直流调速系统基本概念
直流电动机调速系统

直流电动机调速系统的能耗分析
能效比
直流电动机的能效比通常较高,可以在较高的效率下运行,减少 能源浪费。
功率因数
直流电动机的功率因数较高,可以减少无功损耗,提高电网效率。
热效率
直流电动机的热效率也较高,可以在长时间运行下保持稳定的性 能。
直流电动机调速系统的稳定性分析
抗干扰能力
直流电动机的调速系统通常具有较强的抗干扰能力,可以在复杂 的工作环境下稳定运行。
直流电动机调速系统的调速性能
调速范围
直流电动机的调速范围通常较大,可以在较 宽的转速范围内实现平滑调节,满足不同工 况下的需求。
调速精度
直流电动机的调速精度较高,可以通过精确的控制 算法实现转速的精确控制,提高生产过程的稳定性 和产品质量。
动态响应
直流电动机的动态响应较快,可以在短时间 内达到稳定转速,满足动态负载变化的需求 。
输标02入题
调压调速是通过改变电枢电压来控制电动机的转速, 具有调节方便、平滑性好等优点,但调速过程中能量 损失较大。
01
03
串级调速是通过改变转子回路的电阻来控制电动机的 转速,具有调节方便、能量损失较小等优点,但调节
范围较小且对电机结构有特殊要求。
04
调磁调速是通过改变励磁电流来控制电动机的转速, 具有调节方便、能量损失较小等优点,但调节范围较 小。
系统调试
在系统集成完成后,进行全面的 调试,确保各部分工作正常,满 足设计要求。
性能测试
对系统的性能进行测试,包括调 速范围、动态响应、稳态精度等 指标,确保系统性能达标。
优化改进
根据测试结果和实际应用情况, 对系统进行必要的优化和改进, 提高系统的稳定性和可靠性。
04
直流调速系统基本概念

2. 比例控制的特点 作用及时、快速、控制作用强,而且Kp值越大,
系统的静特性越好、静差越小。
二、 积分控制与积分调节器
是指系统的输出量与输入量对时间的 积分成正比例的控制,简称I控制。
积分控制
1. 积分( I )调节器
式中 KI——I 调节器的积分常数; ——I调节器的积分时间, =1/KI。
2. 积分控制的特点 可以消除输出量的稳态误差,能实现无静差控制, 这是积分控制的最大优点。
理想空载转速 在给定电压一定时,有: n0 f 转速降
n0 Ce ( 1 K ) 1 K
K GU g
n0 f n0 如果将系统闭环与开环的理想空载转速调得一样,即, 为了获得同开环相同的 理想空载转速 R n n f Ia 闭环给定电压 U g f U g 1 K Ce ( 1 K ) 1 K
范围: M p 10% ~ 35%
超调量
2. 过渡过程时间T
从输入控制(或扰动)作用于系统 开始直到被调量 n 进入(0.05 ~0.02)n2 稳定值区间时为止(并且以后不再越出 这个范围)的一段时间,叫作过渡过程 时间。
3. 振荡次数 N
过渡过程时间 在过渡过程时间内,被调量n在其稳定值 上下摆动的次数,
1稳态uguf不变3稳速ug不变负载变化使uf变化???????????????nuuuuuundkfgf????当负载增加使???????????????nuuuuuundkfgf????当负载减小使当负载发生变化使速度发生变化后系统通过反馈能维持速度基本不变这种状态称为稳速
直流调速系统基本概念
直流调速系统主要性能指标 机电传动控制系统选择调速方案的依据: 生产机械对调速系统提出的调速技术指标 静态指标 调速系统的调速技术指标 动态指标 一、静态技术指标
交直流调速系统

交直流调速系统•引言•交直流调速系统基本原理•交直流调速系统组成与结构目录•交直流调速系统控制策略•交直流调速系统性能分析•交直流调速系统设计与实践•交直流调速系统应用与展望引言01CATALOGUE调速系统概述调速系统的定义调速系统是一种能够改变电动机转速的控制系统,通过调整电动机的输入电压、频率等参数,实现对电动机转速的精确控制。
调速系统的分类根据电动机类型不同,调速系统可分为直流调速系统和交流调速系统两大类。
其中,直流调速系统具有调速范围广、静差率小等优点,而交流调速系统则具有结构简单、维护方便等特点。
交直流调速系统的发展与应用发展历程交直流调速系统经历了从模拟控制到数字控制的发展历程。
早期的调速系统主要采用模拟控制技术,随着计算机技术的发展,数字控制技术逐渐取代了模拟控制技术,使得调速系统的性能得到了显著提升。
应用领域交直流调速系统广泛应用于工业生产的各个领域,如机械制造、冶金、化工、纺织等。
在现代化生产线中,交直流调速系统是实现自动化生产的关键技术之一,对于提高生产效率、降低能耗具有重要意义。
交直流调速系统基本原理02CATALOGUE直流电机通过电枢电流和磁通量的相互作用产生转矩,实现电机的旋转运动。
直流电机原理调速方式控制策略直流调速系统通过改变电枢电压、电枢电阻或磁通量来调节电机的转速。
直流调速系统常采用PID 控制、模糊控制等策略,实现电机转速的精确控制。
030201交流电机通过定子电流产生的旋转磁场与转子电流的相互作用,实现电机的旋转运动。
交流电机原理交流调速系统通过改变定子电压、频率或改变电机结构等方式来调节电机的转速。
调速方式交流调速系统常采用矢量控制、直接转矩控制等策略,实现电机转速的精确控制。
控制策略交直流混合调速系统原理混合调速原理交直流混合调速系统结合了直流和交流调速系统的优点,通过交直流变换器实现能量的双向流动和转速的精确控制。
能量转换交直流混合调速系统通过交直流变换器将直流电能转换为交流电能,或将交流电能转换为直流电能,以满足不同负载的需求。
1-直流调速系统-单闭环

单闭环直流调速系统 -- 有静差系统
单闭环直流调速系统 -- 有静差系统
在假设忽略各种非线性因素等条件下,系统中各环节
的稳态关系为:
➢ 电压比较器 UnUn *Un
➢ 放大器 ➢ 晶闸管触发整流装置 ➢ 调速系统开环机械特性
➢ 测速发电机
UcKpUn
Ud0KsUc nUd0 IdR
Ce
Unn
单闭环直流调速系统 -- 有静差系统
Ce
转速 n 随触发角 变化, 改变 角,即可得到一簇 平行的机械特性曲线。
单闭环直流调速系统 -- 一般概念
转速控制基本要求: 1. 调速:在一定的速度范围内分级或无级调速; 2. 稳速:以一定的精度在所需转速上运行,尽量不受
负载变:频繁起动、制动的生产机械要求尽量缩
单闭环直流调速系统 -- 有静差系统
用阶跃函数表示晶闸管整流和触发装置的输入、输出
关系: U d0K sU c(tT s)
做拉氏变换得到晶闸管整流触发装置传递函数:
Ud0( s) Uc( s)
KseTss
因 Ts 远小于系统其它环节时间常数,故将其近似为
一阶惯性环节:
Ud0( s) Ks Uc(s) Tss1
单闭环直流调速系统 -- 有静差系统
由动态结构图可以得到系统开环传递函数:
W (s)C e(T ss1)K T (p m K T ss2T m s1)
假设 IdL=0 (不考虑负载变化对稳定性的影响),得
到系统闭环传递函数:
KpKs
Wcl(s)TmTTs
Ce(1K) s3Tm(TTs)s2TmTs s1
ans = 1.1695
>> syms a U2 t
直流调速系统

GT
Ud
Id
-
- Un +
+ RP2
-
n
+ IG
-
U tg
V-M闭环系统原理框图
-
( a ) 给 定 环 节 —— 产 生 控 制 信 号 : 由 高 精 度 直 流 稳压电源和用于改变控制信号的电位器组成。 (b)比较与放大环节——信号的比较与放大;由P、I、 PI运放器组成
(c)触发器和整流装臵环节(组合体)--功率放大
nnom 1000r/min、 Ra=0.05Ω
晶闸管整流器的内阻
Ks=30 问 题
Rrec=0.13Ω
要求D=20,s≤5%
问若采用开环V-M系统能否满足要求? 若采用α=0.015V·min/r转速负反馈闭环系统,问放大 器的放大系数为多大时才能满足要求?
解(1)设系统满足D=20,检验系统是否满足s≤5%?
特点:
损耗较大、有级 调速,机械特性 较软。 (2)弱磁调速 特点: 只能弱磁,调 速范围小
工程上,常将调压与调磁相结合,可以扩大调速范围 。
n
Φn Φ2 Φ1 Φ1 Φ2 Φn nn Un U d3 U d2 U d1 Ten
图1-2 调压和调 磁时的机械特性
U d1 U d2 U d3 U n
①系统结构图
U n
Un U d0
电动机
U n
放大器
U ct 整流器及
触发装置
n
速度检测
②系统中各环节的稳态输入输出关系如下: 电压比较环节 放大器
* U n U n Un
U ct K P U n
晶闸管整流器及触发装臵 U d 0 K sU ct
电压负反馈直流调速汇总

一. 概述1.1 调速的基本概念调速即速度控制,是指在传动系统中认为地或自动地改变电动机的转速,以满足工作机械对不同转速的要求。
从机械特性上看,就是通过改变电动机的参数或外加电压等方法,来改变电动机的机械特性,从而改变它与工作机械特性的交点,改变电动机的稳定运转速度。
速度调节,可以通过手动给定信号并通过中间放大、保护等环节来实现。
电动机转速人为给定,不能自动纠正转速偏差的方式称为开环控制,在很多情况下还希望转速稳定,即转速不随负载及电网电压等外接扰动而变化。
此时电动机转速应能自动调节,即采用闭环控制,这样的系统称为闭环系统1.2调速的分类1.2.1 无级调速和有级调速无级调速,又称连续调速,是指电动机的转速可以平滑地调节。
其特点是:转速变化均匀,适应性强而且容易实现调速自动化,因此在工业中被广泛使用。
有级调速,又称间断调速或分级调速。
它的转速只有有限的几级,调速范围有限且不易实现调速自动化。
1.2.2 向上调速和向下调速电动机未作调速时的固有转速,即为电动机额定负载时的额定转速,也称为基本转速或基速。
一般地,在基速方向提高转速的调速称为向上调速。
反之为向下调速。
1.2.3 恒转矩调速和恒功率调速恒转矩调速:有很大一部分机械,其负载性质属于恒转矩类型,即在调速过程中不同的稳定速度下,电动机的转矩为常数。
如果选择的调速方法能使电磁转矩T为常数,则在恒转矩负载下,电机无论在高速或低速下运行,其发热情况始终是一致的。
这就使电动机容量能得到合理而充分的利用。
这种调速方法称为恒转矩调速,例如,当磁通一定时,调节电动机的电枢电压或电枢回路电阻的方法就属于恒转矩调速方法。
恒功率调速:具有恒功率特性的负载,是指在调速过程中负载功率P为常数,其负载转矩T=α/n (α为励磁调节系数),这种调速方法称为恒功率调速。
用恒功率调速方法去带动恒转矩负载是不合理的,在高速时会使电机过载。
1.3调速系统的静态指标调速范围:生产机械要求电动机能提供的最高转速和最低转速之比叫做调速范围。
直流电机调速系统的设计

直流电机调速系统的设计直流电机调速系统是控制直流电机转速的一个重要工程应用领域。
在很多工业领域中,直流电机的转速控制是非常重要的,因为直流电机的转速对于机械设备的运行效率和稳定性有着重要影响。
本文将详细介绍直流电机调速系统的设计原理和步骤。
一、直流电机调速系统的基本原理直流电机调速系统的基本原理是通过改变电机的电压和电流来控制电机的转速。
一般来说,直流电机的转速与电机的电压和负载有关,转速随电压增加而增加,转速随负载增加而减小。
因此,当我们需要调节直流电机的转速时,可以通过改变电机的电压和负载来实现。
二、直流电机调速系统的设计步骤1.确定设计要求:在设计直流电机调速系统之前,首先需要确定系统的设计要求,包括所需的转速范围、响应速度、控制精度和负载要求等。
这些设计要求将指导系统的设计和选择适当的控制器。
2.选择控制器:根据设计要求,选择适当的控制器。
常见的直流电机调速控制器有PID控制器、模糊控制器和自适应控制器等。
根据实际情况,选择最合适的控制器来实现转速调节。
3.选择传感器:为了实时监测电机的转速和位置,需要选择合适的传感器来进行测量。
常见的传感器有光电编码器、霍尔效应传感器和转速传感器等。
根据实际需求,选择合适的传感器进行安装和测量。
4.搭建电路:根据控制器的要求,搭建合适的电路来实现控制和测量功能。
通常需要安装电压和电流传感器来实时监测电机的电压和电流,并将测量结果反馈给控制器。
5.调试和测试:在电路搭建完成后,需要进行调试和测试来验证系统的性能。
首先调整控制器的参数,使得系统能够按照设计要求进行转速调节。
然后进行负载试验,测试系统在不同负载下的转速调节性能。
对系统进行调试和测试,可以发现问题并及时解决,确保系统能够正常工作。
6.性能优化:根据测试结果,对系统进行性能优化。
根据实际需求,调整控制器的参数和传感器的位置,改善系统的转速调节性能和响应速度。
优化后的系统将更好地满足设计要求。
三、直流电机调速系统的工程应用总结:本文详细介绍了直流电机调速系统的设计原理和步骤。
直流电机PWM调速基本原理

直流电机PWM调速基本原理
PWM方式是在大功率开关晶体管的基极上,加上脉冲宽度可调的方波电压,控制开关管的导通时间t,改变占空比,达到控制目的。
图3.3是直流PWM系统原理框图。
这是一个双闭环系统,有电流环和速度环。
在此系统中有两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。
核心部分是脉冲功率放大器和脉宽调制器。
控制部分采用AT89S52(脉宽调制芯片AT89S52具有欠压锁定、故障关闭和软起动等功能,因而在中小功率电源和电机调速等方面应用较广泛。
AT89S52是电压型控制芯片,利用电压反馈的方法控制PWM信号的占空比,整个电路成为双极点系统的控制问题,简化了补偿网络的设计。
)集成控制器产生两路互补的PWM脉冲波形,通过调节这两路波形的宽度来控制H 电路中的GTR通断时间,便能够实现对电机速度的控制。
为了获得良好的动、静态品质,调节器采用PI调节器并对系统进行了校正。
检测部分中,采用了霍尔片式电流检测装置对电流环进行检测,转速还则是采用了测速电机进行检测,能达到比较理想的检测效果。
图3.3 直流电动机PWM系统原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转换元件:将测速
发电机的转速转换成 电压信号以便与给定 电压进行比较。
测速发电机:与直流电动机 M同轴相连,即两者的速度相 同,测速发电机用来测量电动 机的速度,称检测元件;
由系统的结构分析可知:
❖ 系统的调速方法是改变外加电压调速; ❖ 系统的反馈信号是被控制对象n本身; ❖ 反馈电压和给定电压的极性相反,即:
K2K p( U g U f ) Cen Ia R
K2K pU g K2K pK f n Cen Ia R
n K2K pUg Ia R K2K pK f Ce
令:KG
K2K p ,K
K2K pK Ce
f
则:
n KGU g Ia R Ce(1 K ) Ce(1 K
) nof
n f
直流调速系统基本概念
直流调速系统主要性能指标
机电传动控制系统选择调速方案的依据:
生产机械对调速系统提出的调速技术指标
调速系统的调速技术指标 一、静态技术指标
静态指标 动态指标
1. 静差度S: 静差度表示出生产机械运行时转速稳定的程度。
速度稳定性指标
S n0 ne ne
ne n0 ne 静态速降
可逆系统
无静差直流调速系统 按静态误差的不同:
有静差直流调速系统
任务: ➢ 调节速度; ➢ 扩大调速范围,减小静态误差。
1 单闭环直流调速系统 一、有静差调速系统 单纯由被调量负反馈组成的按比例控制的单闭环系统属有静差的自动调节系
统,简称有静差调速系统;
(一)转速负反馈调速系统 1. 基本组成
放大器:将外加电
Uf Kfn
(2) 静特性
Ud Cen Ia R Ud K2Uk Uk K p ( U g U f ) U f K f n
KG K pK2 ——从放大器输入端到可 控整流电路输出端的电压
放大倍数;
K Kf Ce
K pK2
——闭环系统的开环放大 倍数。
如果系统没有转速负反馈(即
K2Uk Cen Ia R
当负载发生变化使速度发生变化后,系统通过反馈能维持速度基本不变,这 种状态称为稳速。
3. 静特性分析 目的:找到减小静态速降、扩大调速范围,提高系统性能的途径。 静特性表示出电动机的转速与负载电流之间的大小关系。 (1) 各环节输入输出的关系
电动机电路 Ud Ken Ia R Cen Ia R
U U g U f
该系统又称转速负反馈调速系统。 2. 工作原理 (1) 稳态( Ug、Uf 不变)
U U g U f 不变 Uk不变 不变 Ud不变 n 不变
当Ug、Uf不变时,电动机的转速不变,这种状态称为稳态。
(2) 调速(Uf不变,改变Ug的大小)
U g U Ug U f U k Ud n
式中: R Rx Ra 电枢回路的总电阻;
Rx 可控整流电源的等效内阻; Ra 电动机的电枢电阻。 可控硅和触发电路 设可控硅和触发电路的放大倍数为K2,则:Ud K2Uk 放大器电路 设放大器的放大倍数为KP,则:Uk KPU K p(Ug Ucf ) 反馈电路 速度反馈信号电压与转速n成正比,设放大系数为Kf,则:
D ne max ne min
3. 调速的平滑性 调速的平滑性,通常是用两个相邻调速级的转速差来衡量的。
调速
无级调速 有级调速
以改变直流电动机电枢外加电压调速为例,说明调速范围D与静差度S之间 的关系 :
D ne max ne max ne max ne max S
ne min
n02 ne
过渡过程时间
3. 振荡次数 N
在过渡过程时间内,被调量n在其稳定值 上下摆动的次数,
如图所示是三种不同调速系统被调量从x1改变为x2时的变化情况。
系 超调
统
量
1
0
过渡过程 时间T
长
振荡次 数
无
性能 不好
2
大
长
多 不好
3
小
短
中
好
晶闸管-电动机直流传动控制系统
分类:
单闭环直流调速系统
按结构的不同: 双闭环直流调速系统
n0
n0
当负载变化时,生产机械转速的变化要能维持在一定范围之内,即要求静差
度S小于一定数值。
▪ 电动机的机械特性愈硬,则静差度愈小,转速的相对稳定性就愈高 ; ▪ 在一个调速系统中,如果在最低转速运行时能满足静差度的要求,则在其他
转速时必能满足要求。
2. 调速范围D 在额定负载下,允许的最高转速和在保证生产机械对转速变化率要求的前提 下所能达到的最低转速之比称为调速范围 。
n02 1
ne
n02
ne (1 S )
最高速度由系统中所使用电动机的额定转速
决定;
静差度S和调速范围D由生产机械的要求决定;
当上述三个参数确定后,则要求静态速降是
一个定值。
超调量
二、动态技术指标 从一种稳定速度变化到另一种
稳定速度运转(启动、制动过程仅 是特例而已),由于有电磁惯性和 机械惯性,过程不能瞬时完成,而 需要一段时间,即要经过一段过渡 过程,或称动态过程。
1. 最大超调量
M
p
nmax n2
n2
100%
➢超调量太大,达不到生产工艺上的要求; ➢超调量太小,会使过渡过程过于缓慢,不 利于生产率的提高等
范围: M p 10% ~ 35%
超调量
2. 过渡过程时间T
从输入控制(或扰动)作用于系统 开始直到被调量 n 进入(0.05 ~0.02)n2 稳定值区间时为止(并且以后不再越出 这个范围)的一段时间,叫作过渡过程 时间。
压和反馈信号经转换后 的电压之差进行放大。
触发电路:将放大器放大后
的电压信号变为脉冲型号去控 制整流电路的输出大小。
整流电路:变交流 电压为直流电压, 输出电压大小由触 发电路输出脉冲信 号所决定,整流电 路的输出为直流电 动机电枢的外加电 压;
直流电动机:系 统的控制对象。
给定电位器: 调节Rg的位置可 改变给定电压Ug 的大小 。
U g U U g U f Uk Ud n
改变Ug的大小可改变电动机的转速,这种状态称为调速.
(3) 稳速(Ug不变、负载变化使Uf变化 )
当负载增加使n U f U U g U f Uk Ud n 当负载减小使n U f U U g U f Uk Ud n
开环系统)时,则整流器的输出 电压:
Ud K pK2U g KGU g Cen Ia R