工程力学:第2章 力系的简化

合集下载

力系的简化

力系的简化

作用线:通过由分布载荷组成的几何图形的形心。
F
1 2
ql
要求掌握
q
ql
xC
2 3
均布载荷的合力。 载荷集度为q。
l
A
l 2
B
l
方向:与分布力q 相同。
大小:等于载荷集度q乘以分布长度,即 ql。 作用线:通过分布长度的中点。
P29
其他不作要求
17
2.4.2 物体的重心、质心和形心 1、重心
xc
zc

zi Fi FR

x i Fi FR
yc

yi Fi FR
zc

zi Fi FR
15
2.4 平行力系的中心 重 心
【例2.2】水平梁AB长为l,受三角形分布载荷的作用,分布载荷的最大
值为q(N/m),试求合力的大小及作用线的位置。
解:合力F的方向向下。
求合力的大小:建立坐标系Axy。 y 在任意截面 x 处
xC
S
y

y
xdA
A
0
A
yC

ydA
A
A
C 形心 x O
22
反之,若图形对某轴静矩为零,该轴一定过形心。 2、平面图形若有对称轴,则形心在对称轴上。 (因为图形关于对称轴的静矩为 0。)
5、确定物体重心的方法
(1)简单几何形状的物体的重心
均质物体有对称面、对称轴、对称中心,物体的重心一定在对称 面、对称轴、对称中心上。
MA
MA FAy
FA
FAx
也可按前面所讲的确定约束力的原则,固定端所限制的运动:水 平移动、竖直移动、转动。因此,约束力为正交分力和一个力偶。

工程力学:第2章 力系的简化

工程力学:第2章  力系的简化

F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr

E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C

第二章 力系的等效与简化

第二章  力系的等效与简化
rB
M M O ( F ) M O ( F ) F rA F rB F rA F rB ( F ) (rA rB ) F M rBA F
O
M称为力偶矩矢,用以衡量力偶对刚体的转动效应。
F F
F A O d
F
F
M O
A
O
d
A
三、平面任意力系向一点简化
应用力线平移定理,可将刚体上平面任意力系中各个
力的作用线全部平行移到作用面内某一给定点O 。 从而这力系被分解为平面共点力系和平面力偶系。这 种变换的方法称为力系向给定点O 的简化。点O 称为简化 中心。
FR
F1
F2 A2
A1 O A3
=
F3
F2
M1 M2 O
F1
M3
=
MO
O
F3
共点力系F1、 F2、 F3的合成结果为一作用点在点O 的力FR 。这个力矢FR 称为原平面任意力系的主矢。
F1 F2 F3 FR F1 F2 F3
附加力偶系的合成结果是作用在同平面内的力偶,这 力偶的矩用MO 代表,称为原平面任意力系对简化中心 O 的主矩。
R x
F cos( F , j )
R
FR
y
FR
说明
1、平面任意力系的主矢的大小和方向与简化中心的位
置无关。
F1 F2 Fn F 主矢: FR
2、平面任意力系的主矩与简化中心O 的位置有关。因 此,在说到力系的主矩时,一定要指明简化中心。
结论: 平面任意力系向平面内任一点的简化结果,是一个作 用在简化中心的主矢和一个对简化中心的主矩。

工程力学第2章(汇交力系)

工程力学第2章(汇交力系)

2.力在平面上的投影
FM F cos
⑴ 力在平面上的投影是矢量。 ⑵ α:力与投影平面的夹角。
3. 力在直角坐标轴上的投影 · 一次投影法 Fx F cos
Fy F cos
Fz F cos
·二次投影法
Fx Fxy cos F cos cos Fy Fxy sin F cos sin
合力FR 的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向
R
F cos( F ,i )
x
cos( FR,j )
R
F Fy
F
z
F cos( F ,k ) F
二、汇交力系平衡的解析条件
汇交力系平衡的充分且必要条件是力系的合力等于零。
角为60o ,若接触面光滑,试分别求出圆柱给墙面和夹板的压 力。
解:
FA Gtan30o 500 tan30o 288.7N
G 500 FB 577.4N o o cos 30 cos 30
几何法求解汇交力系简化与平衡问题总结:
⑴ 选择研究对象,分析受力情况,画出全部的 已知力和未知力,利用二力平衡、三力平衡汇交等定 律确定某些力作用方向(必须明确力的方向,否则容 易出错)。
Fx 0 : Fy 0 : F
z
FA FC cos 30o sin 0
FB FC cos 30o cos 0 FC sin30o P 0
0:
由几何关系可得 cos 0.8 sin 0.6 解得: FA 10.39kN
FB 13.85kN FC 20kN
F2 = 4kN,F3 = 5kN,求三个力的合力。 解:

工程力学 第2章 力系的等效与简化

工程力学 第2章 力系的等效与简化

第2章 力系的等效与简化 作用在实际物体上的力系各式各样,但是,都可用归纳为两大类:一类是力系中的所有力的作用线都位于同一平面内,这类力系称为平面力系;另一类是力系中的所有力的作用线位于不同的平面内,称为空间力系。

这两类力系对物体所产生的运动效应是不同的。

同一类力系,虽然其中所包含的力不会相同,却可能对同一物体产生相同的作用效应。

在就是前一章中提到的力系等效的概念。

本章将在物理学的基础上,对力系的基本特征量加以扩展,引入力系主矢与主矩的概念;以此为基础,导出力系等效定理;进而应用力向一点平移定理以及力偶的概念对力系进行简化。

力系简化理论与方法将作为分析所有静力学和动力学问题的基础。

 §2-1 力系等效定理 2-1-1 力系的主矢和主矩 2-1-2 力系等效定理 §2-2 力偶与力偶系 2-2-1 力偶与力偶系 2-2-2 力偶的性质 2-2-3 力偶系的合成 §2-3 力系的简化 2-3-1 力向一点平移定理 2-3-2 空间一般力系的简化 2-3-3 力系简化在固定端约束力分析中的应用 §2-4 结论和讨论 2-4-1 关于力矢、主矢、力矩矢、力偶矩矢以及 主矩矢的矢量性质 2-4-2 关于合力之矩定理及其应用 2-4-3 关于力系简化的最后结果 2-4-4 关于实际约束的简化模型 2-4-5 关于力偶性质推论的应用限制 习 题 本章正文 返回总目录第2章 力系的等效与简化 §2-1 力系等效定理 物理学中,关于质点系运动特征量已有明确论述,这就是:质点系的线动量和对某一点的角动量。

物理学中还指明线动量对时间的变化率等于作用在质点系上的合外力;角动量对时间的变化率等于作用在质点系上外力对同一点的合力矩。

这里的合外力,实际上只有大小和方向,并未涉及作用点或作用线。

因而,需要将其中的合外力与外力的合力矩扩展为力系的主矢和主矩。

2-1-1 力系的主矢和主矩 主矢:一般力系(F 1,F 2,…,F n )中所有力的矢量和(图2—1),称为力系的主矢量,简称为主矢(principal vector ),即∑=ni i1R FF =(2-1)图2-1力系的主矢其中F R 为力系主矢;F i 为力系中的各个力。

《工程力学》力系的简化

《工程力学》力系的简化
24/48
2.3 平面力系的简化----平面力系的简化结果
➢主矢、主矩与简化中心的关系: ✓主矢与简化中心的选择无关; ✓主矩与简化中心的选择有关。
➢注意: ✓主矢只有大小和方向两个要素,并不涉及作用点,可 在任意点画出; ✓合力有三要素,大小、方向和作用点。
M Oy
n i 1
M O (Fi ) y
M Oz
n
M O (Fi )
i1
z 5/48
2.1 力系等效与简化的概念----力系的主矢和主矩
力系主矢的特点: ✓对于给定的力系,主矢唯一; ✓主矢只有大小和方向,未涉及作用点。
力系主矩的特点: ✓力系主矩与矩心的位置有关; ✓对于给定的力系,主矩不唯一,同一力系 对不同的点,主矩一般不相同。
10/48
2.2 力系简化的基础——力向一点平移
-F
r F
F F
➢根据加减平衡力系原理,加上平衡力系后,力对刚 体的作用效应不会发生改变; ➢施加平衡力系后,由3个力组成的新力系对刚体的 作用与原来的一个力等效。
11/48
2.2 力系简化的基础——力向一点平移
-F
F
M=Fd
F
F
✓增加平衡力系后,作用在A点的力与作用在B的力组成一
14/48
2.2 力系简化的基础——力向一点平移
z
M -F
F F
Mx
F
F
My
F
15/48
2.3 平面力系的简化
➢平面汇交力系与平面力偶系的合成结果 ➢平面一般力系向一点简化 ➢平面力系的简化结果
16/48
2.3 平面力系的简化
----平面汇交力系与平面力偶系的合成结果
➢汇交力系:力系中所有力的作用线都会交于一点; ➢平面汇交力系:力系中所有力的作用线处于同一平面并且 汇交于一点。 ➢平面汇交力系的合力等于力系中所有力的矢量和。

工程力学课后习题答案_范钦珊(合订版)

工程力学课后习题答案_范钦珊(合订版)

Fw
习题 1—9 图
FT1
F Fw
T2
FN
习题 1—9 解图
7
1 一 10 图示压路机的碾子可以在推力或拉力作用下滚过 100mm 高的台阶。假定力 F 都是沿着杆 AB 的方向,杆与水平面的夹角为 30°,碾子重量为 250 N。试比较这两种情形 下,碾子越过台阶所需力 F 的大小。
习题 1-10 图
即 (d + 3) sinθ = 2(4.5 − d ) sinθ 2 d +3=9−d
d =3
(2)
y
4 G
C
E
θ2
Dθ d −4.5 F O
FR
3
Ax
2
习题 2-2 解图
∴ F 点的坐标为(-3, 0) 合力方向如图所示,作用线过 B、F 点;
tan θ = 4 3
AG = 6 sinθ = 6 × 4 = 4.8 5
nb2返回总目录下一章11ebook工程力学静力学与材料力学习题详细解答教师用书第2章范钦珊唐静静200612181第2章力系的简化21由作用线处于同一平面内的两个力f和2f所组成平行力系如图所示
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 1 章)
范钦珊 唐静静
2006-12-18
FC C
A FA
习题 1-3e 解 1 图
C
BF
FB
FAx A
FAy
习题 1-3b 解 1 图
A FA
FB
α C
B
D
FD 习题 1-3d 解 1 图
D
F
C
F'c
B

工程力学02-力系的简化

工程力学02-力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
力系的等效
力系的基本特征
力的平移 力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
O Mo x
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力 解: 建立直角坐标系

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示 Fx = -1000N Fy = - 1732N 求合力和方向 F = Fx2+Fy2 = (-1000)2+(-1732)2 = 2000N = 2kN Fy tana= F = -1732 = 1.732 -1000 x
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 平面一般力系
§2–1 力线平移定理 §2–2-1 平面一般力系向一点简化 §2–2-2 平面一般力系的简化结果 §2–2-3 分布力系的简化 §2–3-1 空间力系的简化 §2-3–2 空间力系简化结果 §2-4–1 重心概念和计算公式
§2-1 力线平移定理
力的平移定理:可以把作用在刚体上点A的力 F平行移到任一
§2–2-1 平面一般力系向一点简化
F1
F1 F1
FR
m1
O
F2 m3 O
m FR
2
F2
OM
F3
F3
F3
F2
O为任意点
一般力系(任意力系)向一点简化汇交力系+力偶系
(未知力系)
(已知力系)
汇交力系 力 , FR (主矢) , (作用在简化中心)
力 偶 系 偶 , MO (主矩) , (作用在该平面上)
z
F’R
Mo M’’o
x
M’o
O
y
O’
x
z
F’R
M’o FR
y
O
O’
F’’R
x
FR=F’R=- F’’R
z
FR
M’o
y
O
O’
返回
2-4–1 重心概念和计算公式
重心:物体受到地心引力所成力系的合力
(1)求合力的大小
G Gi
(2)求合力作用线的位置
GyC (G1 y1 G2 y2 Gn yn ) Gi yi
GxC (G1x1 G2 x2 Gn xn ) Gi xi
xC
Gi xi G
,
yC
Gi yi , G
zC
Gi zi G
xdG
ydG
xC
V
G

yC
V
G
,
zdG
zC
V
G
对于均质物体,密度 常量,重心坐标表达式可表示为
xC
xiVi V
xdV
V
V
,
yC
yiVi V
2–3-1 空间一般力系向一点简化
F1
M1 F1 F1
O
F2
O
F3
F3M 3 F3
O为任意点
n
FR Fi
i1
n
n
n
MO Mi MO Fi Mi r Fi
i1
i1
i1
MO
FR
M2
F2
O
F2
返回
2-3-2 空间一般力系简化结果分析
空间一般力系向一点简化得一主矢和主矩,下面针对主 矢、主矩的不同情况分别加以讨论。
1、若 FR 0,MO 0, 则该力系平衡(下节专门讨论)。 2、若FR 0,MO 0 则力系可合成一个合力偶,其矩等于原力 系对于简化中心的主矩MO。此时主矩与简化中心的位置无关。
3、若FR 0,MO 0 则力系可合成为一个合力,主矢FR 等
于原力系合力矢FR ,合力FR 通过简化中心O点。 (此时 与简化中心有关,换个简化中心,主矩不为零)
点B,但必须同时附加一个力偶。这个力偶
的矩等于原来的力F 对新作用点B的矩。
[证] 力F
力系 F ,F , F 力F 力偶(F,F )
F
F
F
F
M
B
A
F
说明:
①力线平移定理揭示了力与力偶的关系:力
力+力偶
(例断丝锥)
②力平移的条件是附加一个力偶m,且m与d有关,m=F•d
③力线平移定理是力系简化的理论基础。
② 将Fi向A点简化得一 力和一力偶;
③FR FA方向不定可用正交 分力FAx, FAy表示;
④ FAx, FAy, MA为固定端 约束反力;
⑤ FAx, FAy限制物体平动, MA为限制转动。
§2–2-2 平面一般力系的简化结果
简化结果: 主矢 ,主矩 MO ,下面分别讨论。
① FR=0, MO =0,则力系平衡,下节专门讨论。 ② FR=0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
l
dF
0
l
q(x)dx
0
l q x dx 1 ql
0l
2
(2)求合力作用线的位置
由合力矩定理
M A (FR ) M A (F)
或:
FRh
l
xdF
0
l x q x dx 1 ql 2
0l
3
所以 :
h
1 ql 2 3
2l
FR 3
工程上常见的线分布力有均布力、三角形 分布力、梯形分布力、一般线分布力
主矢FR (F1)mO (F2 )mO (Fi )
大小: FR FRx2 FRy2 ( Fx )2 ( Fy )2
主矢 FR
方向:
tan FR , i
(移动效应)
FRy FRx
Fy Fx
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
4、若FR 0,MO 0 此时分两种情况讨论。即:①FR M O
①若F R
M

O
② FR // MO
可进一步简化,将MO变成 FR,FR 使FR与FR 抵消只剩下 FR 。
(MO FR d )
由于做MO
FR d,d
MO FR
MO FR
,
合力FR
Fi
②若 FR // M O时,——为力螺旋的情形(新概念,又移动又转动)
ydV
V
V
, zC
ziVi V
合力FR 的大小等于原力系的主
矢 FR
合力 的作用线位置
d
MO FR
F R
O MO A
F R
MO O
A
MA FRO
O
A
MA MO MA FRO
F R
MA
返回
§2–2-1 分布力系的简化
求三角形荷载合力的大 小和作用线的位置
(1)求合力的大小
q( x )
x l
q,
dF q(x)dx
FR
[例] ①拧螺丝
②炮弹出膛时炮弹螺线
③FR′不平行也不垂直MO,最一般的成任意角
在此种情况下,<1>首先把MO 分解为M//和M <2>将M//和M 分别按①、②处理。
M
使主矢FR′搬家,搬家的矩离O:O '
M FR
MO sin
FR
,M//不变
所以在O'点处形成一个力螺旋。因为M// 是自由矢量, 可将M//搬到O'处
大小: M O mO (Fi )
主矩MO 方向: 方向规定 +

(转动效应) 简化中心: (与简化中心有关)
(因主矩等于各力对简化中心取矩的代数和)
主矩是附加力偶,为何与简化点有关?能否任意移动
固定端(插入端)约束
在工程中常见的
雨搭
车刀
固定端(插入端)约束
FA FAy
FAx
说明
①认为Fi这群力在同一 平面内;
相关文档
最新文档