人教版数学九年级下册同步练习及答案
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)071509

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知两圆的半径分别是和,圆心距为,那么这两圆的位置关系是( )A.相交B.内切C.外切D.外离2. 若圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于( )A.B.C.D.3. 已知的半径是一元二次方程的一个根,圆心到直线的距离.则直线与的位置关系是A.相离B.相切C.相交D.无法判断4. 如图,为的直径,直线与相切于点,直线交于点,交于点,连接,,则下列结论错误的是( )5cm 4cm 7cm 3515π9π6π12π⊙O −3x−4=0x 2O l d =6l ⊙O ( )AB ⊙O EF ⊙O D AC EF H ⊙O C AD ODA.若,则平分B.若平分,则C.若 ,则平分D.若, 则5. 如图,中,,,,将半径是的沿三角形的内部边缘无滑动的滚动一周,回到起始的位置,则点所经过的路线长是( )A.B.C.D.6. 如图,=,半径为的切于点,若将在上向右滚动,则当滚动到与也相切时,圆心移动的水平距离为( )A. B.C.D.7. 如图,由边长为的小正方形构成的网格中,点、、都在格点上,以为直径的圆经过点、,则的值为( )AH//OD AD ∠BAHAD ∠BAH AH ⊥EFAH ⊥EF AD ∠BAHD =CH ⋅AH H 2AH ⊥EFRtΔABC ∠C =90∘∠A =60∘AB =101⊙O O 9+3–√9−3–√9+33–√10−3–√∠ACB 60∘3⊙O BC C ⊙O CB ⊙O CA O 336π1A B C AB C D cos ∠ADCA. B. C. D.8. 如图,是外一点,射线、分别切于点、点,切于点,分别交、于点、点,若=,则的周长( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图所示,为矩形,以为直径作半圆,矩形的另外三边分别与半圆相切,沿着折痕折叠该矩形,使得点的对应点落在边上,若,则图中阴影部分的面积为 ______10. 如图,将菱形纸片固定后进行投针训练.已知纸片上于点,于点,.如果随意投出一针都命中菱形纸片,则命中阴影区域的概率是________.P ⊙O PA PB ⊙O A B CD ⊙O E PA PB D C PB 4△PCD 46810ABCD CD DF C E AB AD =2ABCD AE ⊥BC E CF ⊥AD F sinD =4511. 如图,已知菱形的边长为,点、分别是、上的点,若==,=,=________.12. 如图,是的外接圆,=,则的值是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,已知是的内切圆,切点为、、,(1)若,,求与的函数关系式.(2)若,,,求的半径. 14. 如图,在四边形中,,,对角线,交于点,平分交于点,连接.求证:四边形是矩形;若,求;在的条件下,若,求的面积.15. 如图,,分别是的直径和弦,且于点,与相交于点,延长到点,连接,使.ABCD 4E F AB AD BE AF 1∠BAD 120∘⊙O △ABC ∠A 45∘cos ∠OCB ⊙O △ABC D E F ∠A =x ∠EDF =y y x ∠A =90∘AB =8BC =10⊙O ABCD AD//BC ∠ABC =∠ADC =90∘AC BD O DE ∠ADC BC E OE (1)ABCD (2)∠BDE =15∘∠DOE (3)(2)AB =2△BOE AB BF ⊙O CD ⊥AB E CD BF G DC H HF HF =HG求证:是的切线;若, ,连接,求的长. 16. 如图,在矩形中,,.点沿边从点开始向点以的速度移动;点沿边从点开始向点以的速度移动.如果,同时出发,用表示移动的时间那么:当为何值时,为等腰直角三角形?求四边形的面积,提出一个与计算结果有关的结论;当为何值时,以点,,为顶点的三角形与相似?(1)HF ⊙O (2)sin ∠HGF =34BF =3AF AF ABCD AB =12cm BC =6cm P AB A B 2cm/s Q DA D A 1cm/s P Q t(s)(0≤t ≤6)(1)t △QAP (2)QAPC (3)t Q A P △ABC参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】圆与圆的位置关系【解析】根据圆心距与半径之间的数量关系可知两圆的位置关系是相交.【解答】解:∵两圆的半径分别是和,圆心距为,,∴两圆的位置关系是相交.故选.2.【答案】A【考点】扇形面积的计算圆锥的计算【解析】此题暂无解析【解答】解:底面半径为,则底面周长,侧面面积.故选.5cm 4cm 7cm 5−4<7<5+4A 3=6π=×6π×512=15πA3.【答案】A【考点】直线与圆的位置关系一元二次方程的解【解析】先求方程的根,可得的值,由直线与圆的位置关系的判断方法可求解.【解答】解:∵,∴,.∵的半径为一元二次方程的根,∴.∵,∴直线与的位置关系是相离.故选.4.【答案】D【考点】切线的性质圆的有关概念平行线的判定与性质角平分线的定义切割线定理【解析】由平行线的性质得出,由等腰三角形的性质得到,等量代换,即可判断;证明,由切线的性质得到,即可判断;由切线的性质和已知证明,进而得出,判断;由切割线定理即可得出,无法得出,判断.【解答】r −3x−4=0x 2=−1x 1=4x 2⊙O −3x−4=0x 2r =4d >r l ⊙O A ∠CAD =∠ADO ∠ADO =∠DAO ∠CAD =∠DAO A AH//OD OD ⊥EF B AH//CD ∠CAD =∠DAO C D =CH ⋅AH H 2AH ⊥EF D解:,若,则.,,,即平分,故正确;,若平分,则.,,,.与相切,,,故正确;,与相切,.,,.,,,即平分 ,故正确;,与相切,,即不一定正确,故错误.故选.5.【答案】A【考点】切线长定理【解析】如图,点运动的轨迹是 ,利用解直角三角形分别求出 的长,再相加即可.【解答】如图所示,A AH//OD ∠CAD =∠ADO ∵OA =OD ∴∠ADO =∠DAO ∴∠CAD =∠DAO AD ∠BAH AB AD ∠BAH ∠CAD =∠DAO ∵OA =OD ∴∠ADO =∠DAO ∴∠CAD =∠ADO ∴AH//OD ∵EF ⊙O ∴OD ⊥EF ∴AH ⊥EF BC ∵EF ⊙O ∴OD ⊥EF ∵AH ⊥EF ∴AH//OD ∴∠CAD =∠ADD ∵OA =OD ∴∠DAO =∠ADO ∴∠CAD =∠DAO AD ∠BAH C D ∵EF ⊙O ∴D =CH ⋅AH H 2AH ⊥EF D D O ΔO O 2O 1OO 1O 1O 2OO 2中, 又:的半径是,在中,:点经过的路线长为故答案为:.6.【答案】B【考点】切线的判定与性质弧长的计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】圆周角定理【解析】根据圆周角定理得到,再根据余弦的定义计算即可;【解答】由图可知在中,故答案选.RtAABC ∠C =,∠A =,AB =1090∘60∘∵AC =5⊙O 1∵CQ =1PQ =O =AC −AP −CQ =4−O 23–√RtΔOO 1O 2O =O ⋅tan =4−3O 1O 260∘3–√=2O =8−2O 1O 2O 23–√O O ++O =9+O 1O 1O 2O 23–√A ∠ADC =∠ABC ∠ADC =∠ABCRt △ABC AC =2,BC =3AB ==+3222−−−−−−√13−−√,cos ∠ADC =cos ∠ABC ===BC AB 313−−√313−−√13C8.【答案】C【考点】切线的性质【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】切线的性质【解析】此题暂无解析【解答】解:作于交半圆于,连接,作于,如图,∵矩形的另外三边分别与半圆相切∴为半圆的半径,∴,∵沿折叠到,∴.3−3–√4π3OH ⊥AB H,DE M OM ON ⊥DM N OH CD =2OH =2AD =4DC DF DE DE =DC =4在中,∵ ∴,∴,∵,∴ ,∵,∴,∴,∴图中阴影部分的面积=.故答案为:.10.【答案】【考点】解直角三角形几何概率菱形的性质【解析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题.【解答】解:设,∵四边形是菱形,于,于,,∴,,∴,∴命中矩形区域的概率是:,故答案为:.11.【答案】Rt △ADE sin ∠AED ==AD DE 12∠AED =30°AE =AD =23–√3–√CD//AB ∠CDE =∠AED =30°OD =OM ∠ODM =∠OMD =30°∠DOM =120°−S △ADE S 弓形DHM =−(−)S △ADE S 扇形DOM S △DOM =×2×2−(−×2×1)123–√120⋅π⋅22360123–√=3−π3–√433−π3–√4325CD =5a ABCD AE ⊥BC E CF ⊥AD F sinD =45CF =4a DF =3a AF =2a =4a ⋅2a 5a ⋅4a 2525【考点】菱形的性质等边三角形的性质与判定全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】解直角三角形三角形的外接圆与外心圆周角定理【解析】先利用圆周角定理得到=,则可判断为等腰直角三角形,所以=,然后利用特殊角的三角函数值得到的值.【解答】∵===,而=,∴为等腰直角三角形,∴=,∴.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】2–√2∠BOC 90∘△OBC ∠OCB 45∘cos ∠OCB ∠BOC 2∠A 2×45∘90∘OB OC △OBC ∠OCB 45∘cos ∠OCB =2–√2=−x1与的函数关系式是.(2)设圆的半径是.由勾股定理得:,∵是的内切圆,切点为、、,∴,,,,,∴四边形是正方形,∴,∴,∴,∴.答:的半径是.【考点】三角形的内切圆与内心勾股定理多边形内角与外角正方形的判定与性质圆周角定理切线长定理【解析】(1)连接、,求出,,根据四边形的内角和定理求出即可;(2)根据勾股定理求出,推出,,,,,证四边形是正方形,根据代入求出即可.【解答】解:(1)连接、.∵是的内切圆,切点为、、,∴,,∴,∴,答:与的函数关系式是.(2)设圆的半径是.由勾股定理得:,∵是的内切圆,切点为、、,∴,,,,,∴四边形是正方形,∴,∴,∴,y x y =−x 90∘12O r AC ==6B −A C 2B 2−−−−−−−−−−√⊙O △ABC D E F AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF OE =OF =AE =AF =r AC −r +AB−r =BC 6−r +8−r =10r =2⊙O 2OE OF ∠EOF =2y ∠OEA =∠OFA =90∘AC AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF AC −r +AB−r =BC OE OF ⊙O △ABC D E F ∠EOF =2y ∠OEA =∠OFA =90∘∠A+∠EOF =−−=360∘90∘90∘180∘y =−x 90∘12y x y =−x 90∘12O r AC ==6B −A C 2B 2−−−−−−−−−−√⊙O △ABC D E F AE =AF CD =CF BE =BD ∠OEA =∠OFA =∠A =90∘OE =OF OEAF OE =OF =AE =AF =r AC −r +AB−r =BC 6−r +8−r =10∴.答:的半径是.14.【答案】证明:∵,∴,∵,∴,∴,∴四边形是矩形.解:由可得: ,,,∴,∵平分,∴,∴是等腰直角三角形,∴,,∵,∴,∴,又,∴是等边三角形,∴,,∴,∴,∴.解:作于,如图,∵四边形是矩形,∴,,,,,∴,∴,∴,∵,∴,∴,∴,∴的面积.【考点】平行线的性质矩形的判定矩形的性质r =2⊙O 2(1)AD//BC ∠ABC +∠BAD =180∘∠ABC =90∘∠BAD =90∘∠BAD =∠ABC=∠ADC =90∘ABCD (2)(1)AO =CO BO =DO AC =BD OD =OC DE ∠ADC ∠CDE =45∘△DCE ∠DEC =45∘CD =CE ∠BDE =15∘∠DBC =∠ADB =−=45∘15∘30∘∠BDC =60∘OD =OC △OCD OC =CD =CE ∠DCO =∠COD =60∘∠OCE =30∘∠COE =∠CEO =(−)÷2=180∘30∘75∘∠DOE =∠COD+∠COE =+=60∘75∘135∘(3)OF ⊥BC F ABCD CD =AB =2∠BCD =90∘AO =CO BO =DO AC =BD AO =BO =CO =DO BF =FC OF =CD =112EC =CD =AB =2AC =BD =4BC ==2−4222−−−−−−√3–√BE =BC −CE =2−23–√△BOE =BE ⋅OF =×(2−2)×1=−112123–√3–√等边三角形的性质与判定角平分线的定义三角形的面积勾股定理【解析】此题暂无解析【解答】证明:∵,∴,∵,∴,∴,∴四边形是矩形.解:由可得: ,,,∴,∵平分,∴,∴是等腰直角三角形,∴,,∵,∴,∴,又,∴是等边三角形,∴,,∴,∴,∴.解:作于,如图,∵四边形是矩形,∴,,,,,∴,∴,∴,∵,∴,∴,∴,∴的面积.15.(1)AD//BC ∠ABC +∠BAD =180∘∠ABC =90∘∠BAD =90∘∠BAD =∠ABC=∠ADC =90∘ABCD (2)(1)AO =CO BO =DO AC =BD OD =OC DE ∠ADC ∠CDE =45∘△DCE ∠DEC =45∘CD =CE ∠BDE =15∘∠DBC =∠ADB =−=45∘15∘30∘∠BDC =60∘OD =OC △OCD OC =CD =CE ∠DCO =∠COD =60∘∠OCE =30∘∠COE =∠CEO =(−)÷2=180∘30∘75∘∠DOE =∠COD+∠COE =+=60∘75∘135∘(3)OF ⊥BC F ABCD CD =AB =2∠BCD =90∘AO =CO BO =DO AC =BD AO =BO =CO =DO BF =FC OF =CD =112EC =CD =AB =2AC =BD =4BC ==2−4222−−−−−−√3–√BE =BC −CE =2−23–√△BOE =BE ⋅OF =×(2−2)×1=−112123–√3–√【答案】证明:连接,如图,因为,所以.又因为,所以.又因为,所以,所以,所以.因为,即,所以,所以是的切线.解:连接,如图,因为是直径,所以,所以.又因为,所以,所以.在中,,因为,所以,所以.【考点】圆的综合题切线的判定勾股定理锐角三角函数的定义【解析】此题暂无解析【解答】(1)OF HF =HG ∠HFG =∠HGF OF =OB ∠OFB =∠OBF CD ⊥AB ∠GEB =90∘∠EGB+∠GBE =90∘∠EGB =∠HGF =∠HFG ∠GBE+∠EGB =90∘∠OFB+∠HFB =90∘∠OFH =90∘OF ⊙O (2)AF AB ∠AFB =90∘∠A+∠B =90∘∠B+∠BGE =∠B+∠HGF =90∘∠HGF =∠A sin ∠HGF =sin ∠A =34Rt △ABF sin ∠A ==BF AB 34BF =3AB =4AF ==−4232−−−−−−√7–√证明:连接,如图,因为,所以.又因为,所以.又因为,所以,所以,所以.因为,即,所以,所以是的切线.解:连接,如图,因为是直径,所以,所以.又因为,所以,所以.在中,,因为,所以,所以.16.【答案】解:对于任何时刻,,,,当时,为等腰直角三角形,即,解得,故当时,为等腰直角三角形.在中,,边上的高,∴.在中,,,∴,∴.由计算结果发现:在,两点移动的过程中,四边形的面积始终保持不变.(1)OF HF =HG ∠HFG =∠HGF OF =OB ∠OFB =∠OBF CD ⊥AB ∠GEB =90∘∠EGB+∠GBE =90∘∠EGB =∠HGF =∠HFG ∠GBE+∠EGB =90∘∠OFB+∠HFB =90∘∠OFH =90∘OF ⊙O (2)AF AB ∠AFB =90∘∠A+∠B =90∘∠B+∠BGE =∠B+∠HGF =90∘∠HGF =∠A sin ∠HGF =sin ∠A =34Rt △ABF sin ∠A ==BF AB 34BF =3AB =4AF ==−4232−−−−−−√7–√(1)t AP =2t DQ =t QA =6−t QA =AP △QAP 6−t =2t t =2(s)t =2s △QAP (2)△QAC QA =6−t QA DC =12=QA ⋅DC =(6−t)⋅12=36−6t S △QAC 1212△APC AP =2t BC =6=AP ⋅BC =⋅2t ⋅6=6t S △APC 1212=+=(36−6t)+6t =36(c )S 四边形QAPC S △QAC S △APC m 2P Q QAPC(也可提出:,两点到对角线的距离之和保持不变).根据题意,可分为两种情况来研究,在矩形中:①当时,,则有,解得,即当时,;②当时,,则有,解得,即当时,.综上,当或时,以点,,为顶点的三角形与相似.【考点】动点问题相似三角形的性质三角形的面积等腰三角形的判定与性质【解析】(1)根据题意分析可得:因为对于任何时刻,,,.当时,为等腰直角三角形,可得方程式,解可得答案;(2)根据(1)中.在中,,边上的高,由三角形的面积公式可得关系式,计算可得在、两点移动的过程中,四边形的面积始终保持不变;(3)根据题意,在矩形中,可分为、两种情况来研究,列出关系式,代入数据可得答案.【解答】解:对于任何时刻,,,,当时,为等腰直角三角形,即,解得,故当时,为等腰直角三角形.在中,,边上的高,∴.在中,,,∴,∴.由计算结果发现:在,两点移动的过程中,四边形的面积始终保持不变.(也可提出:,两点到对角线的距离之和保持不变).P Q AC (3)ABCD =QA AB AP BC △QAP ∼△ABC =6−t 122t 6t ==1.2(s)65t =1.2s △QAP ∼△ABC =QA BC AP AB △PAQ ∼△ABC =6−t 62t 12t =3(s)t =3s △PAQ ∼△ABC t =1.2s 3s Q A P △ABC t AP =2t DQ =t QA =6−t QA =AP △QAP △QAC QA =6−t QA DC =12P Q QAPC ABCD =QA AB AP BC =QA BC AP AB (1)t AP =2t DQ =t QA =6−t QA =AP △QAP 6−t =2t t =2(s)t =2s △QAP (2)△QAC QA =6−t QA DC =12=QA ⋅DC =(6−t)⋅12=36−6t S △QAC 1212△APC AP =2t BC =6=AP ⋅BC =⋅2t ⋅6=6t S △APC 1212=+=(36−6t)+6t =36(c )S 四边形QAPC S △QAC S △APC m 2P Q QAPC P Q AC根据题意,可分为两种情况来研究,在矩形中:①当时,,则有,解得,即当时,;②当时,,则有,解得,即当时,.综上,当或时,以点,,为顶点的三角形与相似.(3)ABCD =QA AB AP BC △QAP ∼△ABC =6−t 122t 6t ==1.2(s)65t =1.2s △QAP ∼△ABC =QA BC AP AB △PAQ ∼△ABC =6−t 62t 12t =3(s)t =3s △PAQ ∼△ABC t =1.2s 3s Q A P △ABC。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)153937

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 8 小题,每题 5 分,共计40分)1. 在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午B.中午C.下午D.无法确定2. 如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子的是( )①②③④A.①和②B.②和④C.③和④D.②和③3. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4. 夜晚当你靠近一盏路灯时,你发现自己的影子是( )A.变短B.变长C.由短变长D.由长变短5. 如图是北半球一根电线杆在同一天不同时刻的影长图,请按其一天中发生的先后顺序进行排列,正确的是( )A.B.C.D.6. 如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是() A. B. C.D.7. 如图所示,灯在距地面米的处,现有一木棒米长,当处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( )A.先变长,后变短B.先变短,后变长C.不变D.先变长,再不变,后变短(1)(2)(3)(4)(4)(3)(1)(2)(4)(3)(2)(1)(2)(3)(4)(1)3A 2B8. 围成圆形的栏杆的影子都在圈外,则影子是在下列哪种光照射下形成的( )A.太阳光B.圈里的路灯的灯光C.手电筒发出的灯光D.台灯的灯光二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,的顶点在函数的图象上,,过边的三等分点,分别作轴的平行线交于点,.若四边形的面积为,则的值为________.10. 如图,王华晚上由路灯下的处走到处时,测得影子的长为米,继续往前走米到达处时,测得影子的长为米,已知王华的身高是米,那么路灯的高度________米.11. 如图,长方体的一个底面在投影面上,分别是侧棱的中点,矩形与矩形的投影都是矩形,设它们的面积分别是,则的关系是________(用“、或”连起来)12. 太阳光线形成的投影是________,灯光形成的投影是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,赵亮同学想利用影长测量学校旗杆的高度,他在某一时刻立米长的标杆测得其影长为△ABO A y =(x >0)k x ∠ABO =90∘AO M N x AB P Q MNQP 3k A B C CD 13E EF 2 1.5A AB =ABCD P M ,N BF,CG EFGH EMNH ABCD ,,S S 1S 2,,S S 1S 2=><1米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为米和米,求学校旗杆的高度是多少米?14. 如图,公路旁有两个高度相等的路灯,.小东上午去学校时发现路灯在阳光下的影子恰好落到里程碑处,他的影子恰好落在路灯的底部处.晚上回家时,站在上午同一个地方,他在路灯下的影子恰好落在里程碑处.在图中画出小东的位置(用线段表示),并画出光线,标明阳光、灯光;若小东上午去学校时高的木棒在阳光下的影长为,他的身高为,他距里程碑点为,求路灯的高.15. 已知,如图,和是直立在地面上的两根立柱,,某一时刻在阳光下的投影.请你在图中画出此时在阳光下的投影;在测量的投影时,同时测量出在阳光下的投影长为,请你计算的长. 16. 晚上,一个身高米的人站在路灯下,发现自己的影子刚好是块地砖的长(地砖是边长为米的正方形),当他沿着影子的方向走了块地砖时,发现自己的影子刚好是块地砖的长,根据他的发现,你能不能计算路灯的高度?1.69.62AB CD AB E CD C CD E (1)PQ (2)2.5m 10m 1.5m E 5m AB DE AB =5m AB BC =3m (1)DE (2)AB DE 6m DE参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】平行投影【解析】根据不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.【解答】解:小颖在向正北方向走路时,发现自己的身影向左偏,即影子在西方;故小颖当时所处的时间是上午.故选.2.【答案】D【考点】中心投影【解析】连接物的顶端与影子的顶端的两条直线应有交点,从而可判断出答案.【解答】解:根据物体的顶端和影子顶端的连线必经过光源可得图中连接物的顶端与影子的顶端的两条直线应有交点,故只有②③符合题意.故选.A D3.【答案】D【考点】平行投影【解析】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.【解答】解:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选.4.【答案】D【考点】中心投影【解析】根据人与光源的夹角越大,影子越小即可解答.【解答】解:因为夜晚当你靠近一盏路灯时,人与光源的夹角越越来越大,所以影子越来越小即由长变短.故选.5.【答案】B【考点】平行投影【解析】北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.【解答】D D解:根据平行投影的规律知:顺序为.故选.6.【答案】C【考点】平行投影中心投影【解析】此题暂无解析【解答】解:.因为正方形纸板重直于地面,故不能产生正方形的投影,不符合题意,.因为正方形的对角线互相垂直,中心投影后,影子的对角线仍然互相垂直,不符合题意,.影子的对角线仍然互相垂直,故形状可以是,.中心投影物体的高和影长成比例,正方形对边相等,故选项不符合题意,故选.7.【答案】A【考点】平行投影中心投影【解析】根据点经过的路径得到不同时段的相应影长,即可得到相应答案.【解答】解:处木棒绕其与地面的固定端点顺时针旋转时,点的运动路径是一个半圆,那么相应的影子要先变长,后变短,故选.8.【答案】B(4)(3)(1)(2)B A B C C D D C B B B A中心投影【解析】因为围成圆形的栏杆的影子都在圈外,所以光源在圈里.【解答】解:因为围成圆形的栏杆的影子都在圈外,所以光源在圈里,即影子是在下圈里的路灯的灯光照射下形成的.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】反比例函数系数k 的几何意义相似三角形的性质与判定【解析】易证,由相似三角形的性质:面积比等于相似比的平方可求出的面积,进而可求出的面积,则的值也可求出.【解答】解:∵,∴.∵,是的三等分点,∴,,∴.∵四边形的面积为,∴,∴.∵,∴,∴.故答案为:.10.B 18△ANQ ∽△AMP ∽△AOB △ANQ △AOB k NQ//MP //OB △ANQ ∽△AMP ∽△AOB M N OA =AN AM 12=AN AO 13=S △ANQ S △AMP 14MNQP 3=S △ANQ 3+S △ANQ 14=S △ANQ 1=(=1S △AOB AN AO)219=9S △AOB k =2=S △AOB 1818【考点】中心投影相似三角形的应用【解析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.【解答】解:如图:∵,当王华在处时,,即,当王华在处时,,即,∴.∵米,米,米,米,设,,∴,即,即,解得:,则,解得,米.即路灯的高度米.故答案为:.11.【答案】【考点】平行投影6=王华的身高王华的影长路灯的高度路灯的影长CG Rt △DCG ∼Rt △DBA=CD BD CG AB EH Rt △FEH ∼Rt △FBA ==EF BF EH AB CG AB =CD BD EF BF CG =EH =1.5CD =1CE =3EF =2AB =x BC =y ===CD BD EF BF GC AB HE AB=1y+12y+52(y+1)=y+5y =3=1.5x 14x =6A AB =66S 1=S <S 2认识立体图形【解析】根据长方体的概念得到=,根据矩形的面积公式得到,得到答案.【解答】解:∵立体图形是长方体,∴底面底面,∵矩形的投影是矩形,∴=,∵,,∴,∴,故答案为:.12.【答案】平行投影,中心投影【考点】平行投影中心投影【解析】根据平行投影、中心投影的概念填空即可.【解答】解:由光线所形成的投影称为平行投影;有中心放射状光线所形成的投影称为中心投影.故答案为:平行投影,中心投影.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:如图,过点作旗杆的垂线交于,S 1S S <S 2ABCD//EFGH EFGH ABCD S 1S EM >AB EH =AD S <S 2S 1=S <S 2=S <S 1S 2C CD AB D由题意得,,解得,所以旗杆的高度为米.答:学校旗杆的高度是米.【考点】平行投影相似三角形的应用【解析】过点作旗杆的垂线交于,利用相似三角形对应线段成比例求解即可.【解答】解:如图,过点作旗杆的垂线交于,由题意得,,解得,所以旗杆的高度为米.答:学校旗杆的高度是米.14.【答案】解:如图.∵小东上午去学校时高的木棒在阳光下的影长为,小东的身高为,=AD 19.61.6AD =66+2=88C CD AB D C CD AB D =AD 19.61.6AD =66+2=88(1)(2) 2.5m 10m 1.5m∴小东的影长为.∵,,∴ ,∴,∴,即,解得.答:路灯的高.【考点】中心投影相似三角形的性质与判定相似三角形的应用【解析】【解答】解:如图.∵小东上午去学校时高的木棒在阳光下的影长为,小东的身高为,∴小东的影长为.∵,,∴ ,∴,∴,即,解得.答:路灯的高.15.【答案】解:连接,过点作,交直线于点,线段即为的投影.CQ 6m PQ ⊥AC DC ⊥AC PQ//CD △EPQ ∼△EDC =PQ CD EQ EC =1.5CD 55+6CD =3.33.3m (1)(2) 2.5m 10m 1.5m CQ 6m PQ ⊥AC DC ⊥AC PQ//CD △EPQ ∼△EDC =PQ CD EQ EC =1.5CD 55+6CD =3.33.3m (1)AC D DF //AC BC F EF DE∵,∴.∵∴.∴,∴∴.【考点】平行投影相似三角形的性质【解析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得.【解答】解:连接,过点作,交直线于点,线段即为的投影.∵,∴.∵∴.∴,∴∴.16.【答案】路灯的高度为【考点】(2)AC//DF ∠ACB =∠DFE ∠ABC =∠DEF =90∘△ABC ∼△DEF =AB DE BC EF =5DE 36DE =10m =AB DE BC EFDE =10(m)(1)AC D DF //AC BC F EF DE (2)AC//DF ∠ACB =∠DFE ∠ABC =∠DEF =90∘△ABC ∼△DEF =AB DE BC EF =5DE 36DE =10m 8m.中心投影【解析】画图,根据中心投影性质可知,所以,进一步可解得【解答】如答图,即,①,∴,即,②由①,得,解得…,解得答:路灯的高度为.△CAB−△COP,△ECD−△EOP ==16OP 22+AO 1.6OP 2.52.5+2+AO OP=8.AC =4×0.5=2(m),CE =5×0.5=2.5(m),AB =CD =1.6mAB |OP △CAB−△COP =AB OP CA CO =16OP 22+AO CD1OP △ECD−△EOP =CD OP EC EO =1.6OP 2.52.5+2+AO ω=22+AO 2.52.5+2+AO |AO =8=16OP 22+8OP =8.8m。
(完整版)人教九年级数学下册同步练习题及答案

2. 已知函数 y=(m+2) xm2 m 4 是关于 x 的二次函数 . 求 : (1) 满足条件的 m的值 ; (2)m 为何值时 ,
抛物线有最低点 ?求出这个最低点 , 这时当 x 为何值时 ,y 随 x 的增大而增大 ?(3)m 为何值时 , 函 数有最大值 ?最大值是多少 ?这时当 x 为何值时 ,y 随 x 的增大而减小 ?
.
4.抛物线 y=3x 2+ 5x 与两坐标轴交点的个数为(
)
11
A. 3 个 B . 2 个
C. 1 个
D. 0 个
5.二次函数 y=x2- 4x+3 的图象交 x 轴于 A、 B 两点,交 y 轴于点 C,△ ABC的面积为
A.1
B.3
C.4 D.6
三、综合训练
1.抛物线与 x 轴的公共点是 (-1,0),(3,0), 这条抛物线的对称轴是
2.二次函数 y=(x-1)(x+2) 的图象顶点为 ____, 对称轴为 _____。 3.若二次函数 y=2x2+4x+c 图象的顶点在 x 轴上,则 c 等于 ( )A. - 1 B.1
1
C.
D.2
2
4.如果关于 x 的一元二次方程 x2 kx 4 0 有两个相等根,则 k
5.一元二次方程 x2 2 x 3 0 的根的情况是(
求此二次函数的解析式。
6
一、课前小测
26.1 二次函数(第四课时)
1.已知抛物线 y x2 ( m 2) x 2m ,当 m=______时,抛物线经过原点。
2.抛物线 y=2x 2-3 的开口向 _____ ___ ,对称轴是 _______,顶点坐标是 ________,顶点是最 _____点,所以函数有最 ________值是 ____ 。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)085926

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列二次函数中,如果图象能与轴交于点,那么这个函数是( )A.=B.=C.=D.=2. 把二次函数配方成顶点式为( )A.B.C.D.3. 下列对二次函数的图象的描述,不正确的是( )A.开口向下B.对称轴是轴C.经过原点D.在对称轴右侧的部分是下降的4. 关于二次函数,则下列说法正确的是 A.开口方向向上B.当时,随的增大而增大C.顶点坐标是D.当时,有最大值5. 抛物线,,是常数,)经过点和点,且抛物线的对称轴y A(0,1)y 3x 2y 3+1x 2y 3(x+1)2y 3−xx 2y =−2x−1x 2y =(x−1)2y =(x+1−2)2y =(x+1+1)2y =(x−1−2)2y =−+2x x 2y y=−2+1x 2()x <0y x (−2,1)x=0y −12y =a +bx+c(x 2a b c a ≠0A(1,0)B(0,−3)a +(b −1)x+c −1=02在轴的左侧.下列结论:①;②方程有两个不等的实数根;③其中,正确结论的个数是( )A.B.C.D.6. 抛物线的顶点坐标是 A.B.C.D.7. 把抛物线向下平移个单位长度,再向右平移个单位长度,所得到的抛物线是( )A.B.C.D.8. 在抛物线上有,和三点,若抛物线与轴的交点在正半轴上,则,和的大小关系为 A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知二次函数在时的最小值是,则的值为________.10. 抛物线=顶点在第二象限,则的取值范围是________.11. 二次函数的对称轴是________,顶点坐标是________.y abc <0a +(b −1)x+c −1=0x 2−3<a −b <3.321y =(x−2−312)2()(2,3)(2,−3)(−2,3)(−2,−3)y =(x+1)221y =(x+2+2)2y =(x+2−2)2y =+2x 2y =−2x 2y=a −2ax−3a x 2A(−0.5,)y 1B(2,)y 2C(3,)y 3y y 1y 2y 3()<<y 2y 1y 3<<y 3y 2y 1<<y 3y 1y 2<<y 1y 2y 3y=−2x+2x 2t ≤x ≤t+1t t y +2x+m x 2m y =−2x+6x 212. 若抛物线先向左平移个单位长度,再向下平移个单位长度,平移后抛物线的表达式是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某商场销售一批名牌衬衫,平均每天可售出件,每件赢利元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价元,那么商场平均每天可多售出件.若商场平均每天要赢利元,则每件衬衫应降价多少元?每件衬衫降价多少元时,商场平均每天赢利最多?14. 已知关于的一元二次方程有两个相等的实数根,求的值. 15. 二次函数的图象交轴于点,点,交轴于点,抛物线的顶点为点.求二次函数的解析式;如图,点是抛物线上的一点,设点的横坐标为,点在对称轴上,且,若,请求出的值;如图,将抛物线绕轴正半轴上一点旋转得到新抛物线交轴于,两点,点的对应点为点,点的对应点为点.若,求旋转中心点的坐标. 16. 如图,已知抛物线(为常数),顶点为,直线与轴交于点.y =2x 212204012(1)1200(2)x a +bx+1=0(a ≠0)x 2ab 2(a −2+−4)2b 2y =a +bx−3x 2x A(−1,0)B(3,0)y C M (1)(2)P P m(m>3)Q AQ ⊥PQ AQ =2PQ m (3)x R 180∘C 1x D E A E B D sin ∠BME =35R 1L :y =−2hx++h x 2h 212h M y =−2x+9y A当时,求抛物线的解析式和顶点的坐标;用分别表示顶点的横坐标和纵坐标,并求与的函数关系式;如图,若抛物线的顶点恰好落在直线上的点处,求的值和点的坐标;若抛物线与中的射线(含端点)没有公共点,请直接写出的取值范围.(1)h =−2M (2)h M x y y x (3)2L M y =−2x+9B h B (4)L (3)AB A h参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】二次函数图象上点的坐标特征【解析】根据轴上点的坐标特征,分别计算出=时四个函数对应的函数值,然后根据函数值是否为来判断图象能否与轴交于点.【解答】当=时,==;当=时,==;当=时,==;当=时,==,所以抛物线=与轴交于点.2.【答案】D【考点】二次函数的三种形式【解析】利用配方法把一般式配成顶点式即可.【解答】解:.故选.3.【答案】y x 01y A(0,1)x 0y 3x 20x 0y 3+1x 21x 0y 3(x+1)29x 0y 3−x x 20y 3+1x 2y (0,1)y =−2x+1−2x 2=(x−1−2)2D【答案】B【考点】二次函数的图象二次函数的性质【解析】此题暂无解析【解答】解:、∵,∴抛物线开口向下,选项正确;、∵,∴抛物线的对称轴为直线,选项不正确;、当时,,∴抛物线经过原点,选项正确;、∵,抛物线的对称轴为直线,∴当时,随值的增大而减小,选项正确.故选.4.【答案】B【考点】二次函数的性质二次函数的最值【解析】根据题目中的函数解析式和二次函数的性质可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵二次函数,,∴该函数图象开口向下,故选项错误;当时,随的增大而增大,故选项正确;它的顶点坐标为,故选项错误;当时,有最大值,故选项错误.故选.5.A a =−1<0AB −=1b 2ax =1B C x =0y =−+2x =0x 2C D a <0x =1x >1y x D B y=−2+1x 2a=−2A x <0y x B (0,1)C x=0y 1D B【答案】A【考点】二次函数图象与系数的关系根的判别式二次函数图象上点的坐标特征【解析】根据二次函数的性质、次函数图象与系数的关系、根的判别式、二次函数图象上点的坐标特点等知识点对每个选项进行解答.【解答】解:∵抛物线经过点和点,且抛物线的对称轴在轴的左侧,∴,,,.∴,,故正确;∴.∴.∴方程有两个不相等的实数根,故正确;∵,∴.∵,∴.∴.∵抛物线经过点,且抛物线的对称轴在轴的左侧,∴当时,.∴.∴.∴,故正确.综上所述,题目中的三个结论都正确.故选.6.【答案】B【考点】二次函数的性质【解析】已知抛物线解析式为顶点式,可直接求顶点坐标.【解答】y =a +bx+c x 2A(1,0)B(0,−3)y ab >0a >0c =−3a +b +c =0abc <0a +b =3①b =3−a Δ=−4a(c −1)=+16a >0(b −1)2(a −2)2a +(b −1)x+c −1=0x 2②a >03−a <3+a b =3−a b <3+a a −b >−3y =a +bx+c x 2A(1,0)y x =−1y <0a −b −3<0a −b <3−3<a −b <3③A =(x−2−31解:由抛物线可知,抛物线的顶点坐标为.故选.7.【答案】D【考点】二次函数图象与几何变换【解析】易得原抛物线的顶点,然后得到经过平移后的新抛物线的顶点,根据平移不改变二次项的系数可得新抛物线解析式.【解答】解:抛物线的顶点坐标是,向下平移个单位长度,再向右平移个单位长度后抛物线的顶点坐标是,所以平移后抛物线的解析式为:.故选.8.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据解析式得出抛物线的对称轴,由抛物线与轴的交点在正半轴可得,即抛物线开口向下,根据二次函数的性质可得答案.【解答】解:∵抛物线的对称轴为,且抛物线与轴的交点在正半轴上,∴,即,∴当时,随的增大而增大;当时,随的增大而减小,且抛物线上的点离对称轴的水平距离越远,函数值越小,∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )y =(x−2−312)2(2,−3)B y =(x+1)2(−1,0)21(0,−2)y =−2x 2D y a <0x =−=1−2a 2ay −3a >0a <0x <1y x x >1y x <<y 3y 1y 2C9.【答案】或【考点】二次函数的最值【解析】结合二次函数图形以及利用顶点横坐标在范围右侧时以及顶点横坐标在范围内时和顶点横坐标在范围左侧时,分别结合二次函数增减性求出最值即可.【解答】解:,分类讨论:若顶点横坐标在范围右侧时,有,此时随的增大而减小,∴当时,函数取得最小值,,方程无解.若顶点横坐标在范围内时,即有,解这个不等式,即 .此时当时,函数取得最小值,,∴.若顶点横坐标在范围左侧时,即时,随的增大而增大,∵当时,函数取得最小值,,解得或(舍去).综上,或.故答案为:或.10.【答案】【考点】二次函数图象与系数的关系【解析】此题暂无解析【解答】此题暂无解答11.12t ≤x ≤t+1t ≤x ≤t+1t ≤x ≤t+1y=−2x+2x 2=(x−1+1)2(1)t ≤x ≤t+1t <0y x x=t+1y 最小值=t =(t+1−2(t+1)+2)2(2)t ≤x ≤t+1t ≤1≤t+10≤t ≤1x=1y 最小值=1t=1(3)t ≤x ≤t+1t >1y x x=t y 最小值=t =−2t+2t 2t=21t=1212m>1【答案】,【考点】二次函数的性质【解析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.【解答】解:∵,∴对称轴是,顶点坐标为.故答案为:;.12.【答案】【考点】二次函数图象与几何变换【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:设每件衬衫应降价元,根据题意得,,整理得,,解得,,.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降元.答:每件衬衫应降价元.设商场平均每天赢利元,则x =1(1,5)y =−2x+6x 2=(−2x+1)−1+6x 2=(x−1+5)2x =1(1,5)x =1(1,5)(1)x (40−x)(20+2x)=12002−60x+400=0x 2=20x 1=10x 22020(2)y y =(20+2x)(40−x)=−2+60x+800x 2=−2(x−15+1250)2.∴当时,取最大值.答:每件衬衫降价元时,商场平均每天赢利最多.【考点】二次函数的最值一元二次方程的应用【解析】此题属于经营问题,若设每件衬衫应降价元,则每件所得利润为元,但每天多售出件即售出件数为件,因此每天赢利为元,进而可根据题意列出方程求解.【解答】解:设每件衬衫应降价元,根据题意得,,整理得,,解得,,.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降元.答:每件衬衫应降价元.设商场平均每天赢利元,则.∴当时,取最大值.答:每件衬衫降价元时,商场平均每天赢利最多.14.【答案】解:∵有两个相等的实数根,∴,即,∴.【考点】列代数式求值根的判别式【解析】=−2(x−15+1250)2(0<x <20)x =15y 15x (40−x)2x (20+2x)(40−x)(20+2x)(1)x (40−x)(20+2x)=12002−60x+400=0x 2=20x 1=10x 22020(2)y y =(20+2x)(40−x)=−2+60x+800x 2=−2(x−15+1250)2(0<x <20)x =15y 15a +bx+1=0(a ≠0)x 2−4a =0b 2=4a b 2ab 2(a −2+−4)2b 2=4a 2−4a +a 2b 2=4a 2−4a +4a a 2=4a 2a 2=4【解答】解:∵有两个相等的实数根,∴,即,∴.15.【答案】解:代入,得解得:,∴抛物线的解析式: .设抛物线对称轴与轴的交点为,过作于,∵,,∴,∴,即: ,则,代入得: ,∴ .过作轴于,过作交的延长线于点,令则,易证,得:,在中,则:,在中,,则:,在中,,则:,即:, 得,由题意知,、关于点对称,已知,则 .a +bx+1=0(a ≠0)x 2−4a =0b 2=4a b 2ab 2(a −2+−4)2b 2=4a 2−4a +a 2b 2=4a 2−4a +4a a 2=4a 2a 2=4(1)A(−1,0),B(3,0){0=a −b −3,0=9a +3b −3,a =1,b =−2y =−2x−3x 2(2)x G P PH ⊥QM H ∠QAG =∠PQH =−∠AQG 90∘∠AGQ =∠PHQ =90∘△AQG ∽△QPH ===QH AG PH QG PQ AQ 12QH =AG =1,QG =2PH 12P (m,2m−3)−2m−3=2m−3m 2m=4(3)M DM ⊥x F E EN ⊥MB MB N E(a,0)EB =a −3Rt △FMB ∽Rt △NEB ==BF BN FM EN 12Rt △BNE BN =BE =(a −3)5–√55–√5Rt △MNE sin ∠BME =35MN =EN =(a −3)4385–√15Rt △FBM MB =25–√MN =MB+BN (a −3)=2+(a −3)85–√155–√5–√5a =9A E R A(−1,0),E(9,0)R(4,0)【考点】二次函数综合题待定系数法求二次函数解析式二次函数图象与系数的关系二次函数图象上点的坐标特征二次函数的性质【解析】解:代入,得解得:,∴抛物线的解析式: .【解答】解:代入,得解得:,∴抛物线的解析式: .设抛物线对称轴与轴的交点为,过作于,∵,,∴,∴,即: ,则,代入得: ,∴ .过作轴于,过作交的延长线于点,令则,易证,得:,在中,(1)A(−1,0),B(3,0){0=a −b −3,0=9a +3b −3,a =1,b =−2y =−2x−3x 2(1)A(−1,0),B(3,0){0=a −b −3,0=9a +3b −3,a =1,b =−2y =−2x−3x 2(2)x G P PH ⊥QM H ∠QAG =∠PQH =−∠AQG 90∘∠AGQ =∠PHQ =90∘△AQG ∽△QPH ===QH AG PH QG PQ AQ 12QH =AG =1,QG =2PH 12P (m,2m−3)−2m−3=2m−3m 2m=4(3)M DM ⊥x F E EN ⊥MB MB N E(a,0)EB =a −3Rt △FMB ∽Rt △NEB ==BF BN FM EN 12Rt △BNE N =BE =(a −3)–√–√则:,在中,,则:,在中,,则:,即:, 得,由题意知,、关于点对称,已知,则.16.【答案】解:将代入,得,顶点.,,,.由得,点的坐标满足解析式,即点始终在直线上.把与直线联立,得 解得 ,.或.①当抛物线对称轴右侧部分经过点时,有,BN =BE =(a −3)5–√55–√5Rt △MNE sin ∠BME =35MN =EN =(a −3)4385–√15Rt △FBM MB =25–√MN =MB+BN (a −3)=2+(a −3)85–√155–√5–√5a =9A E R A(−1,0),E(9,0)R(4,0)(1)h =−2y =−2hx++hx 2h 212y =+4x+3=−1x 2(x+2)2∴M(−2,−1)(2)∵y =−2hx++h =+h x 2h 212(x−h)212∴x =h y =h 12∴y =x 12(3)(2)M y =x 12M y =x 12y =x 12y =−2x+9 y =x ,12y =−2x+9, x =,185y =,95∴h =185B(,)18595(4)h <−1−145−−−√4h >4A(0,9)+h =9h 212=−1−145−−−√解得(已舍去正值);②当抛物线与直线只有一个交点时,消去,得,则,解得,结合图形,当抛物线与射线(含端点)没有公共点时,或.【考点】二次函数的性质二次函数图象上点的坐标特征二次函数的三种形式二次函数综合题【解析】本题考查二次函数的图象和性质、抛物线顶点坐标、动点轨迹的判断、直线的交点坐标、抛物线与射线公共点等问题,考查学生的数学运算能力、数学建模思想、数形结合思想和分类讨论思想的运用.本题考查二次函数的图象和性质、抛物线顶点坐标、动点轨迹的判断、直线的交点坐标、抛物线与射线公共点等问题,考查学生的数学运算能力、数学建模思想、数形结合思想和分类讨论思想的运用.本题考查二次函数的图象和性质、抛物线顶点坐标、动点轨迹的判断、直线的交点坐标、抛物线与射线公共点等问题,考查学生的数学运算能力、数学建模思想、数形结合思想和分类讨论思想的运用.本题考查二次函数的图象和性质、抛物线顶点坐标、动点轨迹的判断、直线的交点坐标、抛物线与射线公共点等问题,考查学生的数学运算能力、数学建模思想、数形结合思想和分类讨论思想的运用.【解答】解:将代入,得,顶点.,,,.由得,点的坐标满足解析式,即点始终在直线上.h =−1−145−−−√4y =−2x+9 y =−2x+9,y =−2hx++h ,x 2h 212y −(2h−2)x++h−9=0x 2h 212Δ=(2h−2−4(+h−9)=−10h+40=0)2h 212h =4AB A h <−1−145−−−√4h >4(1)h =−2y =−2hx++hx 2h 212y =+4x+3=−1x 2(x+2)2∴M(−2,−1)(2)∵y =−2hx++h =+h x 2h 212(x−h)212∴x =h y =h 12∴y =x 12(3)(2)M y =x 12M y =x 12=x1把与直线联立,得 解得 ,.或.①当抛物线对称轴右侧部分经过点时,有,解得(已舍去正值);②当抛物线与直线只有一个交点时,消去,得,则,解得,结合图形,当抛物线与射线(含端点)没有公共点时,或.y =x 12y =−2x+9 y =x ,12y =−2x+9, x =,185y =,95∴h =185B(,)18595(4)h <−1−145−−−√4h >4A(0,9)+h =9h 212h =−1−145−−−√4y =−2x+9 y =−2x+9,y =−2hx++h ,x 2h 212y −(2h−2)x++h−9=0x 2h 212Δ=(2h−2−4(+h−9)=−10h+40=0)2h 212h =4AB A h <−1−145−−−√4h >4。
数学:人教版9年级下册同步练习试题及答案(131页)

九年级下同步测试《二次函数》(§26.1~26.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分) 1.下列函数中,y 是x 二次函数的是( )A .y =x -1B .y =x 2+1x-10 C .y =x 2+2x D .y 2=x -12.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx 的图象可能为( )3.二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)24.已知二次函数y =ax 2+bx +c (a ≠0),其中a 、b 、c 满足a +b +c =0和9a -3b +c =0,则该二次函数图象的对称轴是( ) A .x =-2B .x =-1C .x =2D .x =15.如图,小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m6.二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( ) A .y=2x 2-2x-4 B .y=-2x 2+2x-4 C .y=x 2+x-2 D .y=2x 2+2x-48.二次函数y=ax 2+bx+c 的图象如图所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值O xyO xy Oxy O xyA B C D 第5题Oxy大于0的个数为( )A .5B .4C .3D .2 二、填空题(每小题3分,共30分)9.若抛物线y=x 2+(m-1)x+(m+3)顶点在y 轴上,则m=_______. 10.把抛物线y=12x 2向左平移三个单位, 再向下平移两个单位所得的关系式为________. 11.抛物线y=ax 2+12x-19顶点横坐标是3,则a=____________. 12.若y=(a-1)231ax -是关于x 的二次函数,则a=____________.13.二次函数y=mx 2-3x+2m-m2的图象经过点(-1,-1),则m=_________.14.已知二次函数的图象开口向上,且顶点在y 轴的负半轴上,请你写出一个满足条件的二次函数的表达式_________。
人教版数学九年级下册全册 同步练习 及答案

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【基础练习】一、填空题:1.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为;2.有一面积为60的梯形,其上底长是下底长的13,设下底长为x,高为y,则y与x的函数关系式是;3.已知y与x成反比例,并且当x = 2时,y = -1,则当x = -4时,y = .二、选择题:1.下列各问题中的两个变量成反比例的是();A.某人的体重与年龄B.时间不变时,工作量与工作效率C.矩形的长一定时,它的周长与宽D.被除数不变时,除数与商2.已知y与x成反比例,当x = 3时,y = 4,那么当y = 3时,x的值为();A. 4B. -4C. 3D. -33.下列函数中,不是反比例函数的是()A. xy = 2B. y = - k3x(k≠0) C. y =3x-1 D. x = 5y-1三、解答题:1.一水池内有污水60m3,设放净全池污水所需的时间为t (小时),每小时的放水量为w m3,(1)试写出t与w之间的函数关系式,t是w反比例函数吗?(2)求当w = 15时,t的值.2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数表达式; (2)将表中空缺的x 、y 值补全.【综合练习】举出几个日常生活中反比例函数的实例.【探究练习】已知函数y = y 1 +y 2,y 1与x 成正比例,y 2与x 成反比例,且当x = 1时,y = 4,当x = 2时,y = 5. 求y 关于x 的函数解析式.x -5-3-2 1 4 5 y-34-1-3321]答案:【基础练习】一、1. v = 120t ; 2. y = 90x ; 3. 12. 二、1. D ; 2. A ; 3. C. 三、1. (1)t =60w ,(2)t = 4. 2. (1)y = 3x ;(2)从左至右:x = -4,-1,2,3;y = - 35 ,- 32 ,3,34,35. 【综合练习】略.【探究练习】y = 2x + 2x .第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一.判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 ( ) 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 ( ) 3.如果一个函数不是正比例函数,就是反比例函数 ( ) 4.y 与x 2成反比例时y 与x 并不成反比例 ( ) 5.y 与2x 成反比例时,y 与x 也成反比例 ( ) 6.已知y 与x 成反比例,又知当2=x 时,,则y 与x 的函数关系式是( )二.填空题 7.叫__________函数,x 的取值范围是__________;8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是_________=h ,这时h 是a 的__________;9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________; 10.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是 ;11.下列函数表达式中,均表示自变量,那么哪些是反比例函数,如果是请在括号内填上的值,如果不是请填上“不是” ①;( ) ②;( ) ③; ( ) ④;( )⑤πxy =;( )⑥xy 5-=( )⑦( )12.判断下面哪些式子表示y 是x 的反比例函数? ①31-=xy ; ②x y -=5; ③x y 52-=; ④)0(2≠=a a xay 为常数且; 解:其中 是反比例函数,而 不是; 13.计划修建铁路1200,那么铺轨天数(天)是每日铺轨量x 的反比例函数吗?解:因为 ,所以y 是x 的反比例函数;14.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成 函数关系,列出a 关于b 的函数关系式为 ;三.选择题:15.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 ( ) (A )3,5-=-=n m (B )3,5-=-≠n m (C ) 3,5=-≠n m (D )4,5-=-≠n m 16.附城二中到联安镇为5公里,某同学骑车到达,那么时间t 与速度(平均速度)v 之间的函数关系式是( )(A ) st v = (B ) s t v += (C ) t s v = (D ) stv = 17.已知A (2-,a )在满足函数xy 2=,则___=a ( ) (A ) 1- (B ) 1 (C ) 2- (D ) 218.下列函数中,是反比例函数的是 ( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 19.下列关系式中,哪个等式表示y 是x 的反比例函数 ( ) (A ) x k y =(B ) 2xB y = (C ) 121+=x y (D ) 12=-xy20.函数y m x m m =+--()2229是反比例函数,则m 的值是 ( )(A )m =4或m =-2(B ) m =4 (C ) m =-2 (D ) m =-1四.解答题:21.在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)025148

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,直线与双曲线交于点,将双曲线沿轴对折,得到双曲线,的对应点是,已知,是双曲线的一动点,当到直线的距离最短时,的横坐标为( )A.B.C.D.2. 对于二次函数的图象,下列说法正确的是 A.对称轴是B.开口向下C.顶点坐标是D.与轴有两个交点3. 将抛物线=先沿轴方向向左平移个单位长度,再沿轴方向向下平移个单位长度后,得到的二次函数的表达式为( )A.=B.=C.=y =−2x+3y =(x <0)k 1x A y =(x <0)k 1x y y =(x >0)k 2x A B AB =2P y =(x >0)k 2x P y =−2x+3P 10−−√210−−√232y =(x+1−2)2()x =1(1,−2)x y 2(x−1+7)2x 2y 5y 2+4x+4x 2y 2−12x+20x 2y 2+4x+14x 22−12x+302D.=4. 当时,二次函数有最大值,则实数的值为( )A.B.或C.或D.或或5. 如图,和都是边长为的等边三角形,它们的边,在同一条直线上,点,重合,现将在直线上向右移动,直至点与点重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随着变化的函数图像大致为( )A.B.C.D.6. 二次函数 的自变量与函数值的对应值如图,下列说法错误的是:( )y 2−12x+30x 2−2≤x ≤1y =−(x−m ++1)2m 24m −743–√−3–√2−3–√2−3–√−74△ABC △DEF 2BC EF l C E △ABC B F C x y y x y =a +bx+c x 2x yA.抛物线开口向上B.抛物线与轴的交点是C.当 时,随的增大而减小D.当 时,随的增大而增大7. 二次函数 的图象如图所示,若C ,.则,,中,值小于的个数有 ( )A.个B.个C.个D.个8. 二次函数的图象的顶点坐标是 A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知,二次函数的图象如图所示,当时,的值为________.x ⋯−6−5−4−3−2−1⋯y ⋯1040−2−20⋯y (0,4)x <−2y x x >−2y x y =a +bx+c(a ≠0)x 2M =a +b −c,N =4a −2b+P =2a −b M N P 03210y=(x−2+3)2()(2,3)(−2,3)(−2,−3)(2,−3)y =a +bx+c(a ≠0)x 2x =2y10. 已知二次函数=,那么=________.11. 抛物线=顶点在第二象限,则的取值范围是________.12. 如图,抛物线=与轴相交于、两点,点(在点左侧,顶点在折线动,它们的坐标分别为、、.若在抛物线移动过程中,点横坐标的最小值为,则的最小值是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 已知抛物线的对称轴是直线.求证:;若关于的方程的一个根为,求另一个根. 14. 某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下.补全下表,在所给坐标系中画出函数的图象;………0…观察图象,写出该函数两条不同类型的性质;进一步探究函数图象发现:①函数图象与轴有________个交点,所以对应的方程有________个实数根;②方程有________个实数根;③关于的方程有个实数根,的取值范围是________. 15. 在平面直角坐标系中,已知二次函数,其中.(1)若此二次函数图象经过点,试求,满足的关系式.f(x)−3x+1x 2f(2)y +2x+m x 2m y a +bx+c x 2x A B A B M −P −N M(−1,4)P(3,4)N(3,1)A −3a −b +c y =a +bx+3x 2x =1(1)2a +b =0(2)x a +bx−6=0x 23y =−2|x |x 2(1)x −3−52−2−1012523y 3−10(2)(3)x −2|x|=0x 2−2|x|=2x 2x −2|x|=a x 24a y =k(x−a)(x−b)a ≠b (0,k)a b y =−2x2(2)若此二次函数和函数的图象关于直线对称,求该函数的表达式.(3)若,且当时,有,求的值. 16. 某水果商销售每箱进价为元的苹果,物价部门规定每箱售价不得高于元,市场调查显示,若每箱以元的价格销售,平均每天可销售箱,价格每提高元,则平均每天少销售箱.求平均每天销售利润(元)与销售价(元/箱)之间的函数关系式,并直接写出自变量的取值范围;当每箱的售价为多少元时,可以获得最大利润?最大是多少元?y =−2x x 2x =2a +b =40≤x ≤31≤y ≤4a 4055509013(1)w x x (2)参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】反比例函数综合题反比例函数与一次函数的综合二次函数图象与系数的关系反比例函数图象上点的坐标特征【解析】【解答】解:由题意可得,∴,∵,∴,即点横坐标为,点横坐标为.把代入中,得:,∴点坐标为,∴点坐标为,将坐标代入中,可得,∴①,作的平行线②于相交且只交于一点,此点即为点,①②联立可得,即,又因为①②只有一个交点,则,得到,<0k 1>0k 2AB =2||=||=1x A x B A −1B 1=−1x A y =−2x+3=−2×(−1)+3=5y A A (−1,5)B 1,5B y =(x >0)k 2x =5k 2y =(x >0)5x y =−2x+3y =−2x+b y =(x >0)5xP −2x+b =5x −2+bx−5=0x 2Δ=−4×(−2)×(−5)=0b 2Δ=−40=0b 2=2−−√=−2−−√解得或(舍去),∴,此时联立①②得,则点坐标为,∴点横坐标为.故选.2.【答案】D【考点】二次函数的性质【解析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与轴交点的坐标进行判断即可.【解答】解:∵,∴,∴图象的开口向上,顶点坐标是,对称轴是直线,故不正确;∵,,∴二次函数图象与轴有两个交点,故正确,故选.3.【答案】A【考点】二次函数图象与几何变换【解析】变化规律:左加右减,上加下减.【解答】=2b 110−−√=−2b 210−−√b =210−−√x =,y =10−−√210−−√P (,)10−−√210−−√P 10−−√2A x y =(x+1−2)2a =1>0(−1,−2)x =−1A 、B 、C y =(x+1−2=+2x−1)2x 2Δ=−4×1×(−1)=8>022x D D 2(x−1+7)2按照“左加右减,上加下减”的规律,向左平移个单位,将抛物线=先变为=,再沿轴方向向下平移个单位抛物线=,即变为:=.故所得抛物线的解析式是:=.4.【答案】C【考点】二次函数的最值【解析】求出二次函数对称轴为直线,再分,,三种情况,根据二次函数的增减性列方程求解即可.【解答】解:二次函数对称轴为直线,①时,取得最大值,,解得,不合题意,舍去;②时,取得最大值,,解得,∵不满足的范围,∴;③时,取得最大值,,解得.综上所述,或时,二次函数有最大值.故选.5.【答案】A【考点】动点问题函数的图象【解析】分为、两种情况,然后依据等边三角形的性质和三角形的面积公式可求得与的函数关系式,于是可求得问题的答案.【解答】2y 2(x−1+7)2y 2(x+1+7)2y 5y 2(x+1+7−5)2y 2(x+1+2)2y 2+4x+4x 2x =m m<−2−2≤m≤1m>1x =m m<−2x =−2−(−2−m ++1=4)2m 2m=−74−2≤m≤1x =m +1=4m 2m=±3–√m=3–√−2≤m≤1m=−3–√m>1x =1−(1−m ++1=4)2m 2m=2m=2−3–√4C 0<x ≤22<x ≤4y x解:如图所示:当时,过点作于.∵和均为等边三角形,∴为等边三角形,由勾股定理可得,,∴.此时当时,,且抛物线的开口向上.如图所示:当时,过点作于.,∴函数图像为抛物线的一部分,且抛物线开口向上.综上,只有选项的函数图像符合题意.故选.6.【答案】C【考点】二次函数的图象二次函数图象上点的坐标特征【解析】本题考查二次函数的图象,二次函数的性质,二次函数图象上的坐标特征.根据二次函数的性质和表格中得数据可以判断各个选项是否正确,得出答案.【解答】解:由表格可知,该抛物线的对称轴是直线,抛物线开口向上,故正确;和对应的函数值相等,故抛物线与轴的交点是,故正确;当时,随的增大而减小,当时,随的增大而增大,故错误,正确.故选.7.10<x ≤2G GH ⊥BF H △ABC △DEF △GEJ GH =EJ =x 3–√23–√2y =EJ ⋅GH =123–√4x 2x =2y =3–√22<x ≤4G GH ⊥BF H y =FJ ⋅GH =(4−x 123–√4)2A A x =−3−22=−52A x =0x =−5y (0,4)B x<−52y x x>−52y x C D C【答案】A【考点】二次函数图象与系数的关系【解析】【解答】解:∵图象开口向下,∴.∵对称轴在轴左侧,∴,同号,∴,.∵图象经过轴正半轴,∴,∴当时,,∴.∵,∴.∵,∴,∴,∴,则,,中,值小于的数有,,.故选.8.【答案】A【考点】二次函数的性质【解析】根据顶点式可直接写出顶点坐标.【解答】解:∵,∴该二次函数图象的顶点坐标是.a <0y a b a <0b <0y c >0M =a +b −c <0x =−2y =4a −2b +c <0N =4a −2b +c <0−>−1b 2a <1b 2a a <0b >2a 2a −b <0P =2a −b <0M N P 0M N P A y=(x−2+3)2(2,3)故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】二次函数的图象【解析】根据抛物线的对称轴为结合抛物线的对称轴即可得出:当和时,值相等.观察函数图象即可得出当时,此题得解.【解答】解:∵抛物线的对称轴为,∴当和时,值相等.∵当时,,∴当时,.故答案为:.10.【答案】【考点】二次函数图象上点的坐标特征【解析】计算自变量为对应的函数值即可.【解答】把=代入=得==.11.【答案】【考点】A 2x =1x =2x =0y x =0y =2x =1x =2x =0y x =0y =2x =2y =22−12x 2f(x)−3x+1x 2f(2)−3×2+122−1m>1二次函数图象与系数的关系【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】二次函数的最值二次函数的性质抛物线与x 轴的交点【解析】由题意得:当顶点在处,点横坐标为,可以求出抛物线的值;当顶点在处时,=取得最小值,即可求解.【解答】由题意得:当顶点在处,点横坐标为,则抛物线的表达式为:=,将点坐标代入上式得:=,解得:=,当=时,=,顶点在处时,=取得最小值,顶点在处,抛物线的表达式为:=,当=时,===,三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】证明:∵ 对称轴是直线,∴,∴.−15M A −3a N y a −b +c M A −3y a(x+1+4)2A (−3,0)0a(−3+1+4)2a −1x −1y a −b +c N y a −b +c N y −(x−3+1)2x −1y a −b +c −(−1−3+1)2−15(1)x =1x =−=1b2a2a +b =0解:由题意得,,化简得,,又∵,∴,∴该方程为,解得,∴另一个根是.【考点】二次函数的性质二次函数综合题解一元二次方程-因式分解法【解析】此题暂无解析【解答】证明:∵ 对称轴是直线,∴,∴.解:由题意得,,化简得,,又∵,∴,∴该方程为,解得,∴另一个根是.14.【答案】解:根据所给函数,当时,;(2)9a +3b −6=03a +b =22a +b =0a =2,b =−42−4x−6=0x 2=−1,=3x 1x 2−1(1)x =1x =−=1b2a2a +b =0(2)9a +3b −6=03a +b =22a +b =0a =2,b =−42−4x−6=0x 2=−1,=3x 1x 2−1(1)y =−2|x|x 2x =−52y =54当时,;当时,;当时,;当时,,故补全表如下:…………补全函数图象如下:①函数图象有两个最低点,坐标分别是,;②函数图象是轴对称图形,对称轴是直线(轴).,,,【考点】二次函数的图象二次函数的性质【解析】(1)把代入函数解析式可求得的值;(3)可从对称性及最值等方面考虑,可求得答案.【解答】解:根据所给函数,当时,;当时,;当时,;当时,;当时,,故补全表如下:…………补全函数图象如下:4x =0y =0x =1y =−1x =52y =54x =3y =3x −3−52−2−1012523y354−1−1543(2)(−1,−1)(1,−1)x =0y 332−1<a <0x =−2m (1)y =−2|x|x 2x =−52y =54x =0y =0x =1y =−1x =52y =54x =3y =3x −3−52−2−1012523y354−1−1543①函数图象有两个最低点,坐标分别是,;②函数图象是轴对称图形,对称轴是直线(轴).①由函数图象知:函数图象与轴有个交点,所以对应的方程有个实数根;②∵的图象与直线有两个交点,∴有个实数根;③由函数图象知:∵关于的方程有个实数根,∴的取值范围是.故答案为:.15.【答案】将代入,得.∵,∴;由(1)知,.函数与轴的交点坐标为,.∴该函数解析式为:;∵,∴函数表达式变形为.①当时,则根据题意可得:当,;当时,,∴消去,整理,得.∵∴此方程无解.②当时,则根据题意可得:当,;当时,,∴消去,整理,得.解得.【考点】二次函数图象上点的坐标特征二次函数图象与几何变换(2)(−1,−1)(1,−1)x =0y (4)x 3−2|x |=0x 23y =−2|x |x 2y =2−2|x |=2x 22x −2|x |=a x 24a −1<a <03;3;2;−1<a <0(0,k)y =k(x−a)(x−b)kab =k k ≠0ab =1k =1x (2,0)(4,0)y =(x−2)(x−4)=−6x+8x 2a +b =4y =k(x−a)(x+a −4)k >0x =3y =1x =0y =4{k(a −2)(2−a)=1k(−a)(a −4)=4k 3−12a +16=0a 2△=−48<0k <0x =3y =4x =0y =1{k(a −2)(2−a)=4k(−a)(a −4)=1k 3−12a −4=0a 2a =6±43–√3【解析】(1)将点代入二次函数解析式即可求得,满足的关系式.(2)根据抛物线的对称性质得到抛物线与轴的两个交点坐标,结合二次函数解析式的三种性质解答;(3)根据一元二次方程根的分别规律解答【解答】将代入,得.∵,∴;由(1)知,.函数与轴的交点坐标为,.∴该函数解析式为:;∵,∴函数表达式变形为.①当时,则根据题意可得:当,;当时,,∴消去,整理,得.∵∴此方程无解.②当时,则根据题意可得:当,;当时,,∴消去,整理,得.解得.16.【答案】解:由题意,得 .由可知,.∵,∴抛物线开口向下.当时,随的增大而增大,又,∴当元时,的最大值为元.答:当每箱苹果的销售价为元时,可以获得最大利润元.【考点】根据实际问题列二次函数关系式(0,k)a b x (0,k)y =k(x−a)(x−b)kab =k k ≠0ab =1k =1x (2,0)(4,0)y =(x−2)(x−4)=−6x+8x 2a +b =4y =k(x−a)(x+a −4)k >0x =3y =1x =0y =4{k(a −2)(2−a)=1k(−a)(a −4)=4k 3−12a +16=0a 2△=−48<0k <0x =3y =4x =0y =1{k(a −2)(2−a)=4k(−a)(a −4)=1k 3−12a −4=0a 2a =6±43–√3(1)w=(x−40)[90−3(x−50)]=(x−40)(−3x+240)=−3+360x−9600x 2(50≤x ≤55)(2)(1)w=−3+360x−9600x 2a=−3<0x <−=60b2aw x 50≤x ≤55x =55w 1125551125二次函数的应用二次函数的最值【解析】【解答】解:由题意,得 .由可知,.∵,∴抛物线开口向下.当时,随的增大而增大,又,∴当元时,的最大值为元.答:当每箱苹果的销售价为元时,可以获得最大利润元.(1)w=(x−40)[90−3(x−50)]=(x−40)(−3x+240)=−3+360x−9600x 2(50≤x ≤55)(2)(1)w=−3+360x−9600x 2a=−3<0x <−=60b2aw x 50≤x ≤55x =55w 1125551125。
2022-2023学年全国初中九年级下数学人教版同步练习(含答案解析)031034

2022-2023学年全国初中九年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 把抛物线平移得到抛物线,是怎样平移得到的( )A.向右平移个单位长度,再向下平移个单位长度B.向左平移个单位长度,再向上平移个单位长度C.向右平移个单位长度,再向上平移个单位长度D.向左平移个单位长度,再向下平移个单位长度2. 如图,正三角形的顶点在坐标原点,点,点从点出发,沿边运动到点停止,点是轴上的点,且始终保持,当点与轴距离最近时,点的坐标为( )A.B.C.D.3. 平面直角坐标系内,函数与函数的图象可能是( )A.y =−2x 2y =−2+7(x−3)273373737OAB O A(4,0)P A AB B Q x ∠OPQ =60∘Q y Q (2,0)(,0)114(,0)134(3,0)y=a +bx+b(a ≠0)x 2y=ax+bB. C. D.4. 已知二次函数的图象如图所示,那么下列判断正确的是( )A.,,B.,,C.,,D.,,5. 已知函数,下列结论正确的是( )A.当时,随的增大而减小;B.当时,随的增大而增大;C.当时,随的增大而减小;D.当时,随的增大而增大.y=a +bx+c(a ≠0)x 2a >0b >0c >0a <0b <0c <0a <0b >0c >0a <0b <0c >0y =(x−1)2x >0y x x <0y x x <1y x x <−1y x6. 把二次函数配方成顶点式为( )A.B.C.D.7. 将抛物线 向下平移个单位长度得到的抛物线的解析式为()A.B.C.D.8. 如图是二次函数的图象,下列结论:①二次三项式的最大值为;②;③一元二次方程的两根之和为;④使成立的的取值范围是.其中正确的个数有( )A.个B.个C.个D.个y =−2x−1x 2y =(x−1)2y =(x+1−2)2y =(x+1+1)2y =(x−1−2)2y =13x 21y =+113x 2y =13(x+1)2y =13(x−1)2y =−113x 2y =a +bx+c x 2a +bx+c x 244a +2b +c <0a +bx+c =1x 2−1y ≤3x x ≥01234二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 将配方成的形式,则________.10. 抛物线向左平移个单位,再向上平移个单位所得函数解析式为________.11. 二次函数的最小值是________.12. 如图,直线与轴,轴分别交于点,,抛物线过,两点,交轴于另一点,抛物线的对称轴与轴交于点.点在轴上,连接分别交对称轴和抛物线于点、,若,则点的坐标为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分) 13. 已知关于的一元二次方程.当取何值时,此方程有两个不相等的实数根;当抛物线与轴两个交点的横坐标均为整数,且为负整数时,求此抛物线的解析式;在的条件下,若,是此抛物线上的两点,且,请结合函数图像直接写出实数的取值范围.14. 如图,折线表示芳芳骑自行车离家的距离与时间的关系,她点离开家,点回家,请根据图象回答下列问题:芳芳到达距家最远的地方时,离家__________千米.第一次休息时离家__________千米.她在的平均速度是__________.+6x+3x 2+n (x+m)2m+n =y =x 215y =3(x+4−5)2y =x−3x y A C y =−+4x−3x 2A C x B x D P y AP M N PM =22–√N x m −(2m+1)x+2=0x 2(1)m (2)y =m −(2m+1)x+2x 2x m (3)(2)P(n ,)y 1Q(n+1,)y 2>y 1y 2n 915(1)(2)(3)10:00—10:30芳芳一共休息了__________小时.芳芳返回用了__________小时.返回时的平均速度是__________.15. 已知二次函数的图象经过点,且顶点坐标为.求这个二次函数解析式.16. 将二次函数=的解析式化为=的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.(4)(5)(6)(0,−3)(1,−4)y 2+4x−1x 2y a(x+m +k )2参考答案与试题解析2022-2023学年全国初中九年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】二次函数图象的平移规律【解析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【解答】解:抛物线的顶点坐标为,抛物线的顶点坐标为,因为点先向右平移个单位,再向上平移个单位可得到点,所以抛物线先向右平移个单位,再向上平移个单位可得到抛物线.故选.2.【答案】D【考点】二次函数的最值相似三角形的性质与判定【解析】先求得,根据相似三角形对应边成比例得,,求得,再由二次函数的相关性质即可得解.【解答】y =2x 2(0,0)y =2+7(x−3)2(3,7)(0,0)37(3,7)y =2x 237y =2+7(x−3)2C △POB ∼△QPA QA =PB ⋅PA OB PA =x OQ =OA−QA =4−QA =−x+4=+314x 214(x−2)2解:∵是正三角形,∴,,∴,∴,∴,∵,,∴,∵,∴,∴,∴,设,则,∴,∵,∴时,有最小值,此时.故选.3.【答案】C【考点】一次函数的图象二次函数的图象【解析】根据二次函数图象的开口以及对称轴与轴的关系即可得出、的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,∵二次函数图象开口向下,对称轴在轴左侧,∴,,∴一次函数图象应该过第二、三、四象限,且与二次函数交于轴负半轴的同一点,故错误;,二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故正确;△OAB OA =OB =AB ∠B =∠OAB =60∘A(4,0)OA =4OB =AB =4∠OPA =∠BOP +∠B ∠OPA =∠OPQ +∠QPA ∠BOP =∠QPA ∠B =∠QAP △POB ∼△QPA =PB QA OB PA QA =PB ⋅PA OB PA =x PB =AB−PA =4−x OQ =OA−QA =4−QA=−x+414x 2=+314(x−2)2>014x =2OQ 3Q(3,0)D y a b A y a >0b <0y A B y a <0b <0y B C y a >0b <0y C,∵二次函数图象开口向上,对称轴在轴右侧,∴,,∴一次函数图象应该过第一、三、四象限,且与二次函数交于轴负半轴的同一点,故错误.故选.4.【答案】C【考点】二次函数图象与系数的关系【解析】利用抛物线开口方向确定的符号,利用对称轴方程可确定的符号,利用抛物线与轴的交点位置可确定的符号.【解答】解:∵抛物线开口向下,∴.∵抛物线的对称轴在轴的右侧,∴,∴.∵抛物线与轴的交点在轴上方,∴.故选.5.【答案】C【考点】二次函数的性质【解析】利用形如的形式的二次函数的性质进行判断即可.【解答】解:∵二次函数的对称轴为,,∴开口向上,当时,随的增大而减小;当时,随的增大而增大.故,,错误,正确.故选.D y a >0b <0y D C a b y c a <0y x =−>0b 2a b >0y x c >0C y =a(x−h)2y =(x−1)2x =1a =1>0x <1y x x >1y x A B D C C6.【答案】D【考点】二次函数的三种形式【解析】利用配方法把一般式配成顶点式即可.【解答】解:.故选.7.【答案】D【考点】二次函数图象的平移规律【解析】此题暂无解析【解答】此题暂无解答8.【答案】B【考点】二次函数的图象二次函数的最值二次函数图象与系数的关系【解析】y =−2x+1−2x 2=(x−1−2)2D a +bx+c2①根据抛物线的顶点坐标确定二次三项式的最大值;②根据时,确定的符号;③根据抛物线的对称性确定一元二次方程的两根之和;④根据函数图象确定使成立的的取值范围.【解答】解:∵抛物线的顶点坐标为,∴二次三项式的最大值为,①正确;∵时,,∴,②正确;根据抛物线的对称性可知,一元二次方程的两根之和为,③错误;由图象知,使成立的的取值范围是或,④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】二次函数的三种形式【解析】原式配方得到结果,即可求出的值.【解答】解:,则,,.故答案为:10.【答案】【考点】二次函数图象的平移规律【解析】根据函数图象向左平移加,向上平移加,可得答案.a +bx+c x 2x =2y <04a +2b +c a +bx+c =1x 2y ≤3x (−1,4)a +bx+c x 24x =2y <04a +2b +c <0a +bx+c =1x 2−3+1=−2y ≤3x x ≥0x ≤−2B −3m +6x+3x 2=+6x+9−6x 2=(x+3−6)2=(x+m +n )2m=3n =−6∴m+n =3−6=−3−3y =+5(x+1)2【解答】解:原抛物线的顶点为,向左平移个单位长度,再向上平移个单位长度,那么新抛物线的顶点为.所以新抛物线的解析式为.故答案为:.11.【答案】【考点】二次函数的最值【解析】由抛物线解析式可求得其最值.【解答】解:∵抛物线的开口方向向上,顶点坐标坐标是,∴当时,.故答案为:.12.【答案】或【考点】二次函数的图象【解析】此题暂无解析【解答】解:由题意易得,∵,∴∵∴.∵∴∴或.当时,直线为,(0,0)15(−1,5)y =+5(x+1)2y =+5(x+1)2−5y =3(x+4−5)2(−4,−5)x =−4=−5y 最小值5(2,1)(0,−3)A(3,0),B(1,0),C(0,−3),D(2,0),DM//OP ==,PA PM OA OD 32PM =2,2–√PA =32–√OA =3OP ==3,P −O A 2A 2−−−−−−−−−−√P(0,3)(0,−3)P(0,3)PA y =−x+3解方程组得或此时, ;当时,直线为,解方程组得或此时,.综上所述,N 点的坐标为或.故答案为:或.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.【考点】二次函数的性质抛物线与x 轴的交点根与系数的关系根的判别式{y =−x+3,y =−+4x−3x 2{x =2,y =1{x =3,y =0,N(2,1)P(0,−3)PA y =x−3{y =x−3,y =−+4x−3x 2{x =0,y =−3{x =3,y =0,N(0,−3)(2,1)(0,−3)(2,1)(0,−3)(1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12一元二次方程的定义【解析】该小题考查了一元二次方程的概念和根的判别式.一元二次方程必须满足,有两个实数根必须满足判别式大于.第小题考查一元二次方程根与系数的关系和二次函数与轴交点.一元二次方程两根的和第于一次项系数除以二次项系数,两根的积等于常数项除以二次项系数,结合根为整数求解即可.该小部主要考查二次函数的增减性.当开口向下时,在对称轴的右边随的增大而减小,利用这一性质求解即可.【解答】解:由题意,得,且,,解得,.设与轴的交点的横坐标为,则,,∵均为整数,为负整数,∴或,当时,抛物线为,令,此时,符合题意;当时,,不符合题意;所以,抛物线的解析式为.∵,即随的增大而减小.,抛物线的开口向下,∴点和在对称轴的右边,抛物线的对称轴为,∴.14.【答案】,,千米/小时,,,千米/小时【考点】函数的图象【解析】此题暂无解析【解答】a ≠00(2)x y x (1)m≠0Δ=−4×m×2>0(2m+1)2(2m−1>0)2m>12(2)x ,x 1x 2.=x 1x 22m +=x 1x 22m+1m 、x 1x 2m m=−1m=−2m=−1y =+x+2−x 2+x+2=0−x 2=2,=−1x 1x 2m=−2+==x 1x 2−4+1−232y =+x+2−x 2(3)n+1>n ,>y 1y 2y x a =−1<0P Q x =−=12×(−1)12n >12301714 1.5215解:由图可知,图中距离最大的点为,最大距离为千米.当芳芳休息时,速度为,即图中斜率为的线段,则第一次休息的点为点,离家千米.在中,她由点到点,故平均速度.同理题,图中斜率为的线段共两段,分别为,故时间为返回时距离应从最大处至,由图可知返回用了.返回时速度.故答案为:;;千米/小时;;;千米/小时.15.【答案】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.【考点】二次函数的性质【解析】可设解析式为顶点式,根据图象经过点求待定系数,即可得解.【解答】解:根据题意,设函数解析式为.∵图象经过点,∴,.∴解析式为.16.【答案】=,=,=,开口方向:向上,(1)E 、F 30(2)00C 17(3)10:00−10:30B C =7÷0.5=14km/h (4)(2)0CD 、EF 0.5+1=1.5h (5)02h (6)=30÷2=15km/h 301714 1.5215y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2(0,−3)y =a(x−1−4)2(0,−3)−3=a −4a =1y =(x−1−4=−2x−3)2x 2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2顶点坐标:,对称轴:直线=.【考点】二次函数的三种形式二次函数的性质【解析】利用配方法把将二次函数=的解析式化为=的形式,利用二次函数的性质指出函数图象的开口方向、顶点坐标和对称轴,即可得到答案.【解答】=,=,=,开口方向:向上,顶点坐标:,对称轴:直线=.(−1,−3)x −1y 2+4x−1x 2y a(x+m +k )2y 2(+2x)−1x 2y 2(+2x+1)−2−1x 2y 2(x+1−3)2(−1,−3)x −1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【基础练习】一、填空题:1.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为;2.有一面积为60的梯形,其上底长是下底长的13,设下底长为x,高为y,则y与x的函数关系式是;3.已知y与x成反比例,并且当x = 2时,y = -1,则当x = -4时,y = .二、选择题:1.下列各问题中的两个变量成反比例的是();A.某人的体重与年龄B.时间不变时,工作量与工作效率C.矩形的长一定时,它的周长与宽D.被除数不变时,除数与商2.已知y与x成反比例,当x = 3时,y = 4,那么当y = 3时,x的值为();A. 4B. -4C. 3D. -33.下列函数中,不是反比例函数的是()A. xy = 2B. y = - k3x(k≠0) C. y =3x-1 D. x = 5y-1三、解答题:1.一水池内有污水60m3,设放净全池污水所需的时间为t (小时),每小时的放水量为w m3,(1)试写出t与w之间的函数关系式,t是w反比例函数吗?(2)求当w = 15时,t的值.2.已知y 是x的反比例函数,下表给出了x 与y的一些值:(1)写出这个反比例函数表达式; (2)将表中空缺的x 、y 值补全.【综合练习】举出几个日常生活中反比例函数的实例.【探究练习】已知函数y = y 1 +y 2,y 1与x 成正比例,y 2与x 成反比例,且当x = 1时,y = 4,当x = 2时,y = 5. 求y 关于x 的函数解析式.x -5 -3 -2 1 4 5 y-34-1-3321答案:【基础练习】一、1. v = 120t;2. y =90x;3.12. 二、1. D;2. A;3. C. 三、1. (1)t =60w,(2)t = 4. 2. (1)y = 3x;(2)从左至右:x = -4,-1,2,3;y = -35,-32,3,34,35.【综合练习】略.【探究练习】y = 2x + 2 x.第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一.判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 ( ) 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 ( ) 3.如果一个函数不是正比例函数,就是反比例函数 ( ) 4.y 与x 2成反比例时y 与x 并不成反比例 ( ) 5.y 与2x 成反比例时,y 与x 也成反比例 ( ) 6.已知y 与x 成反比例,又知当2=x 时,,则y 与x 的函数关系式是( )二.填空题 7.叫__________函数,x 的取值范围是__________;8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是_________=h ,这时h 是a 的__________;9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________; 10.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是 ;11.下列函数表达式中,均表示自变量,那么哪些是反比例函数,如果是请在括号内填上的值,如果不是请填上“不是” ①;( ) ②;( ) ③; ( ) ④;( )⑤πxy =;( )⑥xy 5-=( )⑦( )12.判断下面哪些式子表示y 是x 的反比例函数?①31-=xy ; ②x y -=5; ③x y 52-=; ④)0(2≠=a a xay 为常数且; 解:其中 是反比例函数,而 不是; 13.计划修建铁路1200,那么铺轨天数(天)是每日铺轨量x 的反比例函数吗?解:因为 ,所以y 是x 的反比例函数;14.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成 函数关系,列出a 关于b 的函数关系式为 ;三.选择题: 15.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 ( )(A )3,5-=-=n m (B )3,5-=-≠n m (C ) 3,5=-≠n m (D )4,5-=-≠n m 16.附城二中到联安镇为5公里,某同学骑车到达,那么时间t 与速度(平均速度)v 之间的函数关系式是( )(A ) st v = (B ) s t v += (C ) t s v = (D ) stv = 17.已知A (2-,a )在满足函数xy 2=,则___=a ( ) (A ) 1- (B ) 1 (C ) 2- (D ) 218.下列函数中,是反比例函数的是 ( )(A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 19.下列关系式中,哪个等式表示y 是x 的反比例函数 ( )(A ) x ky = (B ) 2xB y = (C ) 121+=x y (D ) 12=-xy20.函数y m xm m =+--()2229是反比例函数,则m 的值是 ( )(A )m =4或m =-2(B ) m =4 (C ) m =-2 (D ) m =-1四.解答题:21.在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
(1)求I 与R 之间的函数关系式。
(2)当电流I=0.5安培时,求电阻R 的值。
26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质一.填空题 1.反比例函数ky x=的图象是________,过点(,____),其图象两支分布在_ __象限;2.已知函数的图象两支分布在第二、四象限内,则的范围是_________3.双曲线ky x=经过点(2-,),则; 4.反比例函数和正比例函数的图象都经过点A(,),则这两个函数的解析式分别是_________和_________;二.选择题 :5.已知反比例函数的图象经过点(1,2),则它的图象也一定经过 ( ) (A ) (,) (B ) (1-,2) (C ) (1,) (D ) (2-,1)6.反比例函数 2k y x= (0≠k )的图象的两个分支分别位于 ( )(A ) 第一、二象限 (B ) 第一、三象限 (C ) 第二、四象限 (D ) 第一、四象限 7.如图1—84,反比例函数ky x=的图象经过点A ,则k 的值是 ( )(A ) 2 (B ) 1.5 (C ) 3- (D ) 32-8.点A 为反比例函数图象上一点,它到原点的距离为5,到轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( ) (A ) (B ) 12y x =-(C ) 112y x = (D ) 112y x=- 9.反比例函数my x=的图象两支分布在第二、四象限,则点(m ,2-m )在 ( ) (A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D ) 第四象限 10.若函数21(31)n n y n x --=-是反比例函数,且它的图象在二、四象限内,则n 的值是( )(A ) 0 (B ) 1 (C ) 0或1 (D ) 非上述答案 三.解答题11.已知正比例函数y kx =与反比例函数3y x=的图象都过A(m ,1)点.求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的另一个交点的坐标.12.设a 、b 是关于x 的方程22(3)(3)0kx k x k +-+-=的两个不相等的实根(k 是非负整数),一次函数y=(k-2)x+m 与反比例函数ny x=的图象都经过点(a ,b). (1)求k 的值;(2)求一次函数和反比例函数的解析式.第2课时 反比例函数的图象和性质的综合运用1、若M(12-,)、N(,)、P(12,3y )三点都在函数(k>0)的图象上,则、、的大小关系是( ) (A )(B )(C ) 213y y y >> (D )123y y y >>2、如图,A 为反比例函数图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k 的值为( ) (A ) 10 (B ) 10- (C ) 5- (D )25-3、如图是三个反比例函数,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( ) (A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 14、在同一直角坐标平面内,如果直线与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0 5、如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )A 、6B 、3C 、23 D 、不能确定6、已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、 正数 B 、 负数 C 、 非正数 D 、 不能确定7、如图,过反比例函数xy 2009=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 8、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若时,,则的取值范围是 .14、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 9、正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图所示,则四边形ABCD 的面积为_______. 10、已知反比例函数xky-=4若函数的图象位于第一三象限,则k_____________; 若在每一象限内,y 随x 增大而增大,则k_____________.11、考察函数xy2=的图象,当x=-2时,y= ___ ,当x<-2时,y 的取值范围是 _____ ;当y ﹥-1时,x 的取值范围是 _________ .12、若点(-2,y 1)、(-1,y 2)、(2,y 3)在反比例函数xy 100-=的图象上,则y 1,y 2,y 3的大小关系是:_________________.13、在反比例函数xa y 12+-=的图象上有三点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则y 1,y 2,y 3的大小关系是:_________________.14、如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是 .15、如图所示,已知直线y 1=x+m 与x 轴、y•轴分别交于点A 、B ,与双曲线y 2=xk(k<0)分别交于点C 、D ,且C 点坐标为(-1,2). (1)分别求直线AB 与双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出当x 在什么范围内取何值时,y1>y2.16、如图,已知反比例函数xy 12的图象与一次函数y= kx+4的图象相交于P 、Q 两点,且P 点的纵坐标是6。