义域是 .16.已知函数()()22log f x x a =+,若()31f =,则a =________.17.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.18.已知函数()x xf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x的取值范围为______. 19.如果函数221xx y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.20.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.三、解答题21.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2xg x k =-;(1)求m 的值;(2)当[1,2]x ∈时,记()f x 、()g x 的值域分别是A 、B ,若A B A ⋃=,求实数k 的取值范围;24.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?25.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?26.设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求f (0);(2)证明f (x )是奇函数;(3)解不等式f (x 2)—f (x )>f (3x ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.2.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.4.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.5.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .6.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.7.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.8.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.9.B解析:B试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.10.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.11.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.12.A解析:A 【解析】 试题分析:,,即,,.考点:函数的比较大小.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.15.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域16.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需解析:-7 【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.17.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 18.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭【解析】 【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围. 【详解】由于()()f x f x -=-故函数为奇函数,而()1xxf x e e =-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x x x x -+-<⎧⎨+-<⎩,解得112x -<<.所以填11,2⎛⎫- ⎪⎝⎭.【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.19.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点解析:3或13【解析】 【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围. 【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-. 若1,[1,1]a x >∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦,∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,xt a a a⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去)答案:3或13【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.20.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 三、解答题21.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃.【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故220a ab =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+; (2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭; (3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立;④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<, 综上,实数m 的取值范围是{}0[1,4)⋃.考点:函数的解析式;函数的单调性及其应用.22.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围.【详解】解:(1)函数()f x 的对称轴为22a x -=-,又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立, 函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.23.(1) 0 ; (2) [0,1]【解析】【分析】(1)根据幂函数的定义有2(=11)m -,求出m 的值,然后再根据单调性确定出m 的值.(2)根据函数()f x 、()g x 的单调性分别求出其值域,再由A B A ⋃=得B A ⊆,再求k 的取值范围.【详解】(1) 函数2242()(1)mm f x m x -+=-为幂函数, 则2(=11)m -,解得:0m =或2m =.当0m =时,2()f x x =在(0,)+∞上单调递增,满足条件.当2m =时,2()f x x -=在(0,)+∞上单调递减,不满足条件.综上所述0m =.(2)由(1)可知, 2()f x x =,则()f x 、()g x 在[1,2]单调递增, 所以()f x 在[1,2]上的值域[1,4]A =,()g x 在[1,2]的值域[2,4]B k k =--.因为A B A ⋃=,即B A ⊆,所以2144k k -≥⎧⎨-≤⎩,即10k k ≥⎧⎨≤⎩,所以01k ≤≤. 所以实数k 的取值范围是[0,1].【点睛】本题考查幂函数的概念,函数值域和根据集合的包含关系求参数的范围,属于基础题. 24.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元【解析】设房屋地面的长为米,房屋总造价为元.25.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 . 【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> . (2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者). 26.(1)0;(2)见解析;(3){x|x<0或x>5}【解析】【分析】【详解】试题分析:(1)利用已知条件通过x=y=0,直接求f (0);(2)通过函数的奇偶性的定义,直接证明f (x )是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等的解集即可. 试题解析:(1)令,得, ∴定义域关于原点对称 ,得, ∴∴是奇函数,即又由已知得:由函数是增函数,不等式转化为∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法.。
2020-2021学年浙江省杭州市四校联考九年级(上)期中数学试卷 解析版

2020-2021学年浙江省杭州市四校联考九年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.)1.在圆内接四边形ABCD中,若∠A=50°,则∠C=()°A.40B.50C.130D.1502.下列说法中,正确的是()A.三点确定一个圆B.在同圆或等圆中,相等的弦所对的圆周角相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的圆心角所对的弦相等3.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.如图,已知在△ABC中,D为BC上一点,EG∥BC,分别交AB,AD,AC于点E,F,G,则下列比例式正确的是()A.B.C.D.6.已知抛物线C:y=x2+3x﹣10,将抛物线C平移得到抛物线C',若两条抛物线C、C′关于直线x=1对称,则下列平移方法中,正确的是()A.将抛物线C向右平移2.5个单位B.将抛物线C向右平移5个单位C.将抛物线C向右平移3个单位D.将抛物线C向右平移6个单位7.如图,在△ABC,AB=AC=a,点D是边BC上的一点,且BD=a,AD=DC=1,则a 等于()A.B.C.1D.28.已知二次函数y=a(x﹣h)2+k(其中a,h,k是实数,a≠0),当x=1时,y=8;当x =8时,y=1,()A.若h=4,则a>0B.若h=5,则a<0C.若h=6,则a>0D.若h=7,则a<09.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小10.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)已知,则=.12.(4分)已知正n边形的每个内角为144°,则n=.13.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则y1,y2,y3的大小关系是.14.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是.16.(4分)如图,∠A =∠B =90°,AB =a ,AD <BC ,在边AB 上取点P ,使得△P AD ,△PBC 与△PDC 两两相似,则AP 长为 .(结果用含a 的代数式表示)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或推演步骤) 17.(6分)如图,已知在⊙O 中,两条弦AB 和CD 交于点P ,且AP =CP ,求证:AB =CD .18.(8分)如图,过菱形AEDF 的顶点D 作直线,分别交AE 的延长线于点B ,交AF 的延长线于点C .(1)求证:△BED ∽△DFC ; (2)若FC =AF ,求的值.19.(8分)已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球实验,并将数据记录如下表: 摸球次数 10 20 40 60 100 150 200 红球出现次数 5 9 18 26 41 61 81 红球出现的频率0.50.450.450.4330.410.4070.405(1)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为 ;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.20.(10分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.21.(10分)某商场要经营一种新上市的文具,进价为20元/件,试营业阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)商场的营销部结合实际情况,决定该文具的销售单价不低于30元,且每天的销售量不得少于160件,那么该文具如何定价每天的最大销售利润最大,最大利润是多少.22.(12分)设二次函数y=(ax﹣1)(x﹣a),其中a是常数,且a≠0.(1)当a=2时,试判断点(﹣,﹣5)是否在该函数图象上.(2)若函数的图象经过点(1,﹣4),求该函数的表达式.(3)当﹣1≤x≤+1时,y随x的增大而减小,求a的取值范围.23.(12分)(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB;(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=5,BE=4,求AD的长.(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,AD=5,求DF的长.2020-2021学年浙江省杭州市四校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.)1.在圆内接四边形ABCD中,若∠A=50°,则∠C=()°A.40B.50C.130D.150【分析】根据圆内接四边形的对角互补列式计算即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣50°=130°,故选:C.2.下列说法中,正确的是()A.三点确定一个圆B.在同圆或等圆中,相等的弦所对的圆周角相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的圆心角所对的弦相等【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【解答】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D.3.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:=.故选:A.4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°【分析】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解答】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.5.如图,已知在△ABC中,D为BC上一点,EG∥BC,分别交AB,AD,AC于点E,F,G,则下列比例式正确的是()A.B.C.D.【分析】由EG∥BC可得出∠AEF=∠ABD,∠AFG=∠ADC,结合∠EAF=∠BAD,∠F AG=∠DAC可得出△AEF∽△ABD,△AFG∽△ADC,再利用相似三角形的性质可得出==,==,进而可得出=.【解答】解:∵EG∥BC,∴∠AEF=∠ABD,∠AFG=∠ADC.又∵∠EAF=∠BAD,∠F AG=∠DAC,∴△AEF∽△ABD,△AFG∽△ADC,∴==,==,∴=.故选:D.6.已知抛物线C:y=x2+3x﹣10,将抛物线C平移得到抛物线C',若两条抛物线C、C′关于直线x=1对称,则下列平移方法中,正确的是()A.将抛物线C向右平移2.5个单位B.将抛物线C向右平移5个单位C.将抛物线C向右平移3个单位D.将抛物线C向右平移6个单位【分析】找一个点,经过平移后这个点与直线x=1对称.抛物线C与y轴的交点为A(0,﹣10),与A点以对称轴对称的点是B(﹣3,﹣10).若将抛物线C平移到C′,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(2,﹣10).因此将抛物线C向右平移5个单位.【解答】解:∵抛物线C:y=x2+3x﹣10=(x+)2﹣,∴抛物线对称轴为x=﹣.∴抛物线与y轴的交点为A(0,﹣10).则与A点以对称轴对称的点是B(﹣3,﹣10).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(2,﹣10).因此将抛物线C向右平移5个单位.故选:B.7.如图,在△ABC,AB=AC=a,点D是边BC上的一点,且BD=a,AD=DC=1,则a 等于()A.B.C.1D.2【分析】利用相似三角形的性质构建方程求解即可.【解答】解:∵AB=AC,∴∠B=∠C,∵DA=DC,∴∠DAC=∠C,∴∠DAC=∠B,∵∠C=∠C,∴△CDA∽△CAB,∴=,∴CA2=CD•CB,∵CA=a,BD=a,CD=1,∴CB=1+a,∴a2=1•(1+a),∴a2﹣a﹣1=0,∴a=或(舍弃),故选:A.8.已知二次函数y=a(x﹣h)2+k(其中a,h,k是实数,a≠0),当x=1时,y=8;当x =8时,y=1,()A.若h=4,则a>0B.若h=5,则a<0C.若h=6,则a>0D.若h=7,则a<0【分析】当x=1时,y=8;当x=8时,y=1;代入函数式整理得a(9﹣2h)=﹣1,将h的值分别代入即可得出结果.【解答】解:当x=1时,y=8;当x=8时,y=1;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=﹣7,整理得:a(9﹣2h)=﹣1,若h=4,则a=﹣1,故A错误;若h=5,则a=1,故B错误;若h=6,则a=,故C正确;若h=7,则a=,故D错误;故选:C.9.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内角和定理可求∠BPC+∠BP A=135°=∠CP A,由外角的性质可求∠P AH=135°﹣90°=45°,即可求解.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.10.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【分析】方法1、①当b﹣a=1时,当a,b同号时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan∠ABC=n﹣m,再判断出45°≤∠ABC<90°,即可得出n﹣m的范围,当a,b异号时,m=0,当a=﹣,b=时,n最小=,即可得出n﹣m的范围;②当n﹣m=1时,当a,b同号时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,当a,b 异号时,m=0,则n=1,即可求出a,b,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【解答】解:方法1、①当b﹣a=1时,当a,b同号时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADE=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,且a,b同号,∴45°≤∠ABC<90°,∴tan∠ABC≥1,∴n﹣m≥1,当a,b异号时,m=0,当a=﹣,b=时,n=,此时,n﹣m=,∴≤n﹣m<1,即n﹣m≥,即n﹣m无最大值,有最小值,最小值为,故选项C,D都错误;②当n﹣m=1时,如图2,当a,b同号时,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHN中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,当a,b异号时,m=0,∴n=1,∴a=﹣1,b=1,即b﹣a=2,∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;故选:B.方法2、当n﹣m=1时,当a,b在y轴同侧时,a,b都越大时,a﹣b越接近于0,但不能取0,即b﹣a没有最小值,当a,b异号时,当a=﹣1,b=1时,b﹣a=2最大,当b﹣a=1时,当a,b在y轴同侧时,a,b离y轴越远,n﹣m越大,但取不到最大,当a,b在y轴两侧时,当a=﹣,b=时,n﹣m取到最小,最小值为,因此,只有选项B正确,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)已知,则=.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵,∴a=b,∴==,故答案为:.12.(4分)已知正n边形的每个内角为144°,则n=10.【分析】根据多边形内角和外角的关系可求解正n边形的外角的度数,再根据多边形的外角和定理可直接求解.【解答】解:由题意得正n边形的每一个外角为180°﹣144°=36°,n=360°÷36°=10,故答案为10.13.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则y1,y2,y3的大小关系是y2>y1>y3.【分析】先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可.【解答】解:抛物线y=﹣3x2﹣12x+m的开口向下,对称轴是直线x=﹣=﹣2,当x<﹣2时,y随x的增大而增大,∵(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,∴点(1,y3)关于对称轴x=﹣2的对称点是(﹣5,y3),∵﹣5<﹣3<﹣2,∴y2>y1>y3,故答案为y2>y1>y3.14.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DFE,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,∠A=∠B=90°,AB=a,AD<BC,在边AB上取点P,使得△P AD,△PBC与△PDC两两相似,则AP长为a或a.(结果用含a的代数式表示)【分析】分两种情形:①当∠DPC=90°时,如图,过点P作PT⊥CD于T.利用全等三角形的性质证明P A=PT,PB=PT,推出P A=PB即可解决问题.②当∠PDC=90°时,分别求解即可.【解答】解:①当∠DPC=90°时,如图,过点P作PT⊥CD于T.∵△P AD,△PBC与△PDC两两相似,且AD<BC,∴∠ADP=∠PDC,∠BCP=∠PCD,∵∠A=∠PTD=90°,∠B=∠PTC=90°,PD=PD,PC=PC,∴△PDA≌△PDT(AAS),△PCB≌△PCT(AAS),∴P A=PT,PB=PT,∴P A=PB=AB=a,②当∠PDC=90°时,∵△P AD,△PBC与△PDC两两相似,∴∠APD=∠DPC=∠CPB=60°,设AP=x,则PD=2x.PC=4x,PB=2x,∴3x=a,∴x=a.∴P A=a故答案为a或a.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或推演步骤)17.(6分)如图,已知在⊙O中,两条弦AB和CD交于点P,且AP=CP,求证:AB=CD.【分析】根据圆周角定理得出∠A=∠C,根据全等三角形的判定得出△ADP≌△CBP,根据全等三角形的性质得出BP=DP即可.【解答】证明:∵圆周角∠A和∠C都对着,∴∠A=∠C,在△ADP和△CBP中,,∴△ADP≌△CBP(ASA),∴BP=DP,∵AP=CP,∴AP+BP=CP+DP,即AB=CD.18.(8分)如图,过菱形AEDF的顶点D作直线,分别交AE的延长线于点B,交AF的延长线于点C.(1)求证:△BED∽△DFC;(2)若FC=AF,求的值.【分析】(1)由菱形的性质可得AE∥DF,DE∥AC,由平行线的性质可得∠B=∠FDC,∠C=∠BDE,可得结论;(2)由相似三角形的性质可求解.【解答】证明:(1)∵四边形AEDF是菱形,∴AE∥DF,DE∥AC,∴∠B=∠FDC,∠C=∠BDE,∴△BED∽△DFC;(2)∵四边形AEDF是菱形,∴AE=AF=DE=DF,∵△BED∽△DFC,∴,∵FC=AF,∴,∴.19.(8分)已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球实验,并将数据记录如下表:摸球次数10204060100150200红球出现次数5918264161810.50.450.450.4330.410.4070.405红球出现的频率(1)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为0.4;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.【分析】(1)根据大量的试验结果稳定在0.4左右即可得出结论;(2)先求出袋中红、白球的个数,再列表得出所有等可能结果,继而利用概率公式求解即可.【解答】解:(1)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为0.4,故答案为:0.4;(2)∵袋子中红球的个数约为5×0.4=2(个),∴袋子中白球有3个,列表如下:红红白白白红(红,红)(白,红)(白,红)(白,红)红(红,红)(白,红)(白,红)(白,红)白(红,白)(红,白)(白,白)(白,白)白(红,白)(红,白)(白,白)(白,白)白(红,白)(红,白)(白,白)(白,白)由表可知共有20种等可能结果,其中摸出的两个球恰好“一红一白”的有12种结果,∴摸出的两个球恰好“一红一白”的概率为=.20.(10分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.21.(10分)某商场要经营一种新上市的文具,进价为20元/件,试营业阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)商场的营销部结合实际情况,决定该文具的销售单价不低于30元,且每天的销售量不得少于160件,那么该文具如何定价每天的最大销售利润最大,最大利润是多少.【分析】(1)由题意得:w=(x﹣20)[250﹣10(x﹣25)],即可求解;(2)由题意得:250﹣10(x﹣25)≥160且x≥30,解得30≤x≤34,而w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50),根据函数的增减性即可求解.【解答】解:(1)由题意得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10x2+700x﹣10000;(2)由题意得:250﹣10(x﹣25)≥160且x≥30,解得30≤x≤34,而w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50),∵a=﹣10<0,而函数的对称轴为x=(20+50)=35,故当x<35时,w随x的增大而增大,故当x=34(元)时,w有最大值为2240(元).22.(12分)设二次函数y=(ax﹣1)(x﹣a),其中a是常数,且a≠0.(1)当a=2时,试判断点(﹣,﹣5)是否在该函数图象上.(2)若函数的图象经过点(1,﹣4),求该函数的表达式.(3)当﹣1≤x≤+1时,y随x的增大而减小,求a的取值范围.【分析】(1)把a的值和已知点的坐标代入解析式中进行验证便可;(2)代入已知点坐标求得a便可得解析式;(3)分a>0和a<0两种情况,根据二次函数的增减性和已知条件列出a的不等式便可求得结果.【解答】解:(1)∵a=2,∴y=(ax﹣1)(x﹣a)=(2x﹣1)(x﹣2),当x=﹣0.5时,y=5≠﹣5,∴点(﹣,﹣5)不在该函数图象上;(2)∵函数的图象经过点(1,﹣4),∴(a﹣1)(1﹣a)=﹣4,解得,a=﹣1或3,∴该函数的表达式为:y=(3x﹣1)(x﹣3)或y=(﹣x﹣1)(x+1);(3)∵二次函数y=(ax﹣1)(x﹣a)的图象与x轴交于点(,0),(a,0),∴函数图象的对称轴为直线x=,当a>0时,函数图象开口向上,∵当﹣1≤x≤+1时,y随x的增大而减小,∴当﹣1≤x≤+1时,y随x的增大而减小,∴≥+1,∴a≤,∴0<a≤;当a<0时,函数图象开口向下,∵当﹣1≤x≤+1时,y随x的增大而减小,∴≤﹣1,∴a≥﹣,∴﹣≤a<0;综上,﹣≤a<0或0<a≤.23.(12分)(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB;(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=5,BE=4,求AD的长.(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,AD=5,求DF的长.【分析】(1)证明△ADC∽△ACB,得出=,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段=,则BF2=BE•BC,求出BC,则可求出AD;(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段=,则DE=EF,再证明DG=DF,求出DG可得结论.【解答】(1)证明:∵∠ACD=∠B,∠A=∠A,∴=,∴AC2=AD•AB.(2)解:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴=,∴BF2=BE•BC,∴BC===,∴AD=.(3)解:如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE=2,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴=,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵=,∴DG=DF,∵AD=CD=5,CG=AE=2,∴DG=DC+CG=7,∴DF=.。
(浙江绍兴)2020-2021学年第一学期九年级期末测试-数学试题卷(浙教版)

1. 本试卷考核范围:浙教版九上全册、九下第1 章。
2. 本试卷共6 页,满分150 分。
数学试题卷104401 .在同一时刻,身高1.6 m 的小强的影长是1.2 m,旗杆的影长是15 m,则旗杆的高为( )A .22 mB .20 mC .18 mD .16 m2 .如图,A,B,C都是⊙O上的点,若∠ACB=110°,则∠AOB的度数是( )A .70°B .110°C .140°D .160°第2 题图第3 题图第4 题图3 .有5 张写有数字的卡片 (如图1),它们的背面都相同,现将它们背面朝上 (如图2),从中翻开任意一张是数字 2 的概率是( )A .B .C .D .4 .已知y与x之间的函数关系如图所示,当-3≤x≤3 时,函数值y的取值范围是( )A .0≤y≤3B .0≤y≤2C .1≤y≤3D .-3≤y≤35 .在△ABC中,若|sin A一| +(一tan B)2 = 0 ,则∠C的度数为( )A .30°B .60°C .90°D .120°6 .如图,在平面直角坐标系中,以点P为圆心,以2 为半径的圆弧与x轴交于A,B两点,已知点A的坐标为(2 ,0),点B的坐标为(6 ,0),则圆心P的坐标为( )A .(4,4)B .(4,2)C .(4,)D .(2,2 )7 . 在倾斜角(∠α , ∠β)不同的两个斜面上,物体前进的距离都是 l ,而它在水平和铅垂两个方向上运动的距离却各不相同. 如图,已知 sin β= ,tan α= ,l =20 米,则物体在这两 个不同斜面上的高度差等于( )A .1 米B .4 米C .7 米D .10 米第 7 题图 第 8 题图8 . 若将一个正方形剪成如图 1 所示的四块, 且这四块恰好能拼成如图 2 所示的矩形, 则 的值为 ( )A .B .C .D.2一 19 . 如图, ⊙O 上有两点 A 与 P ,若点P 在圆上匀速运动一周,则弦 AP 的长度 d 与时间 t的关系可能是下列图形中的( )A .①B .③C .②或④D .①或③第 9 题图 第 10 题图10 .如图, 在四边形 ABCD 中,不等长的两对角线 AC ,BD 相交于点 O ,且将四边形 ABCD分成甲、乙、丙、丁四个三角形.若 OA ∶OC =OB ∶OD =1 ∶2,则此四个三角形的关系 是( )A .甲与丙相似, 乙与丁相似B .甲与丙相似, 乙与丁不相似C .甲与丙不相似,乙与丁相似D .甲与丙不相似,乙与丁不相似6 5 3011 .抛物线y =2x 2-2x 与 x 轴的交点坐标为 .a b12.已知扇形的半径为6 cm,面积为10π cm2 ,则该扇形的弧长等于cm.(结果保留π)13.学校组织校外实践活动,给九年级安排了两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是.14.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交于点D,连结DC,则∠DCB的度数为.第14 题图第15 题图15.如图,桌面上有一时钟,表盘中心点为O,分针OA外端点到桌面的最大距离和最小距离分别为50 和10 ,若现在的时间是9 点10 分,则点A到桌面的距离是.16.如图①是由8 个同样大小的正方形组成的纸片,我们只需要剪两刀,将它分成三块 (如图②),就可以拼成一个大正方形(如图③).那么由 5 个同样大小的正方形组成的纸片(如图④),最少需要剪刀,就可以拼成一个大正方形.817~2021102223248017 .在平面直角坐标系中,已知点P(x,6)在第一象限,且OP与x轴的正半轴的夹角α的正切值是.(1)求x的值.(2)求夹角α的正弦值和余弦值.18 .在一个不透明的袋子中装有1 个红球,1 个绿球和n个白球,这些球除颜色外无其他差别.(1) 从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值;(2) 若该袋中有 2 个白球,在一个摸球游戏中,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球) 的所有可能结果,下图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球的颜色不同的概率.19 .如图,已知斜坡的坡角∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.(1)求∠ACD的度数;(2)当AC=5 时,求AD的长.(参考数据:sin25°≈0.42,cos25°≈0.91 ,tan25°≈0.47,结果精确到0.1)20 .如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE∶CD=5 ∶24.(1)求CD的长;(2) 现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满?21.如图,在△ABC中,D,E分别是AB,AC上的点,△ADE∽△ACB,相似比为AD∶AC=2 ∶3.△ABC的角平分线AF交DE于点G,交BC于点F.求AG与GF的比.22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2) 求证:∠1=∠2.23 .如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的平面直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为0.75m,到墙边OA的距离分别为0.5 m,1.5 m.(1)求最左边的拋物线的表达式,并求图案最高点到地面的距离;(2) 若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?24.已知点P为线段AB上的动点 (与A,B两点不重合).在同一平面内,把线段AP,BP 分别折成△CDP,△EFP,∠CDP=∠EFP=90°,且D,P,F三点共线,如图所示.(1)若△CDP,△EFP均为等腰三角形,且DF=4,求AB的长;(2)若AB=12 ,tan C=,且以C,D,P为顶点的三角形和以E,F,P为顶点的三角形相似,求四边形CDFE的面积的最大值.。
浙江省杭州市育才中学2024年九上数学开学达标测试试题【含答案】

浙江省杭州市育才中学2024年九上数学开学达标测试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,菱形ABCD 中,点E ,F 分别是AC ,DC 的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D.242、(4分)如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有( )A .①②③④B .②③C .②③④D .②④3、(4分)若关于的分式方程无解,则的值为()A .2B .C .3D .4、(4分)已知直角三角形的两条直角边长分别为1和4,则斜边长为( )A .3B C D .55、(4分)下列命题是真命题的是( )Rt ABC ∆AB AC =D E BC 45DAE ∠=︒ADC ∆A 90︒AFB ∆EF BE DC =BAF DAC ∠=∠FAE DAE ∠=∠BF DC =x 533x mx x -=--m 2-3-A .平行四边形对角线相等B .直角三角形两锐角互补C .不等式﹣2x ﹣1<0的解是x<﹣D .多边形的外角和为360°6、(4分)下列函数中,是一次函数的是( )A .B .C .D .7、(4分)已知点P(3,4)在函数y=mx+1的图象上,则m=( )A .-1B .0C .1D .28、(4分)有意义,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.10、(4分)因式分解:a 2﹣6a+9=_____.11、(4分)使根式有意义的x 的取值范围是___.12、(4分)如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.13、(4分)计算:____________.三、解答题(本大题共5个小题,共48分)12313y x =3y x =23y x =-21y x =-AB IL JK DC AD IJ LK BC ABCD 18EFGH 11IJKL 131(2)201923-⎛⎫-+︒+-+= ⎪⎝⎭14、(12分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.15、(8分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。