2020最新高一下册期中考试数学试题及答案(人教版)

合集下载

(最新)高一下册期中考试数学试题及答案(人教版)

(最新)高一下册期中考试数学试题及答案(人教版)

高一下学期期中质量调查数学试题 第Ⅰ卷(选择题 共24分)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题正确的是A.若0a b <<,则 ac bc <B. 若,a b c d >>,则 ac bd >C.若a b >,则1a b <D.若22,0a bc c c>≠,则a b > 2.在数列{}n a 中,111,3n n a a a +=-=-,则4a = A. 10- B. 7- C. 5- D. 113.若13,24a b <<<<,则ab的范围是A. 1,12⎛⎫ ⎪⎝⎭B. 3,42⎛⎫ ⎪⎝⎭C. 13,42⎛⎫⎪⎝⎭D.()1,44.在ABC V中,已知,24c A a π===,则角C =A.3π B. 23π C. 3π或23π D.12π或512π5.已知数列{}n a 为等比数列,有51374a a a -=,{}n b 是等差数列,且77a b =,则59b b +=A. 4B. 8C. 16D. 0或86.在ABC V 中,已知sin 2cos sin A B C =,则ABC V 的形状时 A. 直角三角形 B. 等腰三角形 C.等腰直角三角形 D.不确定7.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612SS = A. 13 B. 18 C. 19 D.3108.已知数列{}n a 前n 项和21nn S =-,则此数列奇数项和前n 项和是A. ()21213n -B. ()11213n +-C. ()21223n -D. ()11223n +-第Ⅱ卷(非选择题 共76分)二、填空题:本大题共6小题,每小题4分,共24分.9.在数列{}n a 中,223n a n =-,则125是这个数列的第 项.10.在ABC V 中,三边,,a b c 成等比数列,222,,a b c 成等差数列,则三边,,a b c 的关系为 .11.对于任意实数x ,不等式23204mx mx +-<恒成立,则实数m 的取值范围是 . 12.在等差数列{}n a 中,已知11a =,前5项和535,S =则8a 的值是 .13.在ABC V 中,若120,5,7,A AB BC ===o,则ABC V 的面积S = .14.已知数列{}n a 满足,11232,2nn n a a a +=+⋅=,则数列{}n a 的通项公式是 .三、解答题:本大题共6小题,共52分,解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分8分)已知不等式2320ax x -+>的解集为{}|x 1x b x <>或.(1)求,a b 的值;(2)解关于x 的不等式()2220ax b a x b ---<.16.(本小题满分8分)已知等比数列{}n a 中,11a =,公比为q ,且()1.n n n b a a n N *+=-∈ (1)判断数列{}n b 是否为等比数列?请说明理由. (2)求数列{}n b 的通项公式.17.(本小题满分8分)已知数列{}n a 的前项和22 4.n n S +=-(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 满足,73154,b a b a ==,求数列{}n b 的前项和.n T18.(本小题满分12分)若等比数列{}n a 的前n 项和1.2n n n S a =- (1)求实数a 的值;(2)求数列{}n na 的前n 项和.n T19.(本小题满分10分)在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知45,cos .5b c A == (1)求sin C 的值;(2)若ABC V 的面积为3sin sin ,2ABC S B C =V 求a 的值.20.(本小题满分10分)已知数列{}n a 的前n 项和为n S ,满足11110,2,.n n n n n n n n a a S a S a a n N -*+++≠-=∈ (1)求证:12;n n n S a -=(2)设1nn n a b a +=,求数列{}n b 的前n 项和.n T。

黑龙江省鸡西市第一中学2020学年度高一学年下学期期中考试数学考试试题含答案

黑龙江省鸡西市第一中学2020学年度高一学年下学期期中考试数学考试试题含答案

鸡西市第一中学2020学年度高一学年下学期期中考试数学考试试题第Ⅰ卷(选择题)注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。

答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,规定时间内问卷星提交,逾时后果自负。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将答题卡竖版拍照5分钟内上传家校本交回。

一.选择题(共12小题,每题5分)1.已知集合A={x|3x2+x﹣2≤0},B={x|log2(2x﹣1)≤0},则A∩B=()A.(] B.[] C.(] D.[﹣1,]2.函数的单调递减区间为()A.[1,+∞)B.(﹣∞,1] C.(﹣∞,﹣1] D.(3,+∞)3.已知x,y∈R,且x>y>0,若a>b>1,则一定有()A.log a x>log b y B. a x>b yC.ay>bx D.sin a x>sin b y4.已知向量=(2,2),若(+3)⊥,则在上的投影是()A.B.﹣ C.D.﹣5.《算法统宗》里有一段叙述:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,数学试卷第1页共3页务要分明依次第,孝和休惹外人传”,意思是将996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止分配时一定要等级分明,使孝顺子女的美德外传,则第二和第七个孩子分得棉的斤数之和为()A.255B.249C.176D.1676.已知向量,且向量与向量平行,则3x+2y的最大值为()A.4 B.3 C.2 D.17.已知直线l经过第二、四象限,则直线l的倾斜角α的取值范围是( )A.0°≤α<90° B.90°<α<180° C.90°≤α<180° D.0°<α<180°8.已知等比数列{a n}中,若a5+a7=8,则a4(a6+2a8)+a3a11的值为()A.8 B.128 C.16 D.649.△ABC是边长为4的等边三角形,,则=()A.﹣2 B.14 C.10 D.1210.已知正项数列{a n}的首项为1,{a n2}是公差为3的等差数列,则使得a n>6成立的n的最小值为()A.14 B.11 C.12 D.1311.已知向量,,,△ABC的重心为G,则与的夹角的余弦值是()A.B.C.D.12.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.11 B .12 C .10 D .13数学试卷第2页共3页第Ⅱ卷(非选择题)二.填空题(共4小题,每题5分)13.向量与向量共线且反向,则x=14.若关于x的一元二次不等式ax 2+2ax+1>0的解集为R,则实数a的取值范围是15.已知a1=4,a n a n+1=2﹣a n+1,,n∈N*,设数列{b n}的前n项和为S n,则S n=.16.已知不等式mx2+nx﹣3<0的解集为(﹣3,1),若曲线|y|=n x+1与直线y=b没有公共点,则b的取值范围是.三.解答题(共6小题,17题10分,18-22题12分)17.(10分)已知,,与的夹角为150°.(Ⅰ)求的值;(Ⅱ)若k为实数,求的最小值.18.(12分)已知数列{a n}的前n项和S n和通项a n满足2S n+a n=1(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等差数列{b n}中,b1=3a1,b2=2,求数列{a n+b n}的前n项和T n.19.(12分)已知正实数x,y满足等式2x+5y=20.(1)求u=lgx+lgy的最大值;(2)若不等式+4m恒成立,求实数m的取值范围.20.(12分)已知数列{a n}满足,且a1=1.数学试卷第3页共3页(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和S n.21.(12分)已知,,令.(Ⅰ)求f(x)的最小正周期及的解集;(Ⅱ)锐角△ABC中,,边,求△ABC周长最大值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设.(1)求a,b的值(2)若不等式f(log2x)﹣2k log2x≥0在x∈[2,4]上有解,求实数k的取值范围;(3)若有三个不同的实数解,求实数k的取值范围.鸡西市第一中学2020学年度高一学年下学期期中考试数学考试试题参考答案与试题解析一.选择题(共12小题)1—6 ACBBBC7—12BDCDDA二、填空题13.﹣214.(0,1).数学试卷第4页共3页15.1﹣16.[-1,1]三.解答题(共6小题)17.已知,,与的夹角为150°.(Ⅰ)求的值;(Ⅱ)若k为实数,求的最小值.【分析】(Ⅰ)直接展开代入已知条件即可求解;(Ⅱ)对其平方结合二次函数的性质即可求解【解答】解:(Ⅰ)因为,,与的夹角为150°,,所以.(5分)(Ⅱ),(8分)当k=1时,(9分)的最小值为1,即的最小值为1.(10分)【点评】本题考查了数量积运算性质、二次函数的性质,考查了推理能力与计算能力,属于基础题.18.已知数列{a n}的前n项和S n和通项a n满足2S n+a n=l(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等差数列{b n}中,b1=3a1,b2=2,求数列{a n+b n}的前n项和T n.数学试卷第5页共3页【分析】(1)先由数列{a n}的前n项和S n和通项a n的关系式求出相邻项之间的关系,判断出数列{a n}的类型,再求出通项公式;(2)先由题设条件求出b n,再结合(1)中的a n求出a n+b n,最后求出T n.【解答】解:(1)当n=1时有2S1+a1=1=3a1,解得a.(1分)又∵2S n+a n=l(n∈N*)①,∴2S n+1+a n+1=1 ②.由②﹣①可得:2(S n+1﹣S n)+a n+1﹣a n=0=2a n+1+a n+1﹣a n即a n+1=,(4分)所以数列{a n}是以为首项,以为公比的等比数列.(5分)∴a n=()n.(6分)(2)∵等差数列{b n}中,b1=3a1=1,b2=2,∴b n=n,(8分)a n+b n=()n+n.(10分)∴T n=[]+(1+2+3+…n)==+.(12分)【点评】本题考查等比数列的定义及通项公式和数列求和中的分组求和,考查了推理能力与计算能力,属于中档题.19.已知正实数x,y满足等式2x+5y=20.(1)求u=lgx+lgy的最大值;(2)若不等式+4m恒成立,求实数m的取值范围.【分析】(1)由已知结合对数的运算性质及基本不等式即可求解;数学试卷第6页共3页(2)由已知可求的最小值,然后结合不等式的恒成立与最值关系的相互转化可求.【解答】解:(1)因为x>0,y>0,由基本不等式,得.又因为2x+5y=20,所以,xy≤10,(2分)当且仅当,即时,等号成立.此时xy的最大值为10.所以u=lgx+lgy=lgxy≤1g10=1.(4分)所以当x=5,y=2时,(5分)u=lgx+lgy的最大值为1;(6分)(2)因为x>0,y>0,所以,(9分)当且仅当x=5y,即时x=20/3,y=4/3等号成立.(10分)所以的最小值为.不等式恒成立,只要,解得.所以m的取值范围是.(12分)【点评】本题主要考查了利用基本不等式求解最值及不等式的恒成立与最值的相互转化关系的应用.20.已知数列{a n}满足,且a1=1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和S n.数学试卷第7页共3页【分析】(1)将已知等式两边同除以n(n+1),可得﹣==﹣,再由数列的恒等式计算可得所求通项公式;(2)求得b n=(2n﹣1)•()n﹣1,再由错位相减法求和,结合等比数列的求和公式,计算可得所求和.【解答】解:(1)由,可得:﹣==﹣,(2分)由=+(﹣)+(﹣)+…+(﹣)=1+1﹣+﹣+…+﹣=2﹣,(4分)所以a n=2n﹣1,n∈N*;(6分)(2)=(2n﹣1)•()n﹣1,(7分)S n=1•1+3•+5•()2+…+(2n﹣1)•()n﹣1,S n=1•+3•()2+5•()3+…+(2n﹣1)•()n,两式相减可得S n=1+2[+()2+…+()n﹣1]﹣(2n﹣1)•()n=1+2•﹣(2n ﹣1)•()n,(10分)化简可得S n=3﹣(n+1)•()n﹣1.(12分)【点评】本题考查数列的通项公式的求法,注意运用数列的恒等式,考查数列的求和:错位相减法,考数学试卷第8页共3页查化简运算能力和推理能力,属于中档题.21.已知,,令.(Ⅰ)求f(x)的最小正周期及的解集;(Ⅱ)锐角△ABC中,,边,求△ABC周长最大值.【分析】(Ⅰ)先根据数量积以及三角函数的有关知识整理解析式,进而求解结论即可.(Ⅱ)先根据条件求出角A,根据正弦定理表示出周长,结合角的范围即可求解.【解答】解:(Ⅰ)=,(2分)∴T=π,(3分)∵,∴,∴,k∈Z,∴的解集是.(5分)(Ⅱ),∴,∴,(7分)∵,∴==,(9分)∵锐角三角形且角,∴,(10分)当时,(11分)a+b+c最大为,∴△ABC周长最大值为.(12分)数学试卷第9页共3页【点评】本题考查了数量积运算性质、三角函数的性质,考查了推理能力与计算能力,属于中档题.22.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设.(1)求a,b的值(2)若不等式f(log2x)﹣2k log2x≥0在x∈[2,4]上有解,求实数k的取值范围;(3)若有三个不同的实数解,求实数k的取值范围.【分析】(1)由函数g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在区间[2,3]上是增函数,故g (2)=1,g(3)=4,由此解得a、b的值;(2)不等式可化为log2x+﹣2≥2k log2x在x∈[2,4]上有解,即2k≤﹣+1在x∈[2,4]上有解,通过换元法和对数函数的单调性,以及二次函数的单调性求得不等式右边函数的最大值,即可得到所求范围;(3)原方程化为|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,(|2x﹣1|≠0),令|2x﹣1|=t,则t2﹣(2+3k)t+(1+2k)=0(t≠0),构造函数h(t)=t2﹣(2+3k)t+(1+2k),通过二次方程实根分布,可得k的不等式组,即可求得k的范围.【解答】解:(1)函数g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,因为a>0,所以g(x)在区间[2,3]上是增函数,故,即,解得;(3分)(2)由(1)可得f(x)==x+﹣2,不等式f(log2x)﹣2k log2x≥0在x∈[2,4]上有解,数学试卷第10页共3页等价为log2x+﹣2≥2k log2x在x∈[2,4]上有解,即2k≤﹣+1在x∈[2,4]上有解,(5分)令t=,则2k≤t2﹣2t+1,∵x∈[2,4],∴t∈[,1],则函数m(t)=t2﹣2t+1在t∈[,1]递减,可得m(t)的最大值为m()=,则2k≤,即k≤;(7分)(3)原方程可化为|2x﹣1|2﹣(3k+2)|2x﹣1|+(2k+1)=0,可令t=|2x﹣1|,则t>0,由题意可得t2﹣(3k+2)t+(2k+1)=0有两个不等实根t1,t2,其中0<t1<1,t2>1或0<t1<1,t2=1,设h(t)=t2﹣(3k+2)t+(2k+1),则或,解得k>0或k∈∅,则k的取值范围是(0,+∞).(12分)数学试卷第11页共3页。

高一数学期中考试试题及答案

高一数学期中考试试题及答案

1.已知全集 U={0, 1 , 2, 3, 4},2.设集合M x 0 x 2 , N高一数学期中考试试题第I 卷选择题(共60 分)、选择题:(本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合 题目要求的) M={0 , 1, 2} , N={2 , 3},则(C u M )n N =A • 2,3,4B • 2C • 3D •0,1,2,3,4y 0 y 2 ,给出如下四个图形,其中能表示从集合 M 到集合N 的A.[ 4, )B. [0,5]C. [ 4,5] 25. 3log342733lg0.01 lneA. 14B. 0C. 1 6.在映射f : AB 中,A B{(x,y)|x, y 在集合B 中的像为A. ( 1, 3)B. (1,3)C. (3,1)D. [ 4,0]D. 6R},且 f : (x, y) (x y, x y),则 A 中的元素(1,2)D. ( 3,1)7.三个数a 0.312, b log 20.31 , c 2。

31之间的大小关系为函数关系的是3.设 f x 3x 3x 8,用二分法求方程 3x 3x 8 1,2内近似解的过程中得 f 1 0, f 1.5 0, f 1.25 0 ,则方程的根落在区间 A. (1,1.25) B. (1.25,1.5) C.(1.5,2) D. 不能确定 4.二次函数f (x ) x 24x (x [0,5])的值域为12.若函数f (x)为定义在R 上的奇函数,且在(0,)内是增函数,又f(2) 0,则不等式xf(x) 0的解集为-A . ( 2,0) U(2,)B. ( , 2)U(0,2) 一已知函数y f (x)在R 上为奇 函数,且当 x 0时, f(x) x 22x ,贝析式为A . f(x) x(x 2)B .f(x) x(x 2) C. f(x) x(x 2)D.f(x)x(x 2)函数y a x 与ylog a x(a 0,且a 1)在同一坐标系中的图像只可能是8. x 0时,函数f(x)的解10.设 log a 2 2 0,则9. A. 0 B. D.11.函数 f(x) 4x 5在区间[0, m ]上的最大值为5, 最小值为1,则实数m 的取值范围是A.[2,B.[2,4] C. [0,4] D.(2,4] C. ( , 2)U(2,) D. ( 2,0) (0,2)13.函数 f(X )2x 3 (x Xz2(x 2),则f [f( 3)]的值为2)x 0在区间 a, b 上高一数学期中考试答题卷、选择题:(本大题小共12题,每小题5分,共60分•在每小题给出的四 第II 卷非选择题(共90分)、填空题:(本大题共4小题,每小题4分,共16 分)14.计算: log 4 3 log 9 815. 二次函数y kx 24x 8在区间[5,20]上是减少的,则实数 k 的取值范围为 _____________________ 16. 给出下列四个命题:① 函数y |x|与函数y c x)2表示同一个函数;② 奇函数的图像一定通过直角坐标系的原点;2 2③ 函数y 3(x 1)的图像可由y 3x 的图像向右平移1个单位得到; ④若函数f (x)的定义域为[0,2],则函数f(2x)的定义域为[0,4]; ⑤设函数f x 是在区间a,b 上图像连续的函数,且 f a f b 0 ,则方程 至少有一实根;个选项中,只有一项是符合题目要求的)其中正确命题的序号是________________ •(填上所有正确命题的序号)已知函数f(x) 2x1 2x 1 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分12分)已知全集U R,集合A XX 4,或x 1,B x 3 x 1 2,(1)求AB、(C U A) (QB);(2)若集合M x2k 1 x 2k 1是集合A的子集,求实数k的取值范围.18. (本题满分12分)⑴判断函数f(x)的奇偶性,并证明;⑵利用函数单调性的定义证明: f (x)是其定义域上的增函数19. (本题满分12分)已知二次函数f(x) x2 2ax 1 a在区间0,1上有最大值2,求实数a的值20. (本题满分12分)函数f (x) log a(3 ax)(a 0,a 1)(1)当a 2时,求函数f (x)的定义域;(2)是否存在实数a,使函数f (x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售 400枚,而每增加一元则减少销售 100 枚,现设每枚纪念章的销售价格为X元.(1) 写出该专营店一年内销售这种纪念章所获利润y(元)与每枚纪念章的销售价格x(元)的函数关系式(并写出这个函数的定义域);(2) 当每枚纪念章销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出最大值.22. (本题满分13分)设f(X)是定义在R上的奇函数,且对任意 a、b R,当a b 0时,都有丄® 理0. a b(1)若a b,试比较f (a)与f (b)的大小关系;(2)若f(9X2 3X) f (2 9X k) 0对任意x [0,)恒成立,求实数k的取值范围题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDBCBDCAABBD• 2分 • 4分6分 10分12分 • 1分x 1 x 22x1参考答案131 13.15・(,0)(0, ] 16.8 410三、解答题: 17.(1)B x 3 x 1 2 x 2 x 3ABx1x 3 ,(C U A) (C U B) xx1,或x 3(2)由题意:2k 11 或 2k 14 ,5解得:k 1或k 5.218.(1) f (x)为奇函数.2x2, 2x1 2x20,又 2x11 0,2x210,又 f( x)2 %1 1 2x2X1 f (x)2 x 1 1 2x2X 1f (x)为奇 :函数(2) f(x) 1 22x 1任取 x 1、 x 2 R , 设x 1 X 2 ,2x 1 0, f (x)的定义域为R , 2f(xj f(X 2)(1 J J(1 X 21)2(11)2(2x1 2x2) 0 1)(2x21)f(xj f(X 2)0, f(xjf(X 2).f (x)在其定义域R 上是增函数12分、选择题: 、填空题:③⑤19.函数f (x)的对称轴为:x a ,当a 0时,f(x)在[0,1]上递减, f (0) 2,即1 a 2, a 1 ;当0 a 1时,f(x)在[0,a ]递增,在[a,1]上递减, 与0 a 1矛盾;综上:a 1或a 2 20. ( 1 )由题意:f(x) log 2(3 2x), 3 2x f (a)2,即 a 2a 12,解得:a12分0,即 卩 x所以函数f(x)的定义域为( (2)令 u 3 ax ,则 u 3 ax 在[1,2]上恒正, a 0, a 3 a 2 0,即卩 a (0,1) (%)又函数f(x)在[1,2]递减, u 3 ax 在[1,2]上单调递减, 1,即 又 函数f (x)在[1,2]的最大值为 1, f(1) 即 f (1) log a (3 a 1) 1,3 ax 在[1,2]上单调递减,a d,|)11分 3 3 a 2与a (1,2)矛盾,12分依题意y[2000 400(20 x)](x 7), 7 x 20, x N [2000 100(x 20)](x 7), 20 x 40, x N400[(x 2佝281],7 x20, x Ny47 21089100[(x 2)4 ], 20 x 40, x N定义域为x N 7 x 40400[(x 16)2 81], 7 x 20, x Na 不存在. ⑵•- y 2 100[(x 21. (1) •••当 0 当20 综上:当x 16时, x 20时,则x ^089], 20 x 40,x N ' 4 16 , Y max 32400 (元)47 2 , Y max该特许专营店获得的利润最大为 x 40时,则x 27225 (元) 32400 元. 10分13分22. (1)因为a b ,所以a b 0 ,由题意得: ―0,所以 f(a) f( b) 0 , a b又f (x)是定义在R 上的奇函数,f (9x 2 3x ) f (2 9x k) 0对任意x[0, )恒成立,f (9x 2 3x )f (2 9x k) ,即 f(9x 2 3x)f(k 2 9x ),.....9分9x 2 3xk 2 9x,k x3 92 3 x对任意 x [0,)恒成立,即k 小于函数u 3 9X2 3X,x [0,)的最小值...... 11分xxx21 2 1令 t 3x,则 t [1,) u 3 9x 2 3x 3t 22t 3(t- 1, 3 3k 1..... 13 分。

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。

高一数学必修一期中考试试题及答案

高一数学必修一期中考试试题及答案

考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。

2020年全国新高考II卷数学试题真题及答案(完整版)

2020年全国新高考II卷数学试题真题及答案(完整版)

在① ac 3 ,② c sin A 3 ,③ c 3b 这三个条件中任选一个,补充在下面问题中,若问题中 三角
形存在,求 c 值;若问题中 三角形不存在,说明理由.
问题:是否存在 △ABC ,它 内角 A, B,C
对边分别为 a,b, c ,且 sin A
3
sin
B

C
6
,________?
( 2)若 f( x)≥1,求 a 取值范围.
6 6
加油!你一定行!
真题在手 何必模拟
认真刷题 必过 加油
全卷完
1.考试顺利祝福语经典句子
1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理 想的学校。我真心地祝福你们。 3、试纸浸墨香,金笔下千言。思虑心平定,谨慎落笔闲。且喜平常度,切忌 神慌乱。畅游题海后,金榜题君名。考试在即,祝你成功。 4、亲爱的同学,期末考试来了,愿你们考出好成绩,考到自己理想的成绩。 5、努力吧!不管结果怎样,经历过,总会有结果的!期中考试的朋友们,为 你们祝福,也为自己祈祷!愿梦开始的地方,也是梦想实现的地方!嗯嗯,加油, 嗯,加油! 6、相信你们一定会有很多想说却未言的话,总之走过了,哭过了,笑过了, 就不会有遗憾!带上我们的祝福去打造另外一片属于自己的天空吧! 7、祝愿天下所有考生开心度过期中考试。祝福你们旗开得胜,取得美好佳 绩。平心对待,你们是最棒的!仁慈的上帝会祝福你们的,相信自己,一定能行! 8、眼看考试就要来了,向前看,相信自己,我会在远方为你送去最真挚的祝 福,付出就会有收获的! 9、又是一年年终了,期末考试转眼到。寒窗苦读为前途,望子成龙父母情。 我发短信传祝福:放下包袱开动脑筋,勤于思考好好复习,祝你取得好成绩! 10、信心来自于实力,实力来自于勤奋。我看到了你的努力,相信你一定能在 考试中取得好成绩!

2022—2023学年度广东省茂名市第一中学高一第二学期期中考试数学试题及答案

2022—2023学年度广东省茂名市第一中学高一第二学期期中考试数学试题及答案

茂名市第一中学2022—2023学年度第二学期期中考试高一数学试卷考试时间:120分钟总分:150分一、单项选择题(本大题共8小题,每小题5分,共40分)1.设z =1+2i ,则在复平面内z 的共轭复数对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.=()A .B .C .D .3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1,3,3===b a A π,则c 等于()A .2B .C .D .4.一梯形的直观图是如图所示的等腰梯形,且直观图OA ′B ′C ′的面积为2,则原梯形的面积为()A .2B .22C .24D .45.为了得到函数ππsin 3cos cos3sin 33y x x =+的图象,可以将函数sin 3y x =图象()A.向左平移π个单位B.向左平移π9个单位C.向右平移π个单位D.向右平移π9个单位6.在空间中,下列命题正确的是()A .三点确定一个平面B .若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行C .两两相交且不共点的三条直线确定一个平面D .如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行7.在ABC 中,已知2cos c a B =⋅,那么ABC 一定是()A.等腰直角三角B.等腰三角形C.直角三角形D.等边三角形8.已知中,,,点D 是AC 的中点,M 是边BC 上一点,的最小值是()A. B. C. D.二、多选题(本大题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分。

)9.复数i z 2321+=,i 是虚数单位,则下列结论正确的是()A.z 的实部是21 B.z 的共轭复数为3122i +C.z 的实部与虚部之和为2 D.z 在复平面内的对应点位于第一象限10.已知平面向量()1,0a =,(1,b = ,则下列说法正确的是()A.||16a b +=B.()2a b a +⋅= C.33,cos >=<→→b a D.向量+a b在a 上的投影向量为2a11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的有()A .若sin A >sinB ,则A >BB .若sin2A =sin2B ,则△ABC 一定为等腰三角形C .若cos 2A +cos 2B ﹣cos 2C =1,则△ABC 为直角三角形D .若△ABC 为锐角三角形,则sin A <cos B 12.如图,在直三棱柱中,,,,侧面的对角线交点O ,点E 是侧棱上的一个动点,下列结论正确的是()A.直三棱柱的体积是1B.直三棱柱的外接球表面积是C.三棱锥的体积与点E 的位置有关D.的最小值为三、填空题(每小题5分,共20分)13.设复数z 满足其中i 是虚数单位,则__________.14.圆锥的半径为2,高为2,则圆锥的侧面积为.15.非零向量→a =(sin θ,2),=(cos θ,1),若→a 与共线,则tan (θ﹣4π)=.16南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即])2([41222222b a c a c S -+-=(其中S 为三角形的面积,a ,b ,c 为三角形的三边).在斜△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若)cos 3(cos C B c a +=,且B C a sin 3sin =.则此△ABC 面积的最大值为.四、解答题(本大题共6小题,共70分)17.(10分)已知向量→a =(1,1),→b =(2,﹣3).(1)若→c =2→a +3→b ,求→c 的坐标;(2)若→a λ﹣2→b 与→a 垂直,求λ的值.18.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足bc a c b -=-22)(.(1)求角A 的大小;(2)若a =2,sinC =2sinB ,求△ABC 的面积.19.(12分)(1)已知正四棱锥的底面边长是6,侧棱长为5,求该正四棱锥的体积;(2)如图(单位:cm ),求图中阴影部分绕AB 旋转一周所形成的几何体的体积.20(12分)已知函数x x x x f 4cos 212sin )1cos 2()(2+-=.(1)求f (x )的最小正周期及单调递减区间;(2)若α∈(0,π),且22)84(=-παf ,求α的值.21.(12分)如图,在四棱锥P ﹣ABCD 中,E 是线段PD 上的点,且,PA =PD =AD =3,32CE =,BC ∥AD ,∠ADC =45°.(1)求证:CE ∥平面PAB ;(2)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN ∥平面PAB ?若存在,求出MN 的最小值;若不存在,说明理由.22.(12分)借助国家实施乡村振兴政策支持,某网红村计划在村内扇形荷花水池OAB 中修建荷花观赏台,助推乡村旅游经济.如图所示,扇形荷花水池OAB 的半径为20米,圆心角为π4.设计的荷花观赏台由两部分组成,一部分是矩形观赏台MNPQ ,另一部分是三角形观赏台AO C.现计划在弧AB 上选取一点M ,作MN 平行OA 交OB 于点N ,以MN 为边在水池中修建一个矩形观赏台MNPQ ,NP 长为5米;同时在水池岸边修建一个满足AO OC =且2COA AOM ∠=∠的三角形观赏台AOC ,记)46(ππ<≤=∠x x AOM .(1)当π6AOM ∠=时,过点M 作OA 的垂线,交OA 于点E ,过点N 作OA 的垂线,交OA 于点F,求ME ,OF 及矩形观赏台MNPQ 的面积;(2)求整个观赏台(包括矩形观赏台和三角形观赏台两部分)面积的最大值.茂名市第一中学2022—2023学年度第二学期期中考试高一数学试卷答案1【答案】D .解:∵z =1+2i ,∴z 的共轭复数=1﹣2i ,对应的点为(1,﹣2),故在第四象限,2【答案】D解:根据向量的线性运算法则,可得.3【答案】A解:,则由余弦定理可得,3=1+c 2﹣2c ×1×cos=1+c 2﹣c ,∴c 2﹣c ﹣2=0,解得c =2或﹣1(舍).4【答案】C解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a ,下底为b ,高为h ,则直观图中等腰梯形的高为h ′=h sin45°;∵等腰梯形的体积为(a +b )h ′=(a +b )•h sin45°=2,∴(a +b )•h ==4∴该梯形的面积为4.5【答案】B【详解】依题意,ππππsin 3coscos3sin sin(3)sin 3(3339y x x x x =+=+=+,所以函数sin 3y x =图象向左平移π9个单位可得πsin 3()9y x =+的图象.6【答案】C解:对于A ,不共线的三点确定一个平面,故A 错误;对于B ,l ∥α,则l 与平面α内的直线平行或异面,故B 错误;对于C ,由平面基本性质及其推论得:两两相交且不共点的三条直线确定一个平面,故C 正确;对于D ,如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行或在这个平面内,故D 错误.7【答案】B解:已知2c a cosB =,则:2sinC sinAcosB =,整理得:()2sin A B sinAcosB +=,则:()0sin A B -=,所以:A B =.8.【答案】B解:根据题意,建立图示直角坐标系,,,则,,,,是边BC上一点,设,则,,,当时,取得最小值,9【答案】ACD解:由题得A 正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,22,位于第一象限,则D 正确.10【答案】BD解:((11,02,2a b +=++= ,所以4a b +==,故A错误;()1202a a b ⋅+=⨯+⨯=,故B 正确;1313,cos =⋅>=<→→→→→→ba b a b a ,向量+a b 在a 上的投影向量为()2·21a ab a a a a a ⋅+=⨯=,故D 正确.11【答案】AC【解答】解:对于A ,若sin A >sin B 成立,由正弦定理可得a >b ,所以A >B ,故正确;对于B ,由sin2A =sin2B ,得到2A =2B 或2A +2B =π,可得A =B 或A +B =,则△ABC为等腰三角形或直角三角形,故错误;对C ,若cos 2A +cos 2B ﹣cos 2C =1,可得若(1﹣sin 2A )+(1﹣sin 2B )﹣(1﹣sin 2C )=1,整理得:sin 2A +sin 2B =sin 2C ,可得a 2+b 2=c 2.可得△ABC 为直角三角形,故正确;对于D ,若△ABC 是锐角三角形,则A +B +C =π,A +B >,A >﹣B ,A 、B 、C 均是锐角,由正弦函数在(0,)递增,所以:sin A >sin (﹣B )=cos B ,故错误.12【答案】AD解:在直三棱柱中,,,所以其体积V=Sh=121121=⨯⨯⨯,故A 正确;对于B ,由直三棱柱结构特征及外接球的对称性可得,其外接球即为长宽高分别为2,1,1的长方体的外接球,所以其外接球半径为,所以其外接球的表面积为,故B 错误;由平面,且点E 是侧棱上的一个动点,,三棱锥的高h 为定值,,,故三棱锥的体积为定值,故C 错误;将四边形沿翻折,使四边形与四边形位于同一平面内,此时,连接与相交于点E ,此时最小,即,故D 正确.13【答案】解:,故14【答案】解:如图,圆锥的母线,圆锥的侧面展开图为扇形,故侧面积为,.15【答案】【解答】解:∵向量=(sin θ,2),=(cos θ,1),且与共线,∴=2,即tan θ=2,则tan(θ﹣)===.16【答案】解:∵,∴sin A=sin C(cos B+cos C),即sin C cos B+sin C cos C=sin(B+C)=sin B cos C+cos B sin C,即sin C cos C=sin B cos C,又C∈(0,π)且C≠,∴sin B=sin C,∴b=c,又.∴ac=b,解得a=3,===,当c=3时,S max=.17解:(1)∵=(1,1),=(2,﹣3),∴=2+3=2(1,1)+3(2,﹣3)=(8,﹣7); 4分(2)λ﹣2=λ(1,1)﹣2(2,﹣3)=(λ﹣4,λ+6), 6分∵λ﹣2与垂直,∴1×(λ﹣4)+1×(λ+6)=0, 9分即λ=﹣1. 10分18解:(1)因为(b﹣c)2=a2﹣bc,可得b2+c2﹣a2=bc, 2分所以cos A==, 3分又A∈(0,π),所以A=. 5分(2)因为sin C=2sin B,由正弦定理可得c=2b, 6分又a=2,由余弦定理可得a2=b2+c2﹣2bc cos A,可得4=b2+c2﹣bc, 8分解得b=,c=, 10分所以S△ABC=bc sin A=××= 12分19【解答】解:(1)正四棱锥的底面边长是a=6,侧棱长为l=5,所以正四棱锥的高为h==, 2分所以正四棱锥的体积为V=Sh=×62×=12; 5分(2)图中阴影部分绕AB旋转一周所形成的几何体,是圆台挖去一个半球,圆台的体积为V圆台=π(r2+rr′+r′2)h=×(22+2×5+52)×4=52π, 8分半球的体积为V半球=πr3=×23=, 10分所以该几何体的体积为V=V圆台﹣V半球=52π﹣=3140(cm3). 12分20【答案】(1);;(2).【解答】解:(1)∵f(x)=(2cos2x﹣1)sin2x+cos4x=cos2x sin2x+cos4x 1分=(sin4x+cos4x)=sin(4x+), 3分∴f(x)的最小正周期T=, 4分令,可得,∴f(x)的单调递减区间为; 6分(2)∵f()=,∴, 8分∵α∈(0,π),,∴, 10分∴ 12分21【解答】(1)证明:如图1,在PA上取点F使,连接EF,BF,如图示:∵,∴EF∥AD且, 1分又BC∥AD,且, 2分∴EF∥AD,EF=AD,∴四边形BCEF为平行四边形,∴CE∥BF, 3分而CE⊄平面PAB, 4分BF⊂平面PAB,则CE∥平面PAB. 5分(2)解:线段AD上存在点N且,使得MN∥平面PAB;理由如下:如图2,在AD上取点N使,连接CN,EN,如图示:∵,,∴EN∥PA, 6分∵EN⊄平面PAB,PA⊂平面PAB,∴EN∥平面PAB; 7分由(1)知CE∥平面PAB,又CE∩EN=E,∴平面CEN∥平面PAB,又M是CE上的动点,MN⊂平面CEN,∴MN∥平面PAB, 8分∴线段AD上存在点N,使得MN∥平面PAB.∵BC∥AN,BC=AN,∴ND=2, 9分在△CND中,∠ADC=45°,,由余弦定理知CN=2. 10分在△CEN中,CN=NE=2,,∴由余弦定理知∠CNE=120°,∴MN 的最小值为, 11分∴线段AD 上存在点N ,使MN ∥平面PAB ,且MN 的最小值为1. 12分22.【详解】(1)当π6AOM ∠=时,则π1sin 201062ME OM =⋅=⨯=. 2分πcos 2062OE OM =⋅=⨯=. 3分过N 作OA 的垂线,交AO 于点F ,NF ME =.∵π4AOB ∠=,10OF NF ==,∴10MN OE OF =-=-. 4分因为5NP =.矩形MNPQ 的面积())510501S MN NP =⋅=⨯=-平方米.所以矩形观赏台MNPQ 的面积)501平方米. 5分(2)由题意可知,AOM x ∠=,π4AOB ∠=,π4MON x ∠=-,3π4MNO ∠=,在OMN 中,由sin sin MN OM MON MNO =∠∠,得()cos sin 20cos sin MN OM x OM x x x =-=-. 6分矩形MNPQ 的面积()()1520cos sin 100cos sin S MN NP x x x x =⋅=⨯-=-.7分观赏台AOC 的面积211sin 2020sin 2200sin 222S OA OC AOC x x =⋅⋅∠=⨯⨯=.整个观赏台面积()12100cos sin 200sin 2S S S x x x=+=-+. 8分设πcos sin 4t x x x ⎛⎫=-=+ ⎪⎝⎭,46(ππ<≤x ,∴.2130-≤<t 9分()2222cos sin cos sin 2sin cos 1sin 2t x x x x x x x =-=+-=-.∴2sin 21x t =-. 10分∴()100cos sin 200sin 2S x x x =-+()2211002001200212.54t t t ⎛⎫=+-=--+ ⎪⎝⎭.当]213,0(41-∈=t 时,整个观赏台观赏台S 取得最大值为212.5平方 11分∴整个观赏台的面积S 的最大值为212.5平方米. 12分。

甘肃省兰州市第一中学2020-2021学年高一下学期期中考试数学试题(解析版)

甘肃省兰州市第一中学2020-2021学年高一下学期期中考试数学试题(解析版)

兰州一中2020-2021-2学期高一年级期中考试试题参考答案数学命题:何乃文 审题:陈小豹本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.将两个数1,2a b ==交换,使2,1a b ==,下列语句正确的是( ).A .=,=a b b aB .=,=b a a bC .=,=,=a c c b b aD .=,=,=c b b a a c 2.袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是( ) A .“至少有一个黑球”和“没有黑球”B .“至少有一个白球”和“至少有一个红球”C .“至少有一个白球”和“红球黑球各有一个”D .“恰有一个白球”和“恰有一个黑球”3.已知实数,x y 满足22430x y x +-+=,则 )AB .C .1D .24.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( ) A .55件B .40件C .33件D .22件5.某公司在2016-2020年的收入与支出如下表所示:根据表中数据可得回归方程为ˆ0.8a yx =+,依此估计2021年该公司收入为8亿元时支出为( ) A .4.2亿元B .4.4亿元C .5.2亿元D .5.4亿元6.下列各数中最大的数是( ) A .()985B .()6210C .()41000D .()21111117.根据下面茎叶图提供了甲、乙两组数据,可以求出甲、乙的中位数分别为( )A .24和29B .26和29C .26和32D .31和298.我校高中数学兴趣小组在国际数学日(每年3月14日)开展相关活动,其中一个活动是用随机模拟实验的方法获得π的近似值.现通过计算器随机获得500个点的坐标(x ,y )()01,01x y <<<<,其中有399个点的坐标满足221x y +≤,据此可估计π的值约为( ) A .3.19B .3.16C .3.14D .3.119.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得的新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( ) A .40.6, 1.1B .48.8, 4.2C .81.2, 44.4D .78.8, 75.610.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .[-B .(,)-∞-⋃+∞C .(-D .(-11.从标有1、2、3、…、9的9张纸片中任取2张,那么这2张纸片数字之积为偶数的概率是( ) A .1318B .1118C .718D .1212.曲线1y =与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( ) A .5012⎛⎫ ⎪⎝⎭, B .5+12⎛⎫∞ ⎪⎝⎭, C .1334⎛⎤ ⎥⎝⎦, D .53124⎛⎤⎥⎝⎦,第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.一个容量为n 的样本分成若干个小组,已知某组的频数和频率分别是48和0.3,则n =________. 【答案】16014.下图是一个算法的流程图,则输出的e 值是_______【答案】515.由点(1,3)P -向圆222220x y x y ++--=作的切线方程为___________. 【答案】1x =或3490x y ++=16.在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得,PA PC PD ==,则实数a 的取值范围是 .(注:PA 表示点P 与点A 之间的距离)【答案】1⎡⎤-⎣⎦三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题10分)同学小王通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书. 求小王周末不在家看书的概率.解析:∵去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,……………3分 去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116, ……………6分 ∴不在家看书的概率为P =34+116=1316.故小王周末不在家看书的概率:1316 ……………10分18.(本小题12分)已知直线:30l kx y k --=与圆22:8290M x y x y +--+=.(Ⅰ)求证:直线l 必过定点,并求该定点; (Ⅱ)当圆M 截直线l 所得弦长最小时,求k 的值.【解析】(Ⅰ)证明:直线l 方程可化为:()30k x y --=, 对上式中,当3,0x y ==时,不论k 取何值,等式恒成立,所以直线l 恒过点()3,0A .……………4分(Ⅱ)将圆M 的方程化为:()()22418x y -+-=,圆心为()4,1M ,半径r =由(Ⅰ)知,直线l 恒过点()3,0A ,当圆M 截直线l 所得弦长最小时,则MA 垂直于直线l , ……………8分 即1MA k k ⋅=-.()4,1M ,()3,0A ,10143MA k -∴==-,1k ∴=- 所以当圆M 截直线l 所得弦长最小时,k 的值为1- .……………12分 19.(本小题12分)一只口袋装有形状大小都相同的6只小球,其中2只白球,2只红球,2只黄球,从中随机摸出2只球,试求:(1)2只球都是红球的概率 (2)2只球同色的概率(3)“恰有一只是白球”是“2只球都是白球”的概率的几倍?【解析】记两只白球分别为1a ,2a ;两只红球分别为1b ,2b ;两只黄球分别为1c ,2c 从中随机取2只的所有结果为()12,a a ,()11,a b ,()12,a b ,()11,a c ,()12,a c ,()21,a b ,()22,a b ,()21,a c ,()22,a c ,()12,b b ,()11,b c ,()12,b c ,()21,b c , ()22,b c ,()12,c c 共15种(1)2只球都是红球为()12,b b 共1种,概率115P =……………4分 (2)2只球同色的有:()12,a a ,()12,b b ,()12,c c ,共3种,概率31155P ==……………8分 (3)恰有一只是白球的有:()11,a b ,()12,a b ,()11,a c ,()12,a c ,()21,a b ,()22,a b ,()21,a c ,()22,a c ,共8种,概率815P =; 2只球都是白球的有:()12,a a ,概率115P =……………12分 所以:“恰有一只是白球”是“2只球都是白球”的概率的8倍 20.(本小题12分)某企业为了增加某种产品的生产能力,决定改造原有生产线,需一次性投资300万元,第一年的年生产能力为300吨,随后以每年40吨的速度逐年递减,根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,该设备的使用年限为3年,该产品的销售利润为1万元/吨.(Ⅰ)根据年销售量的频率分布直方图,估算年销量的平均数(x 同一组中的数据用该组区间的中点值作代表);(Ⅱ)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.()i 根据频率分布直方图估计年销售利润不低于180万的概率和不低于220万的概率; ()ii 试预测该企业3年的总净利润.(3年的总净利润3=年销售利润一投资费用)【解析】(Ⅰ)年销量的平均数0.11200.21600.32000.252400.15280206(x =⨯+⨯+⨯+⨯+⨯=吨). (Ⅱ())i 该产品的销售利润为1万元/吨,由频率分布直方图得只有当年平均销量不低于220吨时,年销售利润才不低于220万,∴年销售利润不低于220万的概率0.30.250.150.7P =++=.()ii 由(Ⅰ)可知第一年的利润为:2061206(⨯=万元),第二年的利润为:()0.11200.21600.32000.42401200(⨯+⨯+⨯+⨯⨯=万元), 第三年的利润为:()0.11200.21600.72001184(⨯+⨯+⨯⨯=万元),∴预测该企业3年的总净利润为:206200184300290(++-=万元).21.(本小题12分)我们定义一个圆的圆心到一条直线的距离与该圆的半径之比,叫做直线关于圆的距离比,记作λ.已知圆1C :221x y +=,直线:340l x y m -+=.(Ⅰ)若直线l 关于圆1C 的距离比2λ=,求实数m 的值;(Ⅱ)当0m =时,若圆2C 与y 轴相切于点()0,3A ,且直线l 关于圆2C 的距离比65λ=,试判断圆1C 与圆2C 的位置关系,并说明理由.【解析】(Ⅰ)由直线关于圆的距离的比的定义得:25m =,所以10m =±(Ⅱ)当0m =时,直线:340l x y -=,圆2C 与y 轴相切点于(0,3)A所以可设2C :222()(3)x a y a -+-=3126545a a a -=⇒=-或43①当4a =-时,2C :22(4)(3)16x y ++-=两圆的圆心距5d =,两圆半径之和为145+=,因此两圆外切 ②当43a =时,2C :22416()(3)39x y -+-=两圆的圆心距48433d =-+=大于两圆的半径之和47133+=,因此两圆外离 22.(本小题12分)已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数y (个)和温度x (C )的7组观测数据,其散点图如所示:根据散点图,结合函数知识,可以发现产卵数y 和温度x 可用方程bx ay e+=来拟合,令ln z y =,结合样本数据可知z 与温度x 可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:表中ln i i z y =,7117i i z z ==∑.(Ⅰ)求z 和温度x 的回归方程(回归系数结果精确到0.001);(Ⅱ)求产卵数y 关于温度x 的回归方程;若该地区一段时间内的气温在26~36C C 之间(包括26C 与36C ),估计该品种一只昆虫的产卵数的范围.(参考数据: 3.28227e ≈, 3.79244e ≈,5.832341e ≈, 6.087440e ≈, 6.342568e ≈.) 附:对于一组数据()11,v ω,()22,v ω,…,(),n n v ω,其回归直线ˆˆˆvαβω=+的斜率和截距的最小二乘估计分别为()()()121ˆniii nii v v ωωβωω==--=-∑∑.【解析】(Ⅰ)因为z 与温度x 可以用线性回归方程来拟合,设ˆˆˆz abx =+. ()()()7172146.418ˆ0.255182iii ii x x zz bx x ==--===-∑∑, 所以ˆˆ 3.5370.25527 3.348a z bx=-=-⨯=-, 故z 关于x 的线性回归方程为ˆ0.255 3.348zx =-. (Ⅱ)由(Ⅰ)可得ln 0.255 3.348y x =-, 于是产卵数y 关于温度x 的回归方程为0.255 3.348x y e -=,当26x =时,0.25526 3.3483.28227y ee ⨯-==≈; 当36x =时,0.25536 3.3485.832341y e e ⨯-==≈;因为函数0.255 3.348x y e-=为增函数,故气温在26~36C C 之间时,一只该品种昆虫的产卵数的估计范围是[]27.341内的正整数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下学期期中质量调查数学试题 第Ⅰ卷(选择题 共24分)
一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目
要求的.
1.下列命题正确的是
A.若0a b <<,则 ac bc <
B. 若,a b c d >>,则 ac bd >
C.若a b >,则1a b <
D.若22,0a b
c c c
>≠,则a b > 2.在数列{}n a 中,111,3n n a a a +=-=-,则4a = A. 10- B. 7- C. 5- D. 11
3.若13,24a b <<<<,则a
b
的范围是
A. 1,12⎛⎫ ⎪⎝⎭
B. 3,42⎛⎫ ⎪⎝⎭
C. 13,42⎛⎫
⎪⎝⎭
D.()1,4
4.在ABC
中,已知,24
c A a π
==
=,则角C =
A.
3π B. 23π C. 3π或23π D.12π或512
π
5.已知数列{}n a 为等比数列,有51374a a a -=,{}n b 是等差数列,且77a b =,则59b b +=
A. 4
B. 8
C. 16
D. 0或8
6.在ABC 中,已知sin 2cos sin A B C =,则ABC 的形状时 A. 直角三角形 B. 等腰三角形 C.等腰直角三角形 D.不确定
7.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612
S
S = A. 13 B. 18 C. 19 D.310
8.已知数列{}n a 前n 项和21n
n S =-,则此数列奇数项和前n 项和是
A. ()21213n -
B. ()11213n +-
C. ()21223n -
D. ()11
223
n +-
第Ⅱ卷(非选择题 共76分)
二、填空题:本大题共6小题,每小题4分,共24分.
9.在数列{}n a 中,2
23n a n =-,则125是这个数列的第 项.
10.在ABC 中,三边,,a b c 成等比数列,222
,,a b c 成等差数列,则三边,,a b c 的关系为 .
11.对于任意实数x ,不等式2
3
204
mx mx +-
<恒成立,则实数m 的取值范围是 . 12.在等差数列{}n a 中,已知11a =,前5项和535,S =则8a 的值是 .
13.在ABC 中,若120,5,7,A AB BC ===,则ABC 的面积S = .
14.已知数列{}n a 满足,11232,2n
n n a a a +=+⋅=,则数列{}n a 的通项公式是 .
三、解答题:本大题共6小题,共52分,解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分8分)
已知不等式2
320ax x -+>的解集为{}
|x 1x b x <>或.
(1)求,a b 的值;
(2)解关于x 的不等式()2220ax b a x b ---<.
16.(本小题满分8分)
已知等比数列{}n a 中,11a =,公比为q ,且()
1.n n n b a a n N *+=-∈ (1)判断数列{}n b 是否为等比数列?请说明理由. (2)求数列{}n b 的通项公式.
17.(本小题满分8分)
已知数列{}n a 的前项和2
2 4.n n S +=-
(1)求数列{}n a 的通项公式;
(2)设等差数列{}n b 满足,73154,b a b a ==,求数列{}n b 的前项和.n T
18.(本小题满分12分)
若等比数列{}n a 的前n 项和1.2
n n n S a =- (1)求实数a 的值;
(2)求数列{}n na 的前n 项和.n T
19.(本小题满分10分)
在ABC 中,角,,A B C 的对边分别为,,a b c ,已知45,cos .5
b c A == (1)求sin C 的值; (2)若ABC 的面积为3
sin sin ,2
ABC
S B C =求a 的值.
20.(本小题满分10分)
已知数列{}n a 的前n 项和为n S ,满足11110,2,.n n n n n n n n a a S a S a a n N -*
+++≠-=∈ (1)求证:1
2;n n n S a -=
(2)设1
n
n n a b a +=,求数列{}n b 的前n 项和.n T。

相关文档
最新文档