正弦型函数地图像及指导应用教案设计
正弦型函数教案

正弦型函数y=Asin(ωx+φ)的图象和性质【教学目标】1、用五点法作出正弦型函数y=Asin(ωx+φ)的图象;2、正确理解正弦函数y=sinx的图象与正弦型函数y=Asin(ωx+φ)的图象之间的关系;3、掌握正弦型函数y=Asin(ωx+φ)的性质。
【教学重点】用五点法作出正弦型函数y=Asin(ωx+φ)的图象及正确理解正弦函数y=sinx的图象与正弦型函数y=Asin(ωx+φ)的图象之间的关系。
【教学难点】如何正确描出五个关键点及正弦函数y=sinx与正弦型函数y=Asin(ωx+φ)的图象之间的变换关系。
【教学方法】教师启发引导与学生自主探索相结合【教学过程】【板书设计】正弦型函数y=Asin(ωx+j )的图象与性质教学设计石家庄市第二职业中专韩义平教材分析:职业高级中学课本《数学》人教版第六章6.13正弦型函数y=Asin(ωx+j )的图象与性质,在三角函数中占有重要的地位。
我们知道函数思想在整个高中数学教学中是纲,函数是否学好,直接影响着高中数学的学习。
而三角函数的学习则直接影响着三角的掌握,故正弦型函数y=Asin(ωx+j )的图象与性质能否熟练应用,直接影响着数与形结合。
所以这一节在整个教材中有着非常重要的地位。
而且这一节内容的安排上,体现着由特殊、个别到一般,由简单到复杂,非常符合学生的认知规律。
教学目标及要求:1.通过作y=Asinx,y=sinωx和y=Asin(x+j )的函数图象,并与y=sinx的图象加以比较,使学生理解A、ω、j 的意义,以及对函数图象的影响。
2.进一步巩固五点作图法及掌握三角函数的主要性质。
3.通过数与形的结合,培养学生分析问题、解决问题的能力。
教学重点:五点法作图,A、ω、j 的意义及其对函数图象的影响。
教学难点:1.利用“五点法”作图象列表时,如何确定自变量x。
2.理解A、ω、j 对函数图象的影响。
尤其是ω、j 对函数图象的影响。
(正弦函数、余弦函数的图像)教案设计_

(正弦函数、余弦函数的图像)教案设计_(正弦函数、余弦函数的图像)教案设计(正弦函数、余弦函数的图像)教案设计正弦函数、余弦函数的图像一、内容和内容解析:本节课是高中新教材(数学)必修4§1.4(正弦函数、余弦函数的图象和性质)的第一节,是学生在已把握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。
.为今后学习正弦型函数y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因而,本节课的内容是至关重要的,它对知识的把握起到了承上启下的作用。
二、教学目的〔1〕了解怎样利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。
〔2〕把握“五点法〞画正弦函数、余弦函数的简图。
〔3〕探究利用“五点法〞画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。
〔4〕体验利用图象变换作图的方法,体会数形结合的思想。
三、教学支持条件分析:1.资料的采集“简谐运动〞的实验装置.2.课件的制作采用flash软件辅助设计“简谐运动〞动画,用flash软件或“几何画板〞制作正弦函数图像的几何画法经过.3.活动的准备:利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过老师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、考虑、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习气氛中进行数学思维,使学生更好的发现数学规律。
四、教学经过课题导入:以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都能够通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢?探索新知:1、情景设置:(正弦函数、余弦函数的图像)教案设计(正弦函数、余弦函数的图像)教案设计碰到一个新函数,画出它的图像,通过观察图像获得对它的性质的直观认识,是研究函数的基本方法,为了获得正弦函数和余弦函数的图像,我们先做一个简谐振动的实验,请注意观察它的图形特点。
教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 引入正弦函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的单位圆定义:在一个单位圆上,正弦函数表示的是圆上一点的y 坐标值1.2 绘制正弦函数的图像利用图形计算器或绘图软件,绘制y = sin(x)的图像观察图像的特性:周期性、振幅、相位、对称性等1.3 分析正弦函数的性质周期性:正弦函数的图像每隔2π重复一次振幅:正弦函数的最大值为1,最小值为-1相位:正弦函数的图像向左或向右平移,但不改变其形状第二章:余弦函数的定义与图像2.1 引入余弦函数的概念解释余弦函数的定义:y = cos(x)说明余弦函数的单位圆定义:在一个单位圆上,余弦函数表示的是圆上一点的x 坐标值2.2 绘制余弦函数的图像利用图形计算器或绘图软件,绘制y = cos(x)的图像观察图像的特性:周期性、振幅、相位、对称性等2.3 分析余弦函数的性质周期性:余弦函数的图像每隔2π重复一次振幅:余弦函数的最大值为1,最小值为-1相位:余弦函数的图像向左或向右平移,但不改变其形状第三章:正切函数的定义与图像3.1 引入正切函数的概念解释正切函数的定义:y = tan(x)说明正切函数的定义域:正切函数在除原点以外的所有实数上都有定义3.2 绘制正切函数的图像利用图形计算器或绘图软件,绘制y = tan(x)的图像观察图像的特性:周期性、振幅、相位、对称性等3.3 分析正切函数的性质周期性:正切函数的图像每隔π重复一次振幅:正切函数没有振幅限制,可以无限增大或减小相位:正切函数的图像向左或向右平移,但不改变其形状第四章:正弦型函数的图像与性质4.1 引入正弦型函数的概念解释正弦型函数的定义:y = A sin(Bx C) + D说明正弦型函数的参数:A表示振幅,B表示周期,C表示相位,D表示垂直平移4.2 绘制正弦型函数的图像利用图形计算器或绘图软件,绘制y = A sin(Bx C) + D的图像观察图像的特性:振幅、周期、相位、对称性等4.3 分析正弦型函数的性质振幅:正弦型函数的最大值为A,最小值为-A周期:正弦型函数的图像每隔B个单位重复一次相位:正弦型函数的图像向左或向右平移C个单位垂直平移:正弦型函数的图像向上或向下平移D个单位第五章:正弦型函数的实例分析5.1 分析y = sin(x)的图像和性质利用图形计算器或绘图软件,绘制y = sin(x)的图像分析其振幅、周期、相位、对称性等性质5.2 分析y = cos(x)的图像和性质利用图形计算器或绘图软件,绘制y = cos(x)的图像分析其振幅、周期、相位、对称性等性质5.3 分析y = tan(x)的图像和性质利用图形计算器或绘图软件,绘制y = tan(x)的图像分析其振幅、周期、相位、对称性等性质第六章:正弦型函数的应用6.1 简谐运动解释简谐运动的定义和特点利用正弦函数表示简谐运动的位移、速度、加速度等物理量6.2 电磁波解释电磁波的产生和传播利用正弦函数表示电磁波的振荡电流或电压6.3 音乐信号处理解释音乐信号的振幅和频率特性利用正弦函数表示音乐信号的波形和频谱第七章:正弦型函数的积分与微分7.1 积分讲解正弦型函数的不定积分和定积分利用积分公式计算正弦型函数的定积分值7.2 微分讲解正弦型函数的导数利用导数公式求解正弦型函数的导数值7.3 应用案例利用积分和微分方法解决实际问题,如计算物体的位移、速度、加速度等第八章:正弦型函数的复合与变换8.1 复合函数讲解正弦型函数的复合方法利用复合函数的性质分析复合后的函数图像和性质8.2 函数变换讲解正弦型函数的平移、缩放、反转等变换利用变换公式分析变换后的函数图像和性质8.3 应用案例利用复合和变换方法解决实际问题,如设计电子电路的滤波器、振荡器等第九章:正弦型函数的极限与连续性9.1 极限讲解正弦型函数的极限概念和性质利用极限公式求解正弦型函数的极限值9.2 连续性讲解正弦型函数的连续性概念和性质利用连续性定理判断正弦型函数的连续性9.3 应用案例利用极限和连续性方法解决实际问题,如信号处理、物理现象分析等第十章:正弦型函数的综合应用10.1 正弦型函数在数学领域的应用讲解正弦型函数在几何、代数、微积分等数学领域的应用10.2 正弦型函数在自然科学领域的应用讲解正弦型函数在物理学、生物学、地球科学等领域的应用10.3 正弦型函数在工程与技术领域的应用讲解正弦型函数在电子工程、通信技术、机械工程等领域的应用重点和难点解析重点环节一:正弦函数的定义与图像重点关注内容:正弦函数的单位圆定义,正弦函数的图像特点,如周期性、振幅、相位、对称性等。
正弦、余弦函数的图像教案、导学案 (1)

正弦、余弦函数的图像一、教学目的:1.了解作正、余弦函数图象的方法;会用“五点法”和“三角函数线”作出正弦函数和余弦函数的图象(重点、难点).2.正、余弦函数图象间的关系(易错点、易混点).3.正、余弦函数图象的简单应用(重点).二、教学重点:了解作正、余弦函数图象的方法;会用“五点法”和“三角函数线”作出正弦函数和余弦函数的图象、正、余弦函数图象的简单应用三、教学难点:了解作正、余弦函数图象的方法;会用“五点法”和“三角函数线”作出正弦函数和余弦函数的图象(一)思考尝试1.思考判断(正确的打“√”,错误的打“×”)(1)正弦函数的图象向左右是无限伸展的.()(2)正弦函数y=sin x(x∈R)的图象关于x轴对称.()(3)正弦函数y=sin x(x∈R)的图象关于原点成中心对称.()(4)余弦函数y=cos x(x∈R)的图象关于y轴对称.()2.用“五点法”画y =sin x ,x ∈[0,2π]的图象时,下列点不是关键点的是( )A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0)D .(2π,0)3.函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值为( )A .0 B.12 C .1 D .24. 余弦曲线与y 轴的交点坐标为________5.用“五点法”画y =cos x ,x ∈[0,2π]的图象时,这五个点的纵坐标的和等于________. (二)典例分析用“五点法”作三角函数的图象例1、 用“五点法”作出下列函数的简图:(1)y =-1+sin x ,x ∈[0,2π]; (2)y =1-cos x ,x ∈[0,2π]. 归纳1.“五点法”是作三角函数图象的常用方法,“五点”即函数图象最高点、最低点与x 轴的交点.2.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点变式训练:用“五点法”作函数y =2-sin x ,x ∈[0,2π]的简图. 用图象变换作三角函数的图象 例2、 作出函数y = 1-cos 2x 的简图.归纳函数y =-f (x )与函数y =f (x )的图象关于x 轴对称,|f (x )|的图象将f (x )在x轴上方及x轴上的图象保持不变,x轴下方的作关于x轴对称的图象,再去掉x 轴下方图象.变式训练、作函数y=1-sin2x的简图正、余弦函数图象的简单应用例3、(1)函数y=cos x,x∈[0,2π]的图象与函数y=1的图象的交点个数是() A.1B.2C.3D.4(2)求y=2sin x-1的定义域.归纳1.用三角函数的图象解sin x>a(或cos x>a)的方法:(1)作出直线y=a,y=sin x(或y=cos x)的图象;(2)确定sin x=a(或cos x=a)的x值;(3)选取一个合适周期写出sin x>a(或cos x>a)的解集,尽量使解集为一个连续区间.2.用三角函数线解sin x>a(或cos x>a)的方法:(1)找出使sin x=a(或cos x=a)的两个x值的终边所在位置;(2)根据变化趋势,确定不等式的解集.变式训练、根据正弦曲线求满足sin x≥-32的x的取值范围.五、课堂练习:见变式训练六、课堂小结:1.函数y=sin x,x∈[0,2π]与y=sin x,x∈R的图象的关系(1)函数y=sin x,x∈[0,2π]的图象是函数y=sin x,x∈R的图象的一部分.(2)因为终边相同的角有相同的三角函数值,所以函数y=sin x,x∈[2kπ,2(k+1)π],k∈Z且k≠0的图象与函数y=sin x,x∈[0,2π]的图象形状完全一致,因此将y=sin x,x∈[0,2π]的图象向左、右平行移动(每次移动2π个单位长度),就可得到函数y=sin x,x∈R的图象.2.正弦曲线和余弦曲线的关系七、教学反思正弦、余弦函数的图像一、学习目的:1.了解作正、余弦函数图象的方法;会用“五点法”和“三角函数线”作出正弦函数和余弦函数的图象(重点、难点).2.正、余弦函数图象间的关系(易错点、易混点).3.正、余弦函数图象的简单应用(重点).此五点包括两部分:①曲线与坐标轴的交点;②曲线的最高点和最低点 (一)思考尝试1.思考判断(正确的打“√”,错误的打“×”)(1)正弦函数的图象向左右是无限伸展的.( ) (2)正弦函数y =sin x (x ∈R)的图象关于x 轴对称.( ) (3)正弦函数y =sin x (x ∈R)的图象关于原点成中心对称.( ) (4)余弦函数y =cos x (x ∈R)的图象关于y 轴对称.( )2.用“五点法”画y =sin x ,x ∈[0,2π]的图象时,下列点不是关键点的是( )A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0)D .(2π,0)3.函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值为( )A .0 B.12 C .1 D .24. 余弦曲线与y 轴的交点坐标为________5.用“五点法”画y =cos x ,x ∈[0,2π]的图象时,这五个点的纵坐标的和等于________. (二)典例分析用“五点法”作三角函数的图象例1、 用“五点法”作出下列函数的简图:(1)y=-1+sin x,x∈[0,2π];(2)y=1-cos x,x∈[0,2π].归纳1.“五点法”是作三角函数图象的常用方法,“五点”即函数图象最高点、最低点与x轴的交点.2.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点变式训练:用“五点法”作函数y=2-sin x,x∈[0,2π]的简图.用图象变换作三角函数的图象例2、作出函数y=1-cos2x的简图.归纳函数y=-f(x)与函数y=f(x)的图象关于x轴对称,|f(x)|的图象将f(x)在x 轴上方及x轴上的图象保持不变,x轴下方的作关于x轴对称的图象,再去掉x轴下方图象.变式训练、作函数y=1-sin2x的简图正、余弦函数图象的简单应用例3、(1)函数y=cos x,x∈[0,2π]的图象与函数y=1的图象的交点个数是() A.1B.2C.3D.4(2)求y=2sin x-1的定义域.归纳1.用三角函数的图象解sin x>a(或cos x>a)的方法:(1)作出直线y=a,y=sin x(或y=cos x)的图象;(2)确定sin x=a(或cos x=a)的x值;(3)选取一个合适周期写出sin x>a(或cos x>a)的解集,尽量使解集为一个连续区间.2.用三角函数线解sin x>a(或cos x>a)的方法:(1)找出使sin x=a(或cos x=a)的两个x值的终边所在位置;(2)根据变化趋势,确定不等式的解集.变式训练、根据正弦曲线求满足sin x≥-32的x的取值范围.五、课堂练习:见变式训练六、课堂小结:1.函数y=sin x,x∈[0,2π]与y=sin x,x∈R的图象的关系(1)函数y=sin x,x∈[0,2π]的图象是函数y=sin x,x∈R的图象的一部分.(2)因为终边相同的角有相同的三角函数值,所以函数y=sin x,x∈[2kπ,2(k+1)π],k∈Z且k≠0的图象与函数y=sin x,x∈[0,2π]的图象形状完全一致,因此将y=sin x,x∈[0,2π]的图象向左、右平行移动(每次移动2π个单位长度),就可得到函数y=sin x,x∈R的图象.2.正弦曲线和余弦曲线的关系七、教学反思。
教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。
数学必修四北师大版正弦型函数的图象(教学设计)

函数sin()y A x ωϕ=+的图象(教学设计)教学目标:1、理解正弦型函数的定义及其中参数的意义; 2、会采用五点法画正弦函数的图像; 3、掌握函数图像之间的关联。
重点、难点:正弦型函数的图像变换 1.,,A ωϕ的物理意义当sin()y A x ωϕ=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T πω=称为这个振动的周期,单位时间内往复振动的次数12f T ωπ==,称为振动的频率。
x ωϕ+称为相位,0x =时的相位ϕ称为初相。
2.图象的变换例 : 画出函数3sin(2)3y x π=+的简图。
解:函数的周期为22T ππ==,先画出它在长度为一个周期内的闭区间上的简函数3sin(2)3y x =+的图象可看作由下面的方法得到的:①sin y x =图象上所有点向左平移3π个单位,得到sin()3y x π=+的图象上;②再把图象上所点的横坐标缩短到原来的12,得到sin(2)3y x π=+的图象;③再把图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3y x π=+的图象。
一般地,函数sin()y A x ωϕ=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到:①把正弦曲线上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动||ϕ个单位长度;②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的1ω倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。
即先作相位变换,再作周期变换,再作振幅变换。
问题:以上步骤能否变换次序?∵3sin(2)3sin 2()36y x x ππ=+=+,所以,函数3sin(2)3y x π=+的图象还可看作由下面的方法得到的:①sin y x =图象上所点的横坐标缩短到原来的12,得到函数sin 2y x =的图象;②再把函数sin 2y x =图象上所有点向左平移6π个单位,得到函数sin 2()6y x π=+的图象;③再把函数sin 2()6y x π=+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2()6y x π=+的图象。
正弦型函数的图象及应用经典教案【强烈推荐】
第4讲 正弦型函数y =A sin(ωx +ϕ)+B 的图象及应用【考试会这样考】1.考查正弦型函数y =A sin(ωx +ϕ)的图象变换.2.结合三角恒等变换考查y =A sin(ωx +ϕ)的性质及简单应用. 3.考查y =sin x 到y =A sin(ωx +ϕ)的图象的两种变换途径.【复习指导】本讲复习时,重点掌握正弦型函数y =A sin(ωx +ϕ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题.基础梳理1.用五点法画y =A sin(ωx +ϕ)一个周期内的简图时,要找五个特征点 如下表所示x ωϕ-0ωϕπ-2ωϕπ- ωϕπ-23ωϕπ-2ωx +ϕ 0 π2π 3π2 2π y =A sin(ωx +ϕ)A-A2.函数y =sin x 的图象变换得到y =A sin(ωx +ϕ)的图象的步骤3.当函数y =A sin(ωx +ϕ)(A >0,ω>0,x ∈[0,+∞))表示一个振动时,A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +ϕ叫做相位,ϕ叫做初相.4.图象的对称性函数y =A sin(ωx +ϕ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +ϕ)的图象关于直线x =x k (其中 ωx k +ϕ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +ϕ)的图象关于点(x k,0)(其中ωx k +ϕ=k π,k ∈Z )成中心对称图形.一种方法在由图象求三角函数解析式y =A sin(ωx +ϕ) + B 时,若最大值为M ,最小值为m ,则A =M -m 2,B =M +m 2,ω由周期T 确定,即由2πω=T 求出,ϕ由特殊点确定.一个区别 由y =sin x 的图象变换到y =A sin (ωx +ϕ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.双基自测1.y =2sin ⎝⎛⎭⎪⎫2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8 D .2,12π,-π8答案 A2.已知简谐运动f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫|φ|<π2的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π3答案 C 解析 由题图象知T =2(4-1)=6⇒ω=π3,由图象过点(1,2)且A =2,可得sin ⎝ ⎛⎭⎪⎫π3×1+φ=1,又|φ|<π2,得φ=π6.3.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x答案 A 解析 由图象的平移得g (x )=cos ⎝⎛⎭⎪⎫x +π2=-sin x .4.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析 由题意设函数周期为T ,则T 4=23π-π3=π3,故T =43π.∴ω=2πT =32.5.把函数y =cos 2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是 ( )答案 A解析 y =cos 2x +1――→横坐标伸长2倍纵坐标不变y =cos x +1――→向左平移1个单位长度y =cos(x +1)+1――→向下平移1个单位长度y =cos(x +1). 结合选项可知应选A.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +ϕ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1)求ω和ϕ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.解 (1)周期T =2πω=π,∴ω=2,∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32, ∵-π2<φ<0,∴φ=-π3.(2)由(1)知f (x )=cos ⎝⎛⎭⎫2x -π3,列表如下:2x -π3 -π3 0 π2 π 32π 53πx 0 π6 512π 23π 1112π πf (x ) 12 1 0 -1 0 12图象如图:【训练1】 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?解 (1)列表取值:xπ232π 52π 72π 92π 12x -π4 0 π2π 32π 2π f (x ) 0 3 0-3(2)先把y =sin x 的图象向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象. 考向二 求函数y =A sin(ωx +ϕ)+B 的解析式【例2】►已知函数f (x )=A sin(ωx +ϕ)+B (A >0,ω>0)的图象如图所示,则f (x )的解析式为_______.答案:.()2sin 363f x x ππ⎛⎫=++ ⎪⎝⎭【训练2】 (1)若函数f (x )=A sin(ωx +ϕ)(A >0,|ϕ|<π2,ω>0)的图象的一部分如图所示.则f (x )的解析式为_______.(2)已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为 A . B .C .D .解 (1) f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)答案:.B考向三 函数y =A sin(ωx +ϕ)的图象与性质的综合应用【例3】►已知函数的 部分图象如图所示:(1)求f (x )的解析式;(2)求f (x )的单调区间和对称中心坐标; (3)将f (x )的图象向左平移个单位,在将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g (x )的图象,求函数y=g (x )在上的最大值和最小值.【解答】解:(1)由图象可知,又由于, 所以,由图象及五点法作图可知:, 所以,所以.(2)由(1)知,, 令,得,所以f (x )的单调递增区间为,令,得,所以f (x )的对称中心的坐标为. (3)由已知的图象变换过程可得:, 因为, 所以,所以当,得时,g (x )取得最小值,当时,即x=0g (x )取得最小值.【训练3】 已知函数y =A sin(ωx +ϕ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝ ⎛⎭⎪⎫π3,5.(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得:A =5,周期T =4⎝⎛⎭⎫π3-π12=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P ⎝⎛⎭⎫π12,0, ∴5sin ⎝⎛⎭⎫π6+φ=0, 由已知可得π6+φ=0,∴φ=-π6 ∴y =5sin ⎝⎛⎭⎫2x -π6.(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z , 得:-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为:⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).A 组 专项基础训练一、选择题1.将函数()πsin 23f x x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位,所得的图象对应的函数解析式是 A. sin2y x = B. cos2y x = C. 2πsin 23y x ⎛⎫=+ ⎪⎝⎭ D. πsin 26y x ⎛⎫=- ⎪⎝⎭ 【答案】C2、将函数cos 3y x π⎛⎫=-⎪⎝⎭的图象向左平移6π个单位,再各点横坐标伸长到原来的2倍(纵坐标不变),所得函数解析式是( )A. )621cos(π-=x y B. )1221cos(π-=x y C. )62cos(π-=x y D. )32cos(π-=x y 【答案】A3、若函数()sin 23f x x π⎛⎫=+⎪⎝⎭图象的横坐标伸长到原来的2倍, 纵坐标不变,再向左平移6π得到函数()g x 的图象,则有( )A. ()cos g x x =B. ()sin g x x =C. ()cos 3g x x π⎛⎫=+⎪⎝⎭D. ()sin 3g x x π⎛⎫=+⎪⎝⎭【答案】A 【解析】26sin 2sin sin cos 332y x y x y x x ππππ⎛⎫⎛⎫⎛⎫=+→=+→=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭左移横坐标变为倍.4、为了得到函数1y 3sin 25x π⎛⎫=-⎪⎝⎭的图象,只要把13sin 2y x =上所有点( )A. 向右平移5π个单位长度 B. 向左平移5π个单位长度 C. 向右平移25π个单位长度 D. 向左平移25π个单位长度【答案】C5、若函数f (x )=2sin(ωx +φ),x ∈R (其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3答案 D 解析 ∵T =π,∴ω=2.又2sin φ=3,|φ|<π2,∴φ=π3.6、函数()sin()02f x A wx A ϕϕ=+π其中>,<)的图像如图所示,为得到x x g 3sin )(=的图像,则只要将)(x f 的图象( )A .向右平移4π个单位B .向右平移12π个单位C .向左平移4π个单位D .向左平移12π个单位 答案 B7、将函数y =sin(x +φ)的图像F 向左平移π6个单位长度后得到图像F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是 ( ) A.π12 B.π6 C.5π6 D.7π12答案 D 解析 图像F ′对应的函数y ′=sin ⎝⎛⎭⎫x +π6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z ,令k =1时,φ=7π12,故选D. 8、将函数y =sin x 的图像向左平移φ (0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图像,则φ等于( ) A.π6B.5π6C.7π6D.11π6答案 D 解析 将函数y =sin x 向左平移φ(0≤φ<2π)个单位得到函数y =sin(x +φ).只有φ=116π时有y =sin ⎝⎛⎭⎫x +116π=sin ⎝⎛⎭⎫x -π6. 二、填空题(每小题5分) 1、将函数()3sin 46f x x π⎛⎫=+⎪⎝⎭图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数g(x)的图象,则g(x)的解析式为 。
中学数学正弦函数的图象和性质教案
中学数学正弦函数的图象和性质教案中学数学正弦函数的图像和性质教案一、引言正弦函数是数学中重要的一类周期函数,它在物理、工程等领域有着广泛的应用。
本教案将介绍正弦函数的图像和性质,通过图像展示和数学表达,帮助学生深入理解正弦函数的特点和应用。
二、图像展示正弦函数的图像是一条连续的波形,具有周期性。
我们首先通过计算和绘制来展示正弦函数的图像。
1. 定义正弦函数正弦函数记作y = sin(x),其中x为自变量,y为函数值。
正弦函数的定义域为全体实数,值域为闭区间[-1, 1]。
为了方便,我们先以角度作为自变量,再将其转换为弧度。
2. 绘制正弦函数的图像我们选取适当的自变量取值范围,例如:-2π ≤ x ≤ 2π。
3. 绘制坐标系在平面直角坐标系中,绘制x轴和y轴,并标出刻度和坐标点。
4. 计算函数值根据正弦函数的性质,计算各个自变量对应的函数值。
例如,计算x = π/2时的函数值为sin(π/2) = 1。
5. 绘制图像连接各个坐标点,绘制正弦函数的图像。
注意保证图像的连续性。
三、正弦函数的性质了解正弦函数的特点及性质,对我们进一步的应用和理解具有重要意义。
1. 周期性正弦函数是一个周期函数,其最小正周期为2π。
即对于任意实数x,有sin(x+2π) = sin(x)。
2. 对称性正弦函数是奇函数,具有中心对称性。
即对于任意实数x,有sin(-x) = -sin(x)。
3. 函数值范围正弦函数的值域为闭区间[-1, 1],即对于任意实数x, -1 ≤ sin(x) ≤ 1。
4. 单调性正弦函数在区间[-π/2, π/2]上递增,在区间[π/2, 3π/2]上递减。
即在一个最小正周期内,正弦函数先增后减,且在关于x轴的中心对称位置取得最值。
5. 零点正弦函数有无数个零点,其中一个重要的零点是x = 0。
对于一般情况,sin(x) = 0的解是x = kπ(k为整数)。
四、练习题为了加深学生对正弦函数图像和性质的理解,我们给出以下练习题。
正弦函数图像与性质教案
正弦函数图像与性质教案教案标题:正弦函数图像与性质教案目标:1. 理解正弦函数的基本概念和性质;2. 掌握正弦函数图像的绘制方法;3. 掌握正弦函数在数学和实际问题中的应用。
教案步骤:一、导入(5分钟)1. 引入正弦函数的概念,让学生回顾三角函数的基本知识。
2. 提问:你对正弦函数有什么了解?你知道它的图像是怎样的吗?二、讲解正弦函数的性质(15分钟)1. 讲解正弦函数的定义和公式:y = A*sin(Bx + C) + D。
2. 解释A、B、C、D的含义,分别代表振幅、周期、相位和纵向平移。
3. 引导学生思考:如何根据公式确定正弦函数的图像特征?三、绘制正弦函数图像(20分钟)1. 分组练习:每个小组选择一个正弦函数的公式,绘制其图像。
2. 引导学生分析公式中各参数对图像的影响,如振幅的变化、周期的变化等。
3. 学生展示并比较各组绘制的图像,讨论不同参数对图像的影响。
四、应用实例(15分钟)1. 提供一些实际问题,如海浪的起伏、音乐的节奏等,让学生思考如何用正弦函数描述这些问题。
2. 学生分组进行讨论和解答,展示他们的思路和解决方法。
3. 全班共同讨论,总结正弦函数在实际问题中的应用。
五、拓展与归纳(10分钟)1. 引导学生思考:除了正弦函数,还有哪些函数与之类似?它们有什么相同点和不同点?2. 总结正弦函数的性质和图像特征,以及与其他函数的比较。
3. 鼓励学生自主学习和探索,拓展更多关于正弦函数的知识。
六、作业布置(5分钟)1. 布置练习题,要求学生绘制指定正弦函数的图像,并分析其性质。
2. 鼓励学生查找更多与正弦函数相关的实际问题,并尝试用函数描述解决。
教学辅助工具:1. 教材或课件,包含正弦函数的定义和性质;2. 黑板或白板,用于绘制正弦函数的图像;3. 练习题,用于巩固学生的学习成果。
教学评估:1. 课堂讨论和展示,评估学生对正弦函数性质的理解和应用能力;2. 作业批改,评估学生对正弦函数图像和性质的掌握程度;3. 学生自主学习和探索的成果,评估学生对拓展知识的能力。
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 教学目标了解正弦型函数的定义及标准形式掌握正弦型函数的周期性、奇偶性及对称性理解正弦型函数的相位变换1.2 教学内容正弦型函数的定义:y = A sin(Bx + C) + D标准形式:y = A sin(B(x α))周期性:T = 2π/B奇偶性:f(-x) = ±f(x)对称性:关于y轴对称或原点对称相位变换:通过平移、伸缩、翻折等变换1.3 教学活动引入正弦型函数的概念,引导学生从实际问题中抽象出正弦型函数讲解正弦型函数的标准形式,让学生理解各个参数的含义引导学生通过作图观察正弦型函数的周期性、奇偶性和对称性讲解相位变换,让学生了解如何通过变换得到不同的正弦型函数图像1.4 作业与练习练习1:根据给定的参数,画出正弦型函数的图像练习2:判断给定的正弦型函数的奇偶性和对称性练习3:通过相位变换,将一个正弦型函数变换为另一个正弦型函数第二章:正弦型函数的图像2.1 教学目标学会绘制正弦型函数的图像掌握正弦型函数图像的局部特征理解正弦型函数图像的物理意义2.2 教学内容正弦型函数图像的基本特点:波形、峰值、零点、相位局部特征:波峰、波谷、拐点物理意义:正弦型函数在工程、物理等领域的应用2.3 教学活动引导学生通过作图掌握正弦型函数图像的基本特点讲解波峰、波谷、拐点的形成原因,让学生理解正弦型函数的局部特征结合实际问题,让学生了解正弦型函数图像的物理意义2.4 作业与练习练习4:绘制给定参数的正弦型函数图像练习5:找出正弦型函数图像的波峰、波谷、拐点练习6:分析实际问题中正弦型函数图像的物理意义第三章:正弦型函数的性质3.1 教学目标理解正弦型函数的单调性、奇偶性、周期性、对称性学会利用正弦型函数的性质解决实际问题3.2 教学内容单调性:了解正弦型函数的单调递增、单调递减区间奇偶性:f(-x) = ±f(x)周期性:T = 2π/B对称性:关于y轴对称或原点对称3.3 教学活动引导学生通过观察正弦型函数图像理解单调性、奇偶性、周期性、对称性讲解如何利用正弦型函数的性质解决实际问题3.4 作业与练习练习7:判断给定的正弦型函数的单调性、奇偶性、周期性、对称性练习8:利用正弦型函数的性质解决实际问题第四章:正弦型函数的应用4.1 教学目标学会利用正弦型函数解决工程、物理等领域的实际问题了解正弦型函数在其他领域的应用4.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等4.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用4.4 作业与练习练习9:利用正弦型函数解决给定的工程、物理问题练习10:了解正弦型函数在其他领域的应用第五章:正弦型函数的导数与积分5.1 教学目标掌握正弦型函数的导数和积分公式学会运用导数和积分解决相关问题5.2 教学内容正弦型函数的导数:y' = A B cos(Bx + C)正弦型函数的积分:∫sin(Bx + C) dx = -A B/B cos(Bx + C) + D 应用:求解最大值、最小值、曲线长度、曲线下的面积等5.3 教学活动引导学生运用导数求解正弦型函数的极值、拐点等讲解如何利用积分求解曲线长度、曲线下的面积等5.4 作业与练习练习11:求解给定正弦型函数的导数和积分练习12:运用导数和积分解决实际问题第六章:正弦型函数的复合函数6.1 教学目标理解正弦型函数与其他类型函数的复合关系学会分析复合函数的图像和性质6.2 教学内容复合函数的定义:y = f(g(x))正弦型函数与其他函数的复合:y = A sin(Bf(x) + C) + D分析复合函数的图像和性质:周期性、奇偶性、对称性等6.3 教学活动引导学生理解复合函数的概念,观察复合函数的图像讲解如何分析复合函数的性质6.4 作业与练习练习13:分析给定复合函数的图像和性质练习14:将一个正弦型函数与其他函数进行复合,观察图像和性质的变化第七章:正弦型函数在实际问题中的应用7.1 教学目标学会运用正弦型函数解决实际问题了解正弦型函数在工程、物理等领域的应用7.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等7.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用7.4 作业与练习练习15:利用正弦型函数解决给定的工程、物理问题练习16:了解正弦型函数在其他领域的应用第八章:正弦型函数的综合应用8.1 教学目标掌握正弦型函数的基本概念、图像、性质及应用提高解决实际问题的能力8.2 教学内容综合运用正弦型函数的知识解决实际问题分析正弦型函数在各个领域的应用8.3 教学活动引导学生将正弦型函数的知识运用到实际问题中分析正弦型函数在不同领域的应用案例8.4 作业与练习练习17:综合运用正弦型函数的知识解决实际问题练习18:分析正弦型函数在各个领域的应用第九章:正弦型函数的拓展与研究9.1 教学目标了解正弦型函数的拓展知识培养学生的研究能力和创新意识9.2 教学内容正弦型函数的变形式:y = A sin(Bx + C) + D正弦型函数的推广:y = A sin(Bx + C) cos(Dx) 等研究正弦型函数的新性质、新应用9.3 教学活动引导学生了解正弦型函数的变形式和推广鼓励学生研究正弦型函数的新性质、新应用9.4 作业与练习练习19:研究正弦型函数的拓展知识练习20:探索正弦型函数的新性质、新应用10.1 教学目标评价学生的学习成果10.2 教学内容评价学生的学习效果,提出改进意见10.3 教学活动-重点和难点解析1. 正弦型函数的定义与基本性质难点解析:正弦型函数的相位变换的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育数学学科导学案(第 15 次课)
教师:俊朝学生: 年级:高一日期: 12月16日星期: 时段:
课题正弦函数的图像及应用
学情分析学生已经学习了三角函数的图像和性质,三角函数图象的平移变换是一个难点,学生刚刚学习,需要及时加强巩固。
教学目标与
考点分析
1.掌握正弦型函数y=A sin(ωx+φ)的图象变换;
2.结合平移变换理解y=A sin(ωx+φ)的性质及简单应用;
3.掌握y=sin x到y=A sin(ωx+φ)的图象的两种变换途径.
教学重点图象的三种变换方法是本节课的重点
教学方法导入法、讲授法、归纳总结法
学习容与过程
基础梳理
1.用五点法画y=A sin(ωx+φ)一个周期的简图时,要找五个特征点
如下表所示
x
0-φ
ω
π
2
-φ
ω
π-φ
ω
3π
2
-φ
ω
2π-φ
ωωx+φ0
π
2
π
3π
2
2πy=A sin(ωx+
φ)
0 A 0-A 0
2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤
A .T =6π,φ=π6
B .T =6π,φ=π3
C .T =6,φ=
π6 D .T =6,φ=
π3
3.函数y =cos x (R x ∈)的图象向左平移π
2
个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).
A .-sin x
B .sin x
C .-cos x
D .cos x
4.设ω>0,函数y =sin )3
(π
ω+x +2的图象向右平移4π
3个单位后与原图象重合,则ω的最小值
是( ).
A .23
B .43
C .3
2
D .3 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.
考向一 作函数)sin(φω+=x A y 的图象
【例1】►设函数f (x )=cos(ωx +φ))02
,0(<<->ϕπ
ω的最小正周期为π,且23
)4(=
πf . (1)求ω和φ的值;
(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.
【训练1】 已知函数f (x )=3sin )4
21(π
-x ,x ∈R .
(1)画出函数f (x )在长度为一个周期的闭区间上的简图;
(2)将函数y=sin x的图象作怎样的变换可得到f(x)的图象?
考向二求函数y=A sin(ωx+φ)的解析式
解决这类题目一般是先根据函数图象的最高点、最低点确定A,h的值,函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值.
【例2】►(2011·)函数f(x)=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是________.
【训练2】已知函数y=A sin(ωx+φ)(A>0,|φ|<π
2
,ω>0)的图象的一部分如图所示.
(1)求f(x)的表达式;
(2)试写出f(x)的对称轴方程.
考向三函数y=A sin(ωx+φ)的图象与性质的综合应用
学生对本次课的小结及评价
1、本次课你学到了什么知识
2、你对老师下次上课的建议
⊙特别满意⊙满意⊙一般⊙差学生签字:
课后练习:(具体见附件)
课后小结
教师签字:
审阅签字: 时间:
教务主任签字: 时间:
龙文教育教务处。