焊接过程熔滴过渡控制

合集下载

第2章 焊丝的熔化与熔滴过渡

第2章 焊丝的熔化与熔滴过渡

滴,由于受到各种大小不同的作用力,具体形状和位置不断变 化,从而熔滴以不同的形式脱离焊丝或焊条,过渡到熔池中去。

熔滴上的作用力
熔滴上的作用力可分为重力、表面张力、电弧力、熔滴爆破力 和电弧气体的吹力等。
1
重力
重力对熔滴过渡的影响依焊接位置的不同而不同。平焊时, 熔滴上的重力促使熔滴过渡;而在立焊及仰焊位置则阻碍熔滴 过渡。
1)
s
m y m
100%
焊接中飞溅的产生
a. 伴随气体析出而引起的飞溅.
b. c. d.
气体爆炸引起的飞溅
电弧斑点力引起的飞溅
短路过渡再引燃引起的飞溅 焊接方法和规范 过渡形式 电源动特性 气体介质 极性 焊丝、焊件表面的清洁度
2)影响飞溅的因素
a. b. c. d. e. f.
图2-21 射流过渡形成机理示意图
图2-22 熔滴过渡频率(或体积)与电流的关系 钢焊丝 φ1.6mm,Ar+O2(1%),弧长6mm,DCEP
图2-23 不同材质焊丝的临界电流
图2-24 焊丝直径、伸出长度与临界电流的关系
图2-25 射流过渡时飞溅示意图
磁控旋转射流过渡
a.正常射流过渡 b.旋转射流过渡
c. 5) a. b.
c.
d.
图2-12 短路过渡示意图
图2-13 短路过渡过程电弧电压和电流动态波形图
图2-14 短路过渡的主要形式
a.固态断路 b.细丝小电流时 c.中等电流小电感时
图2-15 短路过渡频率与电弧电压的关系
图2-16 送丝速度与短路过渡频率、短路时间和短路电流峰值的关系
2 接触过渡(短路过渡)
1) 定义:当电流较小,电弧电压较低时,弧长较短,熔滴未长成大 滴就与熔池接触形成液态金属短路,电弧熄灭,随之金属熔滴在 表面张力及电磁收缩力的作用下过渡到熔池中去,熔滴脱落之后 电弧重新引燃,如此交替进行。 短路过渡的过程: 稳定性及其影响因素

co2焊飞溅、熔滴过渡与焊接参数的关系

co2焊飞溅、熔滴过渡与焊接参数的关系

CO2焊是一种常见的金属材料焊接方法,其特点是焊接速度快、生产效率高,广泛应用于汽车、汽车零部件、船舶、钢结构建筑等领域。

然而,在CO2焊过程中,焊接飞溅问题一直存在,影响着焊接质量和效率。

研究发现,CO2焊飞溅与熔滴过渡及焊接参数有着密切的关系。

了解CO2焊飞溅的形成机理对于探究其与熔滴过渡和焊接参数的关系至关重要。

CO2焊飞溅是由于焊接电弧弹跳和熔滴半分离造成的。

当焊接电流密度增大时,熔滴在电弧中振荡的频率增加,使得其不易被电弧吹脱,从而形成飞溅。

焊接电弧在金属熔池表面的频繁跳动也是引起飞溅的原因之一。

熔滴过渡对CO2焊飞溅的影响是不可忽视的。

熔滴过渡是指熔滴由一种形态过渡到另一种形态的过程。

在CO2焊中,熔滴的过渡状态对于飞溅的减少至关重要。

当熔滴过渡过程平稳时,熔滴更容易被电弧吹脱,减少了飞溅的可能性。

控制熔滴过渡状态是减少CO2焊飞溅的重要手段之一。

焊接参数的选择对CO2焊飞溅的影响也非常显著。

焊接参数包括焊接电流、焊接电压、送丝速度、气体流量等。

适当提高焊接电压和减小焊接电流有助于减少飞溅的产生。

而合理选择送丝速度和气体流量也可以降低飞溅的发生概率。

合理的焊接参数设定是减少CO2焊飞溅的重要保障。

总结来看,CO2焊飞溅与熔滴过渡和焊接参数存在着密切的联系。

通过控制熔滴过渡状态和合理选择焊接参数,可以有效减少CO2焊飞溅的发生,提高焊接质量和效率。

在实际应用中,需要结合具体情况,综合考虑以上因素,以达到最佳的焊接效果。

CO2焊是一种常见的金属材料焊接方法,其特点是焊接速度快、生产效率高,广泛应用于汽车、汽车零部件、船舶、钢结构建筑等领域。

然而,在CO2焊过程中,焊接飞溅问题一直存在,影响着焊接质量和效率。

研究发现,CO2焊飞溅与熔滴过渡及焊接参数有着密切的关系。

了解CO2焊飞溅的形成机理对于探究其与熔滴过渡和焊接参数的关系至关重要。

CO2焊飞溅是由于焊接电弧弹跳和熔滴半分离造成的。

当焊接电流密度增大时,熔滴在电弧中振荡的频率增加,使得其不易被电弧吹脱,从而形成飞溅。

埋弧焊的熔滴过渡形式

埋弧焊的熔滴过渡形式

埋弧焊的熔滴过渡形式
埋弧焊的熔滴过渡形式主要有三种:自由过渡、接触过渡和渣壁过渡。

其中,自由过渡又可以分为滴状过渡和短路过渡,接触过渡又可以分为射流过渡和爆炸过渡。

此外,根据颗粒大小不同,熔滴过渡还可以分为颗粒过渡和喷射过渡。

在埋弧焊中,由于焊接电流和电压较大,熔滴容易形成大颗粒状,呈滴状过渡。

同时,在焊接过程中,熔滴与熔池之间可能会发生短路现象,导致熔滴直接落入熔池,形成短路过渡。

此外,根据焊接条件的不同,熔滴过渡的形式也会有所变化。

例如,当焊接电流较小或焊丝直径较细时,熔滴容易呈喷射状态过渡;当焊丝直径较大或焊接电流较大时,熔滴容易呈颗粒状过渡。

在实际的焊接过程中,可以根据需要选择合适的熔滴过渡形式来提高焊接质量和效率。

例如,通过调整焊接参数、焊丝伸出长度、焊接速度等参数,可以控制熔滴的大小和过渡方式,从而达到所需的焊接效果。

熔化极气体保护焊的熔滴过渡形式完整版

熔化极气体保护焊的熔滴过渡形式完整版
2、滴状过渡
滴状过渡时电弧电压较高,由于焊接参数及材料的不同又分为粗滴过渡(大颗粒过渡)及细滴过渡(细颗粒过渡)。
1、粗滴过渡 电流较小而电弧电压较高时,因弧长较长,熔滴与熔池不发生短路,焊丝末端便形成较大的熔滴。当熔滴长大到一定程度后,重力克服表面张力使熔滴脱落。这种过渡方式由于熔滴大,形成的时间长,影响电弧的稳定性,焊缝成型粗糙,飞溅较大,在生产中基本不采用。粗滴过渡形式如图1所示:
气体介质对射流过渡的影响:不同的气体介质对电弧电场强度的影响不同。在Ar气保护下弧柱电场强度较低,电弧弧根容易扩展,易形成射流过渡,临界电流值较低。当Ar气中加入CO2时,随着CO2比例增加临界电流值增大。若CO2的比例超过30%时,则不能形成射流过渡,这是由于CO2气体解离吸热对电弧的冷却作用较强,使电弧收缩,电场强度提高,电弧不易扩展所致。
2、细滴过渡 电流比较大时,电磁收缩力较大,熔滴表面张力减小,熔滴细化,这些都促使熔滴过渡,并使熔滴过渡频率增加。这种过渡形式称为细滴过渡,因为飞溅少,电弧稳定,焊缝成型良好,在生产中被广泛应用。细滴过渡形式如图2所示:
3、射流过渡?
射流过渡是喷射过渡中最富有代表性的且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩气或富氩气体保护,大电压,还必须使焊接电流大于临界值。射流过渡电弧稳定,飞溅极少,焊缝成形质量好。由于电弧稳定,对保护气流的扰动作用小,故保护效果好。射流过渡电弧功率大,热流集中,对焊件的熔透能力强。而且过渡的熔滴沿电弧轴线高速流向熔池,使焊缝中心部位熔深明显增大而呈指状熔深。射流过渡形式如图3所示:
熔化极气体保护焊的熔滴过渡形式
熔化极短路过渡主要用于直径小于的细丝CO2气体保护焊或混合气体保护焊,采用低电压,小电流的焊接工艺。由于电压低,电弧较短,熔滴尚未长大成熔滴时即与熔池接触而形成短路液体过桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。这种过渡电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形良好,广泛用于薄板结构、根部打底焊及全位置焊接。

【精品】焊接过渡形式

【精品】焊接过渡形式

2009年全国技工教育和职业培训优秀教研成果评选活动参评论文CO2气保焊产生飞溅的原因及控制措施分析CO2气保焊产生飞溅的原因及控制措施分析摘要:熔滴飞溅是CO2气保焊影响生产效率、焊缝质量的主要因素。

熔滴过渡和短路过渡都会产生飞溅,分析查找飞溅的成因,采取有针对性的控制飞溅的有效措施,降低飞溅率。

对提高焊接生产效率,提高焊缝质量,改善焊工的劳动生产条件。

有着十分重要的意义。

关键词:飞溅熔滴过渡缩颈短路过渡焊接过程中,大部分焊丝熔化过渡到熔池冷却成为焊缝。

一小部分熔融金属飞落到熔池之外,这种现象称为飞溅。

飞溅对焊接过程的稳定性、焊接生产效率、焊接质量以及焊工的劳动生产条件都有很大的不利影响。

由于CO2气保焊具有生产率高、焊接成本低、焊接变形和焊接应力小、适应范围广等多种显著优点,该焊接方法在黑色金属薄板及中厚板焊接领域有着广阔的应用空间。

但其飞溅现象也是所有弧焊方法中最大的。

分析产生飞溅的原因,采取有效的控制措施对CO2气保焊有着十分重要的意义。

CO2气保焊熔滴过渡形式主要是自由过渡和短路过渡。

(1)熔滴自由过渡时的飞溅原因及控制CO2气体对电弧有较强的热压缩作用,导致弧柱直径较小,使得弧根往往难以覆盖焊丝端部的全部熔滴,从而形成阳极(或阴极)斑点,使熔滴受到一个与过渡方向相反的较大作用力(斑点力),导致熔滴较粗大,且易形成偏离焊丝轴线方向的非轴向过渡,而形成大颗粒飞溅。

这种情况常发生在使用较大电流,且电弧电压较高的粗丝焊接时。

可再增强焊接电流(400A以上),此时由于电磁收缩力的加强,熔滴细化会产生细粒过渡,虽然仍为非轴向过渡,但飞溅相对较少。

亦可采用直流反接的方法,反极性焊接时,飞向焊丝端部的电子撞击力小,致使斑点压力大为减小,因而飞溅较小。

细粒自由过渡时产生飞溅的原因有二:其一,是由冶金反应引起的飞溅,焊接过程中CO2在电弧高温作用下,易分解为一氧化碳和氧,使电弧气氛具有很强的氧化性。

熔滴和熔池中的碳氧化成CO,CO在焊接条件下不溶于金属,也不与金属发生反应,在电弧高温作用下,体积急速膨胀,压力迅速增大,使熔滴和熔池金属产生爆破,从而产生大量飞溅。

第二章 焊丝的熔化及熔滴过渡

第二章    焊丝的熔化及熔滴过渡

第二章焊丝的熔化及熔滴过渡熔化极电弧焊的焊丝(条)具有两个作用:一是作为电极并与工件之间产生电弧;另是本身被加热熔化并作为填充金属过渡到熔池中去。

焊丝(条)的熔化及熔滴过渡,是熔化极电弧焊接过程中的重要物理现象,熔滴过渡方式及特点将直接影响焊接质量和生产效率。

第一节焊丝的加热与熔化一、焊丝的加热与熔化特性熔化极电弧焊时焊丝(条)的熔化主要是靠阴极区(正接)或阳极区(反接)所产生的热量,中括号焊接情况下,UK >> UW所以Pk>PA,这时,在同一材料和同一电流情况下,焊丝(条)为阴极(正接)时的产生热量要比为阳极(反接)时多。

因散热条件相同,所以焊丝(条)接负时比焊丝(条)接正时熔化快。

焊丝除了受电弧的加热外,在自动和半自动焊时,从焊丝与导电嘴的接触点到焊丝端头的一段焊丝(即焊丝伸出长度用表示)有焊接电流流过,所产生电阻热对焊丝有预热作用,从而影响焊丝的熔化速度(图2-1)。

特别是焊丝比较细和焊丝金属的电阻系数比较大时(如不锈钢),这种影响更为明显。

焊丝伸出长度的电阻热为:P R=I2RsRs=PLs/S (2-4)式中 Rs----为Ls段的电阻值;P-----焊丝的电阻率;Ls----焊丝的伸出长度;S----焊丝的断面积。

材料不同时,焊丝伸出长度部分产生的电阻热也不同。

如熔化极气体保护焊时,通常Ls=10~30mm,对于导电良好的铝和铜等金属,PR 与PA或PK相比是很小的,可忽略不计。

而对钢和钛等材料,电阻率高。

当伸出长度较大时PR 与PA或PK相比较大才有重要的作用。

)来表这是mα弧长较长时,电弧电压的变化对焊丝熔化速度影响不大;但在弧长较短的范围内,电弧电压降低,反而使得焊丝熔化速度增加。

在铝合金焊接时这种现象特别明显,图2-4a中的各条曲线,表示了直径为φ1.6mm铝合金焊丝等速送进时的熔化速度与电弧电压及电流的关系。

由图中可见,当弧长较长时,曲线AB段段与横轴垂直,此时的焊丝送进速度与熔化速度相平衡,焊丝的熔化速度主要决定于电流的大小。

2—2熔滴过渡及作用力

2—2熔滴过渡及作用力

显然:dG﹥ dD促进过渡
dG< dD阻碍过渡
一般dG大小与气体介质,焊接电流有关。 如Ar与CO2相比,Ar弧弧根大,电流增大, dG增大 (四) 等离子流力 由于电弧截面不等,电磁力不一样造成压力差,使电弧产生轴 向推力,造成从焊丝端部向工件的气体流动,形成等离子流力。 电流较大时,等离子流力对熔滴产生很大的推力,使之沿焊丝 轴向方向运动。这种推力的大小与焊丝直径和电流大小密切相关。 (五) 其他力 1)斑点压力 电极上形成斑点时,此处是产热集中的地方。这样斑点处将承 受电子(反接时)或正离子(正接时)的撞击力,通常情况下斑点压力 阻碍熔滴过渡(斑点面积小于熔滴直径时);MIG焊喷射过渡的情况 下,而斑点面积很大且布满整个熔滴时,斑点压力常常促进熔滴过渡。 2)爆破力 当熔滴内部含有易挥发金属或由于冶金反应而生成气体时,都 会在电弧高温作用下气体积聚膨胀而造成较大的内力,从而使熔滴 爆炸而过渡。短路过渡焊接时,由于电流密度较大,使缩颈处熔断爆 破形成熔滴过渡,同时有飞溅产生。
四 熔滴过渡的飞溅与蒸发 1飞溅 飞溅问题主要针对短路过渡和颗粒过渡,射流过渡飞溅很小。 2产生飞溅的原因 1)由冶金反应在液体金属内产生气体,在高温的作用下气体要膨 胀,而液体金属又限制其膨胀,则发生爆炸,产生飞溅。 2)规范选择不合适,发生熔滴严重长大或固体焊丝插入熔池产生 大的爆断。 3)电源动特性调节不当,大电流峰值过大,引起飞溅。 4)斑点压力过大,产生大块排斥过渡。 5)气体介质,CO 2 、A r。 五 熔滴过渡的控制 (一)脉冲电流控制法 1 特点 1)电弧连续稳定燃烧,基值电流维弧,峰值电流过渡,小平均电 流下实现喷射过渡。 2)避免了喷射过渡的缺点,同一台设备可焊厚板、薄板,可进行 全位置焊接。
(四)喷射过渡 1 射流过渡形成的条件与特点 1)形成条件 钢焊丝TIG焊,电流较 小时,电弧与熔滴状态; 如图2--19a所示,熔滴在 重力作用下呈大滴状过渡。 随着电流的增加,电磁力 等离子流力增,轴向电磁力 由原来的阻碍过渡变为促 进过渡这时熔滴长大将受 到限制,在熔滴和焊丝之间 形成缩颈,此处在高电流密 度下,产生大量金属蒸气 ,细颈表面具备产生阳极斑点的有利条件,此 时,按最小电压原理,如果 :

电弧焊的熔滴过渡

电弧焊的熔滴过渡

§6—5电弧焊的熔滴过渡熔滴是电弧焊时,在焊条〔或焊丝〕端部形成的和向熔池过渡的液态金属滴。

熔滴通过电弧空间向熔池转移的过程称为熔滴过渡。

熔滴过渡对焊接过程的稳定性,焊缝形成,飞溅及焊接接头的质量有很大的影响,因此了解这个问题对于掌握熔化极焊接工艺是很重要的。

金属熔滴向熔池过程的形式,大致可分为三种即:滴状过渡、短路过渡、喷射过渡为什么熔滴过渡会有上述这些不同的形式呢?这是由于作用于液体金属熔滴上的外力不同的缘故。

在焊接时,采取一定的工艺措施。

就可以改变熔滴上的作用力,也就使熔滴按人们所需要的过渡形式自焊条向熔池过渡。

一熔滴过度的作用力1熔滴的重力任何物体都会因为本身的重力而具有下垂的倾向。

平焊时,金属熔滴的重力起促进熔滴过渡作用。

但是在立焊及仰焊时,熔滴的重力阻碍了熔滴向熔池过渡,成为阻碍力。

2外表张力液体金属象其它液体一样具有外表张力,即液体在没有外力作用时,其外表积会尽量减小,缩成圆形,对液体金属来说,外表张力使熔化金属成为球形。

焊条金属熔化后,其液体金属并不会马上掉下来,而是在外表张力的作用下形成球滴状悬挂在焊条末端。

随着焊条不断熔化,熔滴体积不断增大,直到作用在熔滴上的作用力超过熔滴与焊芯界面间的张力时,熔滴才脱离焊芯过渡到熔池中去。

因此外表张力对平焊时的熔滴过渡并不利。

但外表张力在仰焊等其它位置的焊接时,却有利于熔滴过渡,其一是熔池金属在外表张力作用下,倒悬在焊缝上而不易滴落;其二当焊条末端熔滴与熔池金属接触时,会由于熔池外表张力的作用,而将熔滴拉入熔池。

外表张力越大焊芯末端的熔滴越大。

外表张力的大小与多种因素有关,如焊条直径越大焊条末端熔滴的外表张力也越大;液体金属温度越高,其外表张力越小,在保护气体中加入氧化性气体〔Ar—O2 Ar—CO2〕可以显著降低液金属的外表张力,有利于形成细颗粒熔滴向熔池过渡。

3电磁力向相同,则这两根导体彼此相吸,使这两根导体相吸的力叫做电磁力,方向是从外向内,图1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同焊接方法的飞溅量
飞溅生成率
解决飞溅的途径
• 降低短路峰值电流Imax和在短路瞬时维持较小 的电流,为的是避免瞬时短路。通常采用电流 波形控制法进行控制。
• 正确选择工艺参数,保证电压与电流合理匹配、 合适的焊丝干伸长。
• 采用Ar+CO2混合气体代替纯CO2气。 • 正确选择焊丝成分。 • 采用药芯焊丝。
V
下垂滴 状过渡
射滴过渡
射流过渡
旋转射流过渡
喷射过渡
I1
I2
I3
I
正转变和逆转变的临界电流
I I
第二节 跳弧现象与射流过渡
• 熔滴过渡与电弧形态紧密相关,如射 滴过渡是钟罩状电弧形态,而射流过渡 是锥状电弧形态。由射滴过渡向射流过 渡转变,是因为电弧形态由钟罩状向锥 状变化,而这一转变是突然发生的,也 称为跳弧。因此发生跳弧时的电流,即 跳弧电流,也就是射流过渡的临界电流。
跳弧过程
1.跳弧前
2.跳弧
3.跳弧后
跳弧现象机理
跳弧条件: 1能量条件 2焊丝金属蒸发 3电弧的电位梯度
V颈 >=X L2-L1 X---电弧的电位梯度 L1---MK距离 L2---NK距离 V颈---MN间的电压
跳弧后熔滴过渡转变为 射流过渡
跳弧是熔滴过渡转变的必由 之路,跳弧前后,熔滴受力 特点发生了本质变化。
a.小电流短路过渡飞溅 b.瞬时短路时的飞溅 c. 大电流短路引起的飞溅 d.潜弧时短路引起的飞溅 e.固体短路引起的飞溅 f.熔池析出气体引起的飞溅 g.熔滴析出气体引起的飞溅 h. 电弧排斥作用引起的飞溅 k.熔滴细颈过电流爆炸引起的飞溅 l. 熔滴充气爆破引起的飞溅
飞溅与电流的关系
焊接方法与飞溅的关系
射流过渡的形成
跳弧后: P电+P等+P气> P表
射流过渡临界电流与de和Le的 关系
与de的关系
与Le的关系
焊丝成分对临界电流的影响
焊丝牌号 H08Mn H08Mn H08 H08 H18-8
保护气体
2Si 2Si表面 A Mn
发黑
Ar Ar+2%O2 Ar+20%CO2
240 255 210 230 225
CO2焊的短路过渡波形控制法
* 熔滴尺寸与焊丝直径接近,呈钟罩状;
* 飞溅少,电弧稳定;
* 烟雾少; * 焊丝熔化系数高;
b c
* 呈圆弧状熔深。
* 扩大MIG/MAG的
250 I
250
I
规范区间
b c
1.Ar+5%O2 2.Ar+20%CO2
1 2
250 I
250
I
PMIG/PMAG焊的电流范围
焊接电流(A)
焊丝直径(mm)
脉冲焊电流波形
I
2
3
2
3 Icrit
Imean
1
4
1
2
3
4
1
1
2
4
t
3
4
脉冲电弧高速摄像
脉冲射滴过渡1/1的实现
• TpIpn=C
脉冲射滴过渡应用
• 锅炉水冷壁 • 铝合金容器 • 铝、不锈钢的PMIG焊 • ACPMIG焊
CO2焊的特点
• 生产率高。 • 焊接成本低。 • 能耗低。 • 适用范围广。 • 抗锈能力强。 • 焊后不需清渣。
短路 GMA 焊 填充丝焊
MAG焊的熔滴过渡形式 Rotary arc
Pulsed arc Short arc
Spray arc
Tandem arc
SHORT ARC
TRANSITIONAL ARC
SPRAY ARC
PULSED ARC
MIG/MAG焊射流过渡与电流的关系
MIG/MAG焊中熔滴自由过渡形式的 转变与临界电流
射流过渡特点
• 锥形电弧 • 铅笔状的端头 • 小熔滴(1/3,1/5de)沿焊丝轴向 • 均匀的电弧声
射流过渡的机理
• 1 力的观点 • 2 金属蒸汽的观点
• 这两种观点是不全面的,不能解释许多 现象
• 跳弧观点
跳弧现象
• 定义: 所谓跳弧现象是指电弧烁亮区突然由熔 滴根部跳到缩颈上部的过程。
CO2焊的熔滴过渡形式
CO2焊的短路过渡过程
短路过渡动画
短路过渡
CO2焊的短路过渡主要问题
• 主要问题:飞溅、焊缝成形差。 • 影响规律:焊接飞溅大小∆M主要决定于
短路峰值电流Imax,而焊缝成形决定于 燃弧能量与短路能量比Q燃/Q短。 • 即∆M∝Imax • 焊缝成形质量∝Q燃/Q短

CO2焊的短路过渡的飞溅形式
第四章 熔滴过渡及其控制
北京工业大学机电学院 殷树言 教授
第一节熔滴过渡的分类及名称
熔滴过渡的定义
在电弧热作用下,焊丝或焊条端头的金属熔 化并形成熔滴,在各种力的作用下,通过电弧空 间向熔池过渡的过程,称为熔滴过渡。
研究熔滴过渡的意义
• 研究熔滴过渡是为了控制熔滴过渡,从 而得到稳定的焊接过程。尤其在气体保 护焊时,熔滴不受熔渣的拘束,在力的 作用下,易造成飞溅而破坏电弧的稳定 性。
熔滴过渡研究方法
高速摄像示意图
电弧焊方法分类及名称
焊条电弧焊
熔化极
埋弧焊
电弧焊
非熔化极
GMAW(CO2、MIG/MAG) TIG(GTAW)
Plasma(等离子弧焊)
熔滴过渡的分类
中文名称 1.自由过渡 1.1 大滴过渡
熔滴过渡类型 英文名称
Free flight transfer Globular
1.3 爆炸过渡
Explosive transfer
形态
气 体
2.接触过渡 2.1 短路过渡 2.2 搭桥过渡
Bridging transfer
Short circuiting transfer
Bridging transfer
without
interruption
焊接条件
小电流 GMA 焊 CO2 气体保护焊 中等电流 GMA 焊 较大电流 GMA 焊 过大电流 GMA 焊
230 255 190 170 270
320
220
射流过渡临界电流与气体成分 的关系
Ar+ CO2气体
Ar+O2气体
不同金属焊丝临界电流
临界电流
直径
射滴过渡及其定义
• 射滴过渡是指熔滴直径达到与焊丝直径 相近时,电弧力使之强制脱离焊丝端头, 并快速通过电弧空间,向熔池过渡的形 式。
射滴过渡
射滴过渡的特点
1.1.1 下垂滴状过渡 Drop transfer
1.1.2 排斥滴状过渡 Repelled transfer
1.2 喷射过渡
Spray transfer
1.2.1 射滴过渡
Projected transfer
1.2.2 射流过渡
Streaming transfer
1.2.3 旋转射流过渡 Rotating transfer
相关文档
最新文档