2018年贵阳市中考数学卷
贵州省贵阳市2018年中考数学试题卷(word版,含答案)

秘密★启用前贵阳市2018 年初中毕业生学业(升学)考试试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共4 页,三个答题,共25 小题,满分150 分,考试时间为120 分钟.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选这题(以下每个小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3 分,共30 分)1.当x =-1时,代数式3x +1的值是(B )(A)-1(B)-2(C)-4(D)-4【解】3⨯(-1)+1=-22.如图,在∆ABC 中有四条线段DE,BE,EF,FG ,其中有一条线段是∆ABC 的中线,则该线段是( B )(A)线段DE (B)线段BE (C)线段EF (D)线段FG第2 题第3 题第5 题3.如图是一个几何体的主视图和俯视图,则这个几何体是(A )(A)三棱柱(B)正方体(C)三棱锥(D)长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( D )(A)抽取乙校初二年级学生进行调查(B)在丙校随机抽取600 名学生进行调查(C)随机抽取150 名老师进行调查(D)在四个学校各随机抽取150 名学生进行调查5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF =3,那么菱形ABCD 的周长为(A )(A)24(B)18 (C)12(D)9【解】E、F 分别是AC、AB 的中点且EF =3∴BC = 2EF = 6四边形ABCD 是菱形∴AB =BC =CD =DA =6∴菱形ABCD 的周长为6⨯ 4 = 24 故选A6.如图,数轴上有三个点A、B、C ,若点A、B 表示的数互为相反数,则图中点C 对应的数是(C )(A)-2(B)0 (C)1(D)4【解】记点A、B、C 对应的数分别为a、b、ca、b互为相反数∴a +b = 0由图可知:b -a = 6∴c= 17.如图,A、B、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( B )(A)1(B)1 (C)23(D)33【解】图解8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( A )(A)1(B)1(C)1(D)2 12 10 6 5【解】见图∵两个棋子不在同一条网格线上∴两个棋子必在对角线上,如图:有6 条对角线供这两个棋子摆放,考虑每条对角线两端点皆可摆放黑、白棋子,故有6×2=12种可能,而满足题意的只有一种可能,从而恰好摆放成如图所示位置的概率是1 129.一次函数y =kx -1的图像经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为(C )(A)(-5,3)(B)(1,-3)(C)(2,2)(D)(5,-1)【解】∵y 的值随x 值的增大而增大∴k > 0(A)(-5,3)→k =y +1=3+1=-4< 0 x - 5 5(B)(1,-3)→k =y +1=-3+1=-2 < 0 x 1(C)(2,2)→k =y +1=2 +1=3> 0 x 2 2(D)(5,-1)→k =y +1=-1+1= 0 x 510.已知二次函数y =-x2 +x +6及一次函数y =-x+m ,将该二次函数在x 轴上方的图像沿x 轴翻折到x 轴下方,图像的其余部分不变,得到一个新函数(如图所示),当直线y =-x+m 与新图像有4 个交点时,m的取值范围是(D )(A)-25<m < 3 4(B)-25<m < 2 4(C)- 2 <m < 3 (D)- 6 <m <-2【解】图解故选D二、填空题(每小题 4 分,共 20 分)11.某班 50 名学生在 2018 年适应性考试中,数学成绩在 100~110 分这个分数段 的频率为 0.2,则该班在这个分数段的学生为 10 人.【解】 频数 = 频率 ⇒ 频数 = 频率 ⨯ 总数 = 50 ⨯ 0.2 = 10人总数12.如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y = 3( x > 0) ,xy = - 6( x > 0) 的图像交于 A 点和 B 点,若 C 为 y 轴任意一点,连接 AB 、BC ,则x9∆ABC 的面积为 .2【解】13.如图,点 M 、N 分别是正五边形 ABCDE 的两边 AB 、BC 上的点,且 AM = BN , 点 O 是正五边形的中心,则 ∠MON 的度数是 度.⎨【解】方法一:特殊位置,即 OM ⊥ AB ,ON ⊥ BC 时, ∠MON =360︒= 72︒ 5方法二:一般位置,作 OP ⊥ AB ,OQ ⊥ BC ,如图所示:易得: Rt ∆OPM ≌ Rt ∆OQN ,则 ∠POM = ∠QON∠POQ = ∠POM + ∠MOQ 由∠NOM = ∠NOQ + ∠MOQ∴ ∠MON = ∠POQ =360︒= 72︒ 514.已知关于 x 的不等式组 ⎧5 - 3x ≥ -1 ⎩a - x < 0 【解】由 5 - 3x ≥ -1 得: x ≤ 2由 a - x < 0 得: x > a无解,则 a 的取值范围是 .当 a < 2 时,不等式组有解,即 a < x ≤ 2 ,如图:当 a = 2 时,不等式组有解,即 x = 2 ,如图:当 a > 2 时,不等式组无解,如图:综上所述: a > 2 .15.如图,在 ∆ABC 中, BC = 6 , BC 边上的高为 4,在 ∆ABC 的内部作一个矩形 EFGH ,使 EF 在 BC 边上,另外两个顶点分别在 AB 、AC 边上,则对角线 EG 长12 13 的最小值为.13【解】作 AM ⊥ BC 于点 M ,交 DG 于点 N ,设 DE = x ,由题意知: AM = 4,BC = 6 如图:∵四边形 DEFG 是矩形 ∴ DG ∥ EF ∴ ∆ADG ∽ ∆ABC∴AN = DG 即AM BC 4 - x = DG ⇒ DG = 12 - 3x4 6 2EG =DE 2 + DG 2 =x 2 + (12 - 3x )2 = 在 Rt ∆EDG 中13 ( x - 24 )2 + 1442 9 13 13∴当 x = 24 时, EG min = 13 ( 24 - 24 )2 + 144 = 144 =12 13 13 9 13 13 13 13 13三、解答题(本大题10 个小题,共100 分)17.(本题满分10 分)在6·26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300 人,现从中各随机抽取20 名同学的测试成绩进行调查分析,成绩如下:初一:68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67初二:69 97 96 89 98 100 99 100 95 10099 69 97 100 99 94 79 99 98 79(1)根据上述数据,将下列表格补充完成整:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135 人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.初二年级总体掌握禁毒知识水平较好,因为平均数和中位数都高于初一年级.18.(本题满分8 分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形 和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m = 7 ,n = 4 ,求拼成矩形的面积.【解】(1)拼成矩形的周长=m +n +m -n = 2m(2)拼成举行的哦面积=(m -n)(m +n) = (7 -4)⨯ (7 + 4) = 3319.(本题满分 8 分)如图①,在 Rt ∆ABC 中,以下是小亮探究 间关系的方法:a sin A 与b 之sin B图① 图②s in A = a ,sin B = b∴ c = c a,c =c b ∴ a = b sin A sin B sin A sin B根据你掌握的三角函数知识,在图②的锐角 ∆ABC 中,探究 之间的关系,并写出探究过程.a sin A 、b sin B、 csin C【解】作 CM ⊥ AB 于点 M ,作 AN ⊥ BC 于点 N ,如图所示:在 Rt ∆AMC 中,sin A =CM AC= CMb⇒ CM = b ⋅ s in A 在 Rt ∆BMC 中,sin B =CM BC = CMa⇒ CM = a ⋅ s in B∴ b ⋅ sin A = a ⋅ sin B∴ b sin B = a sin A在 Rt ∆ANC 中, sin C =ANAC在 Rt ∆ANB 中, sin B = AN AB=AN⇒ AN = b ⋅ sin C b= AN ⇒ AN = c ⋅ s in Bc∴ b ⋅ sin C = c ⋅ sin B∴ b sin B∴ a sin A =c sin C= b sin B= c sin C20.(本题满分10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭 赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10 元,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50 棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500 元,那么他们最多可购买多少棵乙种树苗?【解】(1)设甲种树苗每棵的价格是x 元,由题意知:乙种树苗每棵的价格是x +10元.则 480 =360 ,解得:x = 30x +10 x即,甲、乙两种树苗每棵的价格分别是30 元、40元(2)设他们购买乙种树苗y 棵,则购买甲种树苗50 -y 棵.由(1)知:甲种树苗每棵30 元,乙种树苗每棵40 元甲种树苗降低10%后为:30⨯(1-10%)= 27 元由题意知:27⨯(50 -y)+40y ≤1500 解得:y ≤150 ≈ 11.5413所以,他们最多可以购买11 棵乙种树苗.21.(本题满分10 分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,点 F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称,(1)求证:∆AEF 是等边三角形;(2)若AB = 2 ,求∆AFD 的面积.证明(1):∵四边形ABCD 是平行四边形∴AD ∥BC∵AE ⊥BC∴AE ⊥AD 即∠EAD = 90︒在Rt∆EAD 中∵F 是ED 的中点∴AF =1 ED =EF2∵AE 与AF 关于AG 对称∴AE =AF∴AE =AF =EF∴∆AEF 是等边三角形(3)由(1)知∆AEF 是等边三角形,则∠EAF =∠AEF =60︒,∠EAG =∠FAG = 30︒ 在Rt∆EAD 中,∠ADE = 30︒∵AB 与AG 关于AE 对称∴∠BAE =∠GAE = 30︒在Rt∆AEB 中,AB = 2则AE =AB⋅cos∠BAE =2⨯cos30︒=3在Rt∆EAD 中,AD =AE ⋅tan ∠AEF = 3 ⨯tan 60︒= 3∴S =1 S=1 ⨯1 ⨯AE ⨯AD =1 ⨯1 ⨯ 3 ⨯3 =3 3∆AFD 2 ∆AED 2 2 2 2 422.(本题满分10 分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分 别标有数字1,2,3,4,图②是一个正六边形棋盘.现通过掷骰子的方式玩跳棋 游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和 是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一 次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C 处的概率是;C 处的概率.【解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是 6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C 处的数字是 8所以,随机掷一次骰子,则棋子跳动到点C 处的概率是1 .4(2)随机掷两次骰子,棋子最终跳动到点C 处的数字是14,所以,随机掷两次骰子,棋子最终跳动到点C 处的概率是3 .16⎪ ⎪ ⎨b 23.(本题满分 10 分)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好 者,一滑雪者从山坡滑下,测得滑行距离 y (单位:m )与滑行时间 x (单位:s )之间的关系可以近似的用二次函数来表示.距离大约 800m ,他需要多少时间才能到达终点?(2)将得到的二次函数图像补充完整后,向左平移 2 个单位,再向上平移 5 个 单位,求平移后的函数表达. 【解】(1)设二次函数表达式为: y = ax 2 + bx + c ,则⎧0 = c ⎪ ⎨4 = a + b + c ⎩12 = 4a + 2b + c ⎧a = 2解得: ⎪ = 2 ,故 y = 2 x 2+ 2 x ,x > 0 ⎩c = 0(2)由(1)知: y = 2 x 2 + 2 x向左平移 2 各单位得: y = 2( x + 2)2 + 2( x + 2) = 2 x 2 + 10 x + 12向上平移 5 个单位得: y = 2 x 2 + 10 x + 12 + 5 = 2 x 2 + 10 x + 1723.(本题满分10分)如图,AB 为⊙O 的直径,且AB = 4 ,点C在半圆上,OC ⊥AB , 垂足为点O ,P 为半圆上任意一点,过P 点作PE ⊥OC 于点E,设∆OPE 的内心为M ,连接OM、PM .(1)求∠OMP 的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.【解】(1)∵PE ⊥OC∴∠PEO = 90︒ ∴∠EPO +∠EOP = 90︒ ∵M 是∆OPE 的内心∴∠EOM =∠POM,∠EPM =∠OPM∴∠POM +∠OPM =1 (∠EPO +∠EOP) = 45︒2在∆POM 中,∠OMP =180︒- (∠POM +∠OPM ) =180︒- 45︒=135︒(2)连接CM ,作过O、M、C 三点的外接圆,即⊙N ,连接NC、NO ,在⊙N的优弧上任取一点H ,连接HC、HO .如图所示:由题意知:OP =OC,∠POM =∠COM,OM =OM∴∆POM ≌∆COM∴∠OMP =∠OMC =135︒在⊙N 的内接四边形CMOH 中,∠H =180︒-∠OMC =180︒-135︒= 45︒∴∠N =2⨯ 45︒= 90︒由题意知:OC =1 AB =1 ⨯ 4 = 22 2在等腰直角三角形CNO 中,NC =NO由勾股定理得:NC2 +NO2 =OC2 即2N C2 = 22 ⇒NC = 2当点P在上运动时,点M 在上运动90︒⨯π⨯∴的长为:180︒∵与关于OC 对称2=2π2∴当点P 在上运动时,点M 所在弧上的运动路径长与当点P 在上运动时,点M 在上运动的路径长相等∴当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长为:2⨯2π=2π224.(本题满分12 分)如图,在矩形ABCD 中,AB = 2,AD = 的一点,且BP = 2CP .3,P 是BC 边上(1)用尺规在图①中作出CD 边上的中点E ,连接AE、BE(保留作图痕迹,不 写作法);(2)如图②,在(1)的条件下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP ,不添加辅助线,∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向或平移方向和平移距离)【解】(1)分别以D、C 为圆心,以相同且大于1 DC =2接MN 交DC 于点E ,即为DC 的中点,如下图:3为半径作圆相交于M、N 两点,连2(2)由题意及(1)知:EC =1 AB =1 ⨯ 2 = 12 2在Rt∆BCE 中,BC = 3∴tan ∠BEC =BC =3EC ∴∠BEC = 60︒由勾股定理得:EB =EC2 +BC2 =12 + ( 3)2 = 2同理:AE = 2∴AE =AB =EB∴∠AEB =∠ABE =∠BAE = 60︒∴∠AEB =∠BEC = 60︒∴EB 是否平分∠AEC .(3)∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.理由如下:∵BP = 2CP,AD =BC =3∴BP = 2 3 ,CP =33 3在Rt∆ECP 中,tan ∠EPC =EC =3PC∴∠ECP = 60︒ ∴∠BPF = 60︒由勾股定理得:EP = EC2 +CP2 = 12 + ( 3)2 =2 33 3∴EP =PB由题意知:∠C =∠ABP = 90︒∵BP=AB=2 CP EC∴∆ABP ∽∆ECP∴∠APB = 60︒∴∠BPF =∠APB = 60︒∵∠ABP =∠FBP = 90︒,BP =BP∴Rt∆ABP ≌Rt∆FBP∵∠APB =∠CPE = 60︒∴∠EPA =180︒- (∠APB +∠CPE)= 60︒∴∠APB =∠APE又AP =AP∴Rt∆ABP ≌Rt∆AEP∴Rt∆ABP ≌Rt∆AEP ≌Rt∆FBP∴∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.-: APFB PFP 120. ;:APFB P 120.PF3D=:EFIDJf FDEC_ -- -JSJ DSSB1FAB FA3 25.(本题满分 12 分)如图,在平面直角坐标系 xoy 中,点 A 是反比例函数y = m - m 2 x ( x > 0,m > 1) 图像上一点,点 A 的横坐标为 m ,点 B (0,- m ) 是 y 轴负半轴上的一点,连接 AB , AC ⊥ AB ,交 y 于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E . (1)当 m = 3 时,求点 A 的坐标; (2) DE = ,设点 D 的坐标为( x ,y ),求 y 关于 x 的函数关系式和自变量的取值范围;(3)连接 BD ,过点 A 作 BD 的平行线,与(2)中的函数图像交于点 F ,当 m 为 何值时,以 A 、B 、D 、F 为顶点的四边形是平行四边形?【解】(1)当 m = 3 时, x A = 3 ,则 y A =m 3 - m 2 x A33 - 32= = 6 3故: A (3,6)(2)作 AF ⊥ y 轴于点 F ,则 ∠CFA = 90︒ .由题意知: A (m , m 2 - m ),B (0,- m )C A ⊥ AB ∴ ∠CAB = 90︒∴ ∠CAB = ∠CFA = 90︒∴ ∠ABC + ∠FAB = ∠FAB + ∠CAF = 90︒∴ ∠CAF = ∠ABC∴ Rt ∆AFC ∽ Rt ∆BFA∴ FA = CF ,即 m= CF ∴ C F = 1 FB AF m 2 - m - (-m ) mAD = AC ,∠E = ∠AFC = 90︒,∠CAF = ∠DAE最大最全最精的教育资源网 ⎨ ∴ Rt ∆AFC ≌ Rt ∆AED ∴ AE = AF = m ,DE = CF = 1 ∴ D (2m ,m 2 - m - 1)消去 m 得: y = 1 x 2 - 1x - 1,x > 24 2⎧x = 2m ∴ ⎨ ⎩ y = m 2- m - 1综上: DE = 1,y = 1 x 2 - 1x - 1,x > 24 2 (3) x > 2, A (m , m 2 - m ),B (0,- m ) , D (2m ,m 2 - m - 1)方法一:利用平行四边形对角线互相平分以及中点坐标公式 当AB 为对角线时⎧x A + x B = x D + x F⎨⎧m + 0 = 即 22m + x F 2⇒ F (-m ,1 - m ) ⎩ y A + y B = y D + y F ⎩m - m + (-m ) = m - m - 1 + y F则1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写) 当 AD 为对角线时:⎧x A + x D = x B + x F⎧m + 2m = 0 + x F 即(3 221)⎨⎩ y A + y D = y B + y F ⎨⎩m 2 - m + m 2 ⇒ F - m - 1 = -m + y F最大最全最精的教育资源网 m ,m- m -最大最全最精的教育资源网 F F 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法二:坐标平移法(对边相等+点平移方向相同)⎧x A - x F = x B - x D ⎨⎧m- x F = 0 - 2m 即⎨⇒ F (3m ,2m 2 - m - 1) ⎩ y A - y F = y B - y D ⎩m 2 - m - y = -m - (m 2- m - 1)代入 y = 1 x 2 - 1 x - 1 得 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2 4 2⎧x A - x F = x D - x B 或⎨ ⎧m - x F = 2m - 0 即⎨⇒ F (-m ,1 - m ) ⎩ y A - y F = y D - y B ⎩m 2- m - y = m 2- m -1 - (-m )代入y = 1 x 2 - 1 x - 1 1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2 4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写)综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法三:官方参考答案(过程相对复杂)将 F 点坐标代入代入 y = 1 x 2 - 1x - 1 得 m = 0(舍)或m = 24 2所以,当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形.。
贵阳市2018年中考数学试卷

秘密★启用前贵阳市 2018 年初中毕业生学业(升学 )考试试题卷数学同学你好 !答题前请认真阅读以下内容:1 全卷共 4 页, 三个大题 , 共 25 小题 , 满分 150 分 . 考试时间为120 分钟 .2.一律在答题卡相应位置作答 , 在试题卷上答题视为无效 .3.可以使用科学计算器 .一、选择题 ( 以下每小题均有 A、 B、 C、D 四个选项 , 其中只有一个选项正确 , 请用 2B 铅笔在答题卡相应位置作答 , 每小题 3 分, 共 30 分 )1.当 x=1 时 ,代数式 3x+1 的值是(A)-1(B)-2(C)-3(D)-42.如图 ,在△ ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是△ ABC 的中线 ,则该线段是(A)线段 DE(B)线段 BE(C)线段 EF(D)线段 FG3.如图是一个几何体的主视图和俯视图,则这个几何体是(A)三棱柱(B)正方体C)三棱锥(D)长方体4.在“生命安全”主题教育活动中 ,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况 .小丽制定了如下调查方案 ,你认为最合理的是(A)抽取乙校初二年级学生进行调查(B)在丙校随机抽取 600 名学生进行调查(C)随机抽取 150名老师进行调查(D)在四个学校各随机抽取150 名学生进行调查5.如图 ,在菱形 ABCD中 ,E 是 AC 的中点 ,EF∥ CB,交 AB 于点 F,如果 EF=3,那么菱形 ABCD的周长为(A)2(B)18(C)12(D)96.如图 ,数轴上有三个点A,B,C,若点 A,B 表示的数互为相反数,则图中点 C 对应的数是(A)-2(B)0(C)1(D)47.如图 ,A,B,C 是小正方形的顶点 ,且每个小正方形的边长为1,则 tan ∠BAC的值为1(B)13(D)3(A)(C)238.如图 ,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是11(C)12(A)(B)6(D)121059.一次函数 y=kx-1的图象经过点 P,且 y 的值随 x 值的增大而增大 ,则点 P 的坐标可以为(A)(-5,3)(B)(1,-3)(C)(2,2)(D)(5,-1)10.已知二次函数及一次函数y x2x 6 ,将该二次函数在x 轴上方的图象沿 x 轴翻折到x轴下方 ,图象的其余部分不变,得到一个新图象(如图所示 )当直线y=x+m 与新图象有 4 个交点时 ,m 的取值范围是25m3(B)25-2(A)m44(C) 2m3(D) 6 m22018 年初中毕业生学业( 升学 ) 考试数学卷第页 ( 共 4 页 )1二、填空题 (每小题 4 分 ,共 20 分 )11. 某班 50 名学生在 2018年适应性考试中 ,数学成绩在 100~110 分这个分数段的频率为 0.2,则该班在这个分数段的学生为▲ 人12. 如图 ,过 x 轴上任意一点 P 作 y 轴的平行线 ,分别与反比例函数 (x>0)的图象 交于 A 点和 B 点 ,若 C 为 y 轴上任意一点 ,连接 AC,BC,则△ ABC 的面积为 ▲ . 13. 如图 ,点 M,N 分别是正五边形 ABCDE 的两边 AB,BC 上的点 ,且 AM=BN,点 O是正五边形的中心 ,则∠ MON 的度数是▲度14. 已知关于 x 的不等式组5 3x 1无解 ,则 a 的取值范围是▲ .a x 015. 如图 ,在△ ABC 中,BC=6,BC 边上的高为 4,在△ ABC 的内部作一个矩形 EFGH,使 EF 在 BC 边上 ,另外两个顶点分别在 AB,AC 边上 ,则对角线 EG 长的最小值为▲ .三、解答题 (本大题 10 小题 ,共 100 分 ) 16.(本题满分10 分 )在 6· 26 国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生禁毒意识 ,举办了“关爱生命 ,拒绝毒品”的知识竞赛 .某校初一、初二年级分别有 300 人 ,现从中各随机抽取 20 名同学的测试成绩进行调查分析 ,成绩如下 :初一: 68 88 100 100 79 94 8985100 88 10090 98 97 77 94 96 100 92 67 初二: 6997 96 89 98 100 99 100 95 100 996997100999479999879(1)根据上述数据 ,将下列表格补充完整 整理、描述数据 :分数段 60≤ x ≤ 6970≤ x ≤7980 ≤x ≤ 8990≤ x ≤ 100初一人数 2 2 4 12 初二人数 22115分析数据 :样本数据的平均数、中位数、满分率如下表年级 平均数 中位数满分率 初一90.1 93 25% 初二 92.8▲20%得出结论 :(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 ▲ 人;(3)你认为哪个年级掌握禁毒知识的总体水平较好 ,说明理由 .17.(本题满分 8 分 )如图 ,将边长为 m 的正方形纸板沿虚线剪成两个小正方形和两个矩形 .拿掉边长为 n 的小正方形纸板后 ,再将剩下的三块拼成一个新矩形.(1)用含 m 或 n 的代数式表示拼成的矩形周长; (2)当 m=7,m=4 时 ,求拼成的矩形面积 .2018 年初中毕业生学业( 升学 ) 考试数学卷第页 ( 共 4 页 )218.(本题满分8 分 )如图① ,在 Rt△ ABC中 ,以下是小亮探索a b与之间关系的方法 : sin A sin BsinA a b, , sin Bc cca, c b, sinA sin B a bsinA sin B(图① )(图② )根据你掌握的三角函数知识,在图②的锐角△ ABC 中 ,探索 a , b,csinA sin B sinC之间的关系 ,并写出探索过程 .19.(本题满分10 分 )某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种 ,已知乙种树苗的价格比甲种树苗贵10 元 ,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同 .(1)求甲、乙两种树苗每棵的价格各是多少元;(2)在实际帮扶中 ,他们决定再次购买甲、乙两种树苗共50 棵 .此时 ,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价保持不变.如果此次购买两种树苗的总费用不超过 1500元,那么他们最多可购买多少棵乙种树苗?20.(本题满分10 分 )如图 ,在平行四边形ABCD中 ,AE 是 BC边上的高 ,点 F 是 DE的中点 ,AB 与 AG 关于 AE 对称 ,AE 与 AF 关于 AG 对称 .(1)求证 :△ AEF是等边三角形;(2)若 AB=2,求△ AFD 的面积 .21.(本题满分10 分 )图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏.规则是 :将这枚骰子掷出后 ,看骰子向上三个面(除底面外 )的数字之和是几 ,就从图②中的 A 点开始沿着顺时针方向连续跳动几个顶点,(图① )第二次从第一次的终点处开始,按第一次的方法跳动 .(1)随机掷一次骰子 ,则棋子跳动到点 C 处的概率是▲;(2)随机掷两次骰子 ,用画树状图或列表的方法,求棋子最终跳动到点C处的概率 .22.(本题满分10 分 )(图② )六盘水市梅花山国际滑雪场自建成以来 ,吸引了大批滑雪爱好者 ,一滑雪者从山坡滑下 ,测得滑行距离 y(单位 :m)与滑行时间 x(单位 :s)之间的关系可以近似地用二次函数来表示 ,现测得一组数据 ,如下表所示滑行时间x/s0123⋯滑行距离y/m041224⋯2018 年初中毕业生学业( 升学 ) 考试数学卷第页( 共 4 页 )3(1)根据表中数据求出二次函数的表达式,现测量出滑雪者的出发点与终点的距离大约 840 米 ,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移 2 个单位 ,再向下平移 5 个单位 ,求平移后所得函数的表达式.23.(本题满分10 分 )如图 ,AB 为⊙ O 的直径 ,且 AB=4,点 C 在半圆上 ,OC⊥ AB,垂足为点 O,P 为半圆上任意一点 ,过 P 点作 PE⊥OC于点 E. 设△OPE的内心为 M, 连接 OM,PM.(1)求∠ OMP 的度数(2)当点 P 在半圆上从点 B 运动到点 A 时 ,求内心 M 所经过的路径长 .24.(本题满分12 分 )如图 ,在矩形 ABCD中 ,AB=2,AD= 3 ,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD 边上的中点E,连接 AE,BE(保留作图痕迹 ,不写作法 );(2)如图② ,在 (1)的条件下 ,判断 EB是否平分∠ AEC,并说明理由;(3)如图③ ,在 (2)的条件下 ,连接 EP并延长交 AB 的延长线于点 F,连接 AP.不添加辅助线 ,△ PFB能否由都经过 P 点的两次变换与△ PAE组成一个等腰三角形 ?如果能,说明理由 ,并写出两种方法 (指出对称轴、旋转中心、旋转方向、旋转角或平移方向和平移距离);如果不能 ,也请说明理由 .(图① )(图② )(图③ )25.(本题满分12 分 )(第 24 题图 )如图 ,在平面直角坐标系 xoy 中 ,点 A 是反比例函数y m3m2(x>0,m>1) 图象上x一点 ,点 A 的横坐标为 m,点 B(0, -m)是 y 轴负半轴上的一点,连接 AB,AC⊥ AB,交 y 轴于点 C,延长 CA到点 D,使 AD=AC.过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴的平行线交 AE 于点 E.(1)当 m=3 时 ,求点 A 的坐标;(2)DE=▲ :设点 D 的坐标为 (x,y),求 y 关于 x 的函数关系式和自变量的取值范围;(3)连接 BD,过点 A 作 BD 的平行线 ,与 (2) 中的函数图象交于点F,当 m 为何值时 ,以 A,B,D,F为顶点的四边形是平行四边形?2018 年初中毕业生学业( 升学 ) 考试数学卷第页( 共 4 页 )4。
2018年贵州省贵阳市中考数学真题及参考解析

贵阳市2018 年初中毕业生学业(升学)考试试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共4 页,三个答题,共25 小题,满分150 分,考试时间为120 分钟.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选这题(以下每个小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3 分,共30 分)1.当x =-1时,代数式3x +1的值是(B )(A)-1(B)-2(C)-4(D)-4【解】3⨯(-1)+1=-22.如图,在∆ABC 中有四条线段DE,BE,EF,FG ,其中有一条线段是∆ABC 的中线,则该线段是( B )(A)线段DE (B)线段BE (C)线段EF (D)线段FG第2 题第3 题第5 题3.如图是一个几何体的主视图和俯视图,则这个几何体是(A )(A)三棱柱(B)正方体(C)三棱锥(D)长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( D )(A)抽取乙校初二年级学生进行调查(B)在丙校随机抽取600 名学生进行调查(C)随机抽取150 名老师进行调查(D)在四个学校各随机抽取150 名学生进行调查5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF =3,那么菱形ABCD 的周长为(A )(A)24(B)18 (C)12(D)9【解】E、F 分别是AC、AB 的中点且EF =3∴BC = 2EF = 6四边形ABCD 是菱形∴AB =BC =CD =DA =6∴菱形ABCD 的周长为6⨯ 4 = 24 故选A6.如图,数轴上有三个点A、B、C ,若点A、B 表示的数互为相反数,则图中点C 对应的数是(C )(A)-2(B)0 (C)1(D)4【解】记点A、B、C 对应的数分别为a、b、ca、b互为相反数∴a +b = 0由图可知:b -a = 6∴c= 17.如图,A、B、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( B )(A)1(B)1 (C)23(D)33【解】图解8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( A )(A)1(B)1(C)1(D)2 12 10 6 5【解】见图∵两个棋子不在同一条网格线上∴两个棋子必在对角线上,如图:有6 条对角线供这两个棋子摆放,考虑每条对角线两端点皆可摆放黑、白棋子,故有6×2=12种可能,而满足题意的只有一种可能,从而恰好摆放成如图所示位置的概率是1 129.一次函数y =kx -1的图像经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为(C )(A)(-5,3)(B)(1,-3)(C)(2,2)(D)(5,-1)【解】∵y 的值随x 值的增大而增大∴k > 0(A)(-5,3)→k =y +1=3+1=-4< 0 x - 5 5(B)(1,-3)→k =y +1=-3+1=-2 < 0 x 1(C)(2,2)→k =y +1=2 +1=3> 0 x 2 2(D)(5,-1)→k =y +1=-1+1= 0 x 510.已知二次函数y =-x2 +x +6及一次函数y =-x+m ,将该二次函数在x 轴上方的图像沿x 轴翻折到x 轴下方,图像的其余部分不变,得到一个新函数(如图所示),当直线y =-x+m 与新图像有4 个交点时,m的取值范围是(D )(A)-25<m < 3 4(B)-25<m < 2 4(C)- 2 <m < 3 (D)- 6 <m <-2【解】图解故选D二、填空题(每小题4 分,共20 分)11.某班50 名学生在2018 年适应性考试中,数学成绩在100~110 分这个分数段的频率为0.2,则该班在这个分数段的学生为10 人.【解】频数=频率⇒频数=频率⨯总数=50⨯0.2 =10人总数12.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y =3 (x> 0) ,xy =-6(x> 0) 的图像交于A 点和B 点,若C 为y 轴任意一点,连接AB、BC ,则x9∆ABC 的面积为.2【解】13.如图,点M、N 分别是正五边形ABCDE 的两边AB、BC 上的点,且AM =BN ,点O 是正五边形的中心,则∠MON 的度数是度.⎨【解】方法一:特殊位置,即 OM ⊥ AB ,ON ⊥ BC 时, ∠MON =360︒= 72︒ 5方法二:一般位置,作 OP ⊥ AB ,OQ ⊥ BC ,如图所示:易得: Rt ∆OPM ≌ Rt ∆OQN ,则 ∠POM = ∠QON∠POQ = ∠POM + ∠MOQ 由∠NOM = ∠NOQ + ∠MOQ∴ ∠MON = ∠POQ =360︒= 72︒ 514.已知关于 x 的不等式组 ⎧5 - 3x ≥ -1 ⎩a - x < 0 【解】由 5 - 3x ≥ -1 得: x ≤ 2由 a - x < 0 得: x > a无解,则 a 的取值范围是 .当 a < 2 时,不等式组有解,即 a < x ≤ 2 ,如图:当 a = 2 时,不等式组有解,即 x = 2 ,如图:当 a > 2 时,不等式组无解,如图:综上所述: a > 2 .15.如图,在 ∆ABC 中, BC = 6 , BC 边上的高为 4,在 ∆ABC 的内部作一个矩形 EFGH ,使 EF 在 BC 边上,另外两个顶点分别在 AB 、AC 边上,则对角线 EG 长12 13 的最小值为.13【解】作 AM ⊥ BC 于点 M ,交 DG 于点 N ,设 DE = x ,由题意知: AM = 4,BC = 6 如图:∵四边形 DEFG 是矩形 ∴ DG ∥ EF ∴ ∆ADG ∽ ∆ABC∴AN = DG 即AM BC 4 - x = DG ⇒ DG = 12 - 3x4 6 2EG =DE 2 + DG 2 =x 2 + (12 - 3x )2 = 在 Rt ∆EDG 中13 ( x - 24 )2 + 1442 9 13 13∴当 x = 24 时, EG min = 13 ( 24 - 24 )2 + 144 = 144 =12 13 13 9 13 13 13 13 13三、解答题(本大题10 个小题,共100 分)17.(本题满分10 分)在6·26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300 人,现从中各随机抽取20 名同学的测试成绩进行调查分析,成绩如下:初一:68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67初二:69 97 96 89 98 100 99 100 95 10099 69 97 100 99 94 79 99 98 79(1)根据上述数据,将下列表格补充完成整:分数段60 ≤x ≤ 69 70 ≤x ≤ 79 80 ≤x ≤ 89 90 ≤x ≤100 初一人数22412初二人数22115分析数据:样本数据的平均数、中位数、满分率如下表:年级平均数中位数满分率初一90.19325%初二92.897.520%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135 人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.初二年级总体掌握禁毒知识水平较好,因为平均数和中位数都高于初一年级.18.(本题满分8 分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形 和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m = 7 ,n = 4 ,求拼成矩形的面积.【解】(1)拼成矩形的周长=m +n +m -n = 2m(2)拼成举行的哦面积=(m -n)(m +n) = (7 -4)⨯ (7 + 4) = 3319.(本题满分 8 分)如图①,在 Rt ∆ABC 中,以下是小亮探究 间关系的方法:a sin A 与b 之sin B图① 图②s in A = a ,sin B = b∴ c = c a,c =c b ∴ a = b sin A sin B sin A sin B根据你掌握的三角函数知识,在图②的锐角 ∆ABC 中,探究 之间的关系,并写出探究过程.a sin A 、b sin B、 csin C【解】作 CM ⊥ AB 于点 M ,作 AN ⊥ BC 于点 N ,如图所示:在 Rt ∆AMC 中,sin A =CM AC= CMb⇒ CM = b ⋅ s in A 在 Rt ∆BMC 中,sin B =CM BC = CMa⇒ CM = a ⋅ s in B∴ b ⋅ sin A = a ⋅ sin B∴ b sin B = a sin A在 Rt ∆ANC 中, sin C =ANAC在 Rt ∆ANB 中, sin B = AN AB=AN⇒ AN = b ⋅ sin C b= AN ⇒ AN = c ⋅ s in Bc∴ b ⋅ sin C = c ⋅ sin B∴ b sin B∴ a sin A =c sin C= b sin B= c sin C20.(本题满分10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭 赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10 元,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50 棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500 元,那么他们最多可购买多少棵乙种树苗?【解】(1)设甲种树苗每棵的价格是x 元,由题意知:乙种树苗每棵的价格是x +10元.则 480 =360 ,解得:x = 30x +10 x即,甲、乙两种树苗每棵的价格分别是30 元、40元(2)设他们购买乙种树苗y 棵,则购买甲种树苗50 -y 棵.由(1)知:甲种树苗每棵30 元,乙种树苗每棵40 元甲种树苗降低10%后为:30⨯(1-10%)= 27 元由题意知:27⨯(50 -y)+40y ≤1500 解得:y ≤150 ≈ 11.5413所以,他们最多可以购买11 棵乙种树苗.21.(本题满分10 分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,点 F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称,(1)求证:∆AEF 是等边三角形;(2)若AB = 2 ,求∆AFD 的面积.证明(1):∵四边形ABCD 是平行四边形∴AD ∥BC∵AE ⊥BC∴AE ⊥AD 即∠EAD = 90︒在Rt∆EAD 中∵F 是ED 的中点∴AF =1 ED =EF2∵AE 与AF 关于AG 对称∴AE =AF∴AE =AF =EF∴∆AEF 是等边三角形(3)由(1)知∆AEF 是等边三角形,则∠EAF =∠AEF =60︒,∠EAG =∠FAG = 30︒ 在Rt∆EAD 中,∠ADE = 30︒∵AB 与AG 关于AE 对称∴∠BAE =∠GAE = 30︒在Rt∆AEB 中,AB = 2则AE =AB⋅cos∠BAE =2⨯cos30︒=3在Rt∆EAD 中,AD =AE ⋅tan ∠AEF = 3 ⨯tan 60︒= 3∴S =1 S=1 ⨯1 ⨯AE ⨯AD =1 ⨯1 ⨯ 3 ⨯3 =3 3∆AFD 2 ∆AED 2 2 2 2 422.(本题满分10 分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分 别标有数字1,2,3,4,图②是一个正六边形棋盘.现通过掷骰子的方式玩跳棋 游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和 是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一 次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C 处的概率是;C 处的概率.【解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是 6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C 处的数字是 8所以,随机掷一次骰子,则棋子跳动到点C 处的概率是1 .4(2)随机掷两次骰子,棋子最终跳动到点C 处的数字是14,6789612131415713141516814151617915161718树状图如下:所以,随机掷两次骰子,棋子最终跳动到点C 处的概率是3 .16⎪ ⎪ ⎨b 23.(本题满分 10 分)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好 者,一滑雪者从山坡滑下,测得滑行距离 y (单位:m )与滑行时间 x (单位:s )之间的关系可以近似的用二次函数来表示. 滑行时间 x / s 0 1 2 3 … 滑行距离 y / m41224…距离大约 800m ,他需要多少时间才能到达终点?(2)将得到的二次函数图像补充完整后,向左平移 2 个单位,再向上平移 5 个 单位,求平移后的函数表达. 【解】(1)设二次函数表达式为: y = ax 2 + bx + c ,则⎧0 = c ⎪ ⎨4 = a + b + c ⎩12 = 4a + 2b + c ⎧a = 2解得: ⎪ = 2 ,故 y = 2 x 2+ 2 x ,x > 0 ⎩c = 0(2)由(1)知: y = 2 x 2 + 2 x向左平移 2 各单位得: y = 2( x + 2)2 + 2( x + 2) = 2 x 2 + 10 x + 12向上平移 5 个单位得: y = 2 x 2 + 10 x + 12 + 5 = 2 x 2 + 10 x + 1723.(本题满分10分)如图,AB 为⊙O 的直径,且AB = 4 ,点C在半圆上,OC ⊥AB , 垂足为点O ,P 为半圆上任意一点,过P 点作PE ⊥OC 于点E,设∆OPE 的内心为M ,连接OM、PM .(1)求∠OMP 的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.【解】(1)∵PE ⊥OC∴∠PEO = 90︒ ∴∠EPO +∠EOP = 90︒ ∵M 是∆OPE 的内心∴∠EOM =∠POM,∠EPM =∠OPM∴∠POM +∠OPM =1 (∠EPO +∠EOP) = 45︒2在∆POM 中,∠OMP =180︒- (∠POM +∠OPM ) =180︒- 45︒=135︒(2)连接CM ,作过O、M、C 三点的外接圆,即⊙N ,连接NC、NO ,在⊙N的优弧上任取一点H ,连接HC、HO .如图所示:由题意知:OP =OC,∠POM =∠COM,OM =OM∴∆POM ≌∆COM∴∠OMP =∠OMC =135︒在⊙N 的内接四边形CMOH 中,∠H =180︒-∠OMC =180︒-135︒= 45︒∴∠N =2⨯ 45︒= 90︒由题意知:OC =1 AB =1 ⨯ 4 = 22 2在等腰直角三角形CNO 中,NC =NO由勾股定理得:NC2 +NO2 =OC2 即2N C2 = 22 ⇒NC = 2当点P在上运动时,点M 在上运动90︒⨯π⨯∴的长为:180︒∵与关于OC 对称2=2π2∴当点P 在上运动时,点M 所在弧上的运动路径长与当点P 在上运动时,点M 在上运动的路径长相等∴当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长为:2⨯2π=2π224.(本题满分12 分)如图,在矩形ABCD 中,AB = 2,AD = 的一点,且BP = 2CP .3,P 是BC 边上(1)用尺规在图①中作出CD 边上的中点E ,连接AE、BE(保留作图痕迹,不 写作法);(2)如图②,在(1)的条件下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP ,不添加辅助线,∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向或平移方向和平移距离)【解】(1)分别以D、C 为圆心,以相同且大于1 DC =2接MN 交DC 于点E ,即为DC 的中点,如下图:3为半径作圆相交于M、N 两点,连2(2)由题意及(1)知:EC =1 AB =1 ⨯ 2 = 12 2在Rt∆BCE 中,BC = 3∴tan ∠BEC =BC =3EC ∴∠BEC = 60︒由勾股定理得:EB =EC2 +BC2 =12 + ( 3)2 = 2同理:AE = 2∴AE =AB =EB∴∠AEB =∠ABE =∠BAE = 60︒∴∠AEB =∠BEC = 60︒∴EB 是否平分∠AEC .(3)∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.理由如下:∵BP = 2CP,AD =BC =3∴BP = 2 3 ,CP =33 3在Rt∆ECP 中,tan ∠EPC =EC =3PC∴∠ECP = 60︒ ∴∠BPF = 60︒由勾股定理得:EP = EC2 +CP2 = 12 + ( 3)2 =2 33 3∴EP =PB由题意知:∠C =∠ABP = 90︒∵BP=AB=2 CP EC∴∆ABP ∽∆ECP∴∠APB = 60︒∴∠BPF =∠APB = 60︒∵∠ABP =∠FBP = 90︒,BP =BP∴Rt∆ABP ≌Rt∆FBP∵∠APB =∠CPE = 60︒∴∠EPA =180︒- (∠APB +∠CPE)= 60︒∴∠APB =∠APE又AP =AP∴Rt∆ABP ≌Rt∆AEP∴Rt∆ABP ≌Rt∆AEP ≌Rt∆FBP∴∆PFB 能否由都经过P 点的两次变换与∆PAE 组成一个等腰三角形.-: APFB PFP 120. ;:APFB P 120.PF3D=:EFIDJf FDEC_ -- -JSJ DSSB1FAB FA3 25.(本题满分 12 分)如图,在平面直角坐标系 xoy 中,点 A 是反比例函数y = m - m 2 x ( x > 0,m > 1) 图像上一点,点 A 的横坐标为 m ,点 B (0,- m ) 是 y 轴负半轴上的一点,连接 AB , AC ⊥ AB ,交 y 于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E . (1)当 m = 3 时,求点 A 的坐标; (2) DE = ,设点 D 的坐标为( x ,y ),求 y 关于 x 的函数关系式和自变量的取值范围;(3)连接 BD ,过点 A 作 BD 的平行线,与(2)中的函数图像交于点 F ,当 m 为 何值时,以 A 、B 、D 、F 为顶点的四边形是平行四边形?【解】(1)当 m = 3 时, x A = 3 ,则 y A =m 3 - m 2 x A33 - 32= = 6 3故: A (3,6)(2)作 AF ⊥ y 轴于点 F ,则 ∠CFA = 90︒ .由题意知: A (m , m 2 - m ),B (0,- m )C A ⊥ AB ∴ ∠CAB = 90︒∴ ∠CAB = ∠CFA = 90︒∴ ∠ABC + ∠FAB = ∠FAB + ∠CAF = 90︒∴ ∠CAF = ∠ABC∴ Rt ∆AFC ∽ Rt ∆BFA∴ FA = CF ,即 m= CF ∴ C F = 1 FB AF m 2 - m - (-m ) mAD = AC ,∠E = ∠AFC = 90︒,∠CAF = ∠DAE⎨ ∴ Rt ∆AFC ≌ Rt ∆AED ∴ AE = AF = m ,DE = CF = 1 ∴ D (2m ,m 2 - m - 1)消去 m 得: y = 1 x 2 - 1x - 1,x > 24 2⎧x = 2m ∴ ⎨ ⎩ y = m 2- m - 1综上: DE = 1,y = 1 x 2 - 1x - 1,x > 24 2 (3) x > 2, A (m , m 2 - m ),B (0,- m ) , D (2m ,m 2 - m - 1)方法一:利用平行四边形对角线互相平分以及中点坐标公式 当AB 为对角线时⎧x A + x B = x D + x F⎨⎧m + 0 = 即 22m + x F 2⇒ F (-m ,1 - m ) ⎩ y A + y B = y D + y F ⎩m - m + (-m ) = m - m - 1 + y F则1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写) 当 AD 为对角线时:⎧x A + x D = x B + x F⎧m + 2m = 0 + x F 即(3 2 2 1)⎨ ⎩ y A + y D = y B + y F ⎨ ⎩m 2 - m + m 2⇒ F - m -1 = -m + y F m ,m- m -F F 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法二:坐标平移法(对边相等+点平移方向相同)⎧x A - x F = x B - x D ⎨⎧m- x F = 0 - 2m 即⎨⇒ F (3m ,2m 2 - m - 1) ⎩ y A - y F = y B - y D ⎩m 2 - m - y = -m - (m 2- m - 1)代入 y = 1 x 2 - 1 x - 1 得 2m 2 - m - 1 = 1 (3m )2 - 1(3m ) - 1 ⇒ m = 0(舍)或m = 24 2 4 2⎧x A - x F = x D - x B 或⎨ ⎧m - x F = 2m - 0 即⎨⇒ F (-m ,1 - m ) ⎩ y A - y F = y D - y B ⎩m 2- m - y = m 2- m -1 - (-m )代入y = 1 x 2 - 1 x - 1 1 - m = 1 (-m )2 - 1(-m ) - 1 ⇒ m = 3 ±17 (舍)4 2 4 2(考虑到二次函数图像不完整,只有x > 2 部分,故此情况不用写)综上:当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形. 方法三:官方参考答案(过程相对复杂)将 F 点坐标代入代入 y = 1 x 2 - 1x - 1 得 m = 0(舍)或m = 24 2所以,当 m = 2 时,以 A 、B 、D 、F 为顶点的四边形是平行四边形.。
2018年贵州省贵阳市中考数学试卷含答案

11.某班 50 名学生在 2018 年适应性考试中,数学成绩在 100〜110 分这个分数段的频率为
0.2,则该班在这个分数段的学生为
人.
12. 如 图 , 过 x 轴 上 任 意 一 点 P 作 y 轴 的 平 行 线 , 分 别 与 反 比 例 函 数
y 3 ( x>0 ), y 6 ( x>0 )的图象交于 A 点和 B 点,若 C 为 y 轴任意一点.连接
A. 1
B. 2
C. 3
2.如图,在 △ABC 中有四条线段 DE,BE,EF,FG,其中有一
条线段是 △ABC 的中线,则该线段是
()
A.线段 DE
上
B.线段 BE
C.线段 EF
D.线段 FG
3.如图是一个几何体的主视图和俯视图,则这个几何体是
答
主
视
图
()
D. 4
()
俯 视 图 题
A.三棱柱
A. 1
B. 1
C. 1
D. 2
12
10
6
5
9.一次函数 y kx 1的图象经过点 P ,且 y 的值随 x 值的增大而增大,则点 P 的坐标可以
为 A. (5,3) C. (2, 2)
B. (1, 3) D. (5, 1)
()
10.已知二次函数 y x2 x 6 及一次函数 y x m .将该二次函数在 x 轴上方的图
骰子向上三个面(除底面外)的数字之和是几,就从图 2 中的 A 点开始沿着顺时针方向
连续跳动几个顶点.第二次从第一次的终点处开始,按第一次的方法跳动.
19.(本小题满分 10 分)
数学试卷第 5页(共 24页)数学试卷第 6页(共 24页)
2018年贵州省贵阳市中考数学试卷(带答案解析)

第 2页(共 21页)
A.﹣2 B.0 C.1 D.4 【解答】解:∵点 A、B 表示的数互为相反数, ∴原点在线段 AB 的中点处, ∴点 C 对应的数是 1, 故选:C.
7.(3 分)如图,A、B、C 是小正方形的顶点,且每个小正方形的边长为 1,则 tan∠BAC 的值为( )
12.(4 分)如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y= (x>0),y=﹣ (x>0)的图象交于 A 点和 B 点,若 C 为 y 轴任意一点.连接 AB、BC,则△ABC 的面积为 .
第 5页(共 21页)
【解答】解:设点 P 坐标为(a,0) 则点 A 坐标为(a, ),B 点坐标为(a,﹣ )
5.(3 分)如图,在菱形 ABCD 中,E 是 AC 的中点,EF∥CB,交 AB 于点 F,如 果 EF=3,那么菱形 ABCD 的周长为( )
A.24 B.18 C.12 D.9 【解答】解:∵E 是 AC 中点, ∵EF∥BC,交 AB 于点 F, ∴EF 是△ABC 的中位线, ∴EF= BC, ∴BC=6, ∴菱形 ABCD 的周长是 4×6=24. 故选:A.
第 10页(共 21页)
∴csinB=bsinC,即 th = th , 同理可得 th = th , 则 th = th = th .
19.(10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、 乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵 10 元,用 480 元购买 乙种树苗的棵数恰好与用 360 元购买甲种树苗的棵数相同. (1)求甲、乙两种树苗每棵的价格各是多少元? (2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共 50 棵,此时,甲种树 苗的售价比第一次购买时降低了 10%,乙种树苗的售价不变,如果再次购买两种 树苗的总费用不超过 1500 元,那么他们最多可购买多少棵乙种树苗? 【解答】解:(1)设甲种树苗每棵的价格是 x 元,则乙种树苗每棵的价格是(x+10) 元,依题意有
2018年贵州省贵阳市中考数学试卷(含答案与解析)

数学试卷 第1页(共44页) 数学试卷 第2页(共44页)绝密★启用前贵州省贵阳市2018年初中毕业生学业(升学)考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.当时1x =-,代数式31x +的值是( )A .1-B .2-C .3-D .4-2.如图,在ABC △中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是ABC △的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG3.如图是一个几何体的主视图和俯视图,则这个几何体是( )主视图俯视图A .三棱柱B .正方体C .三棱锥D .长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况.小丽制定了如下调查方案,你认为最合理的是( )A .抽取乙校初二年级学生进行调查B .在丙校随机抽取600名学生进行调查C .随机抽取150名老师进行调查D .在四个学校各随机抽取150名学生进行调査5.如图,在菱形ABCD 中,E 是AC 的中点,EF CB ∥,交AB 于点F ,如果3EF =,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .2-B .0C .1D .4 7.如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长为1,则tan BAC ∠的值为( )A .12B .1 CD8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( )A .112B .110C .16D .259.一次函数1y kx =-的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(5,3)-B .(1,3)-C .(2,2)D .(5,1)-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共44页) 数学试卷 第4页(共44页)10.已知二次函数26y x x =-++及一次函数y x m =-+.将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象(如图所示).当直线y x m =-+与新图象有4个交点时,m 的取值范围是 ( )A .2534m -<< B .2524m -<<- C .23m -<<D .62m --<<第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上) 11.某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为 人.12.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数3y x=(0x >),6y x=-(0x >)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AC ,BC 则ABC△的面积为 .13.如图,点M ,N 分别是正五边形ABCDE 的两边AB ,BC 上的点,且AM BN =,点O 是正五边形的中心,则MON ∠的度数是 度.14.已知关于x 的不等式组531,0x a x --⎧⎨-⎩≥<无解,则a 的取值范围是 .15.如图,在ABC △中,6BC =,BC 边上的高为4,在ABC △的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在AB ,AC 边上,则对角线EG 长的最小值为 .三、解答题(本大题共10小题,共100分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)在626⋅国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下: 初一: 68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67 初二:69 97 96 89 98 100 99 100 95 100 996997100999479999879(1)根据上述数据,将下列表格补充完整;得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 人; (3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.数学试卷 第5页(共44页) 数学试卷 第6页(共44页)17.(本小题满分8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形.拿掉边长为n 的小正方形纸板后,再将剩下的三块拼成一个新矩形. (1)用含m 或n 的代数式表示拼成的矩形周长; (2)当7m =,4n =,求拼成的矩形面积.18.(本小题满分8分)如图1,在Rt ABC △中,以下是小亮探索sin a A 与sin b B之间关系的方法:图1图2∵sin a A c =,sin b B c =,∴sin a c A =,sin b c B =,∴sin sin a b A B=. 根据你掌握的三角函数知识,在图2的锐角ABC △中,探究sin a A ,sin bB ,sin c C之间的关系,并写出探索过程.19.(本小题满分10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价保持不变.如果此次购买两种树苗的总费用不超过1 500元,那么他们最多可购买多少棵乙种树苗?20.(本小题满分10分) 如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称. (1)求证:AEF △是等边三角形; (2)若2AB =,求AFD △的面积.21.(本小题满分10分)图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘.现通过掷骰子的方式玩跳棋游戏.规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图2中的A 点开始沿着顺时针方向连续跳动几个顶点.第二次从第一次的终点处开始,按第一次的方法跳动.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共44页) 数学试卷 第8页(共44页)图1图2(1)随机掷一次骰子,则棋子跳动到点C 处的概率是 ;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率.22.(本小题满分10分)六盘水市梅花山国际滑雪场自建成以来,吸引了大批滑雪爱好者.一滑雪者从山坡滑下,测得滑行距离y (单位:m )与滑行时间x (单位:s )之间的关系可以近似地用二次(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840米,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后所得函数的表达式.23.(本小题满分10分)如图,AB 为O e 的直径,且4AB =,点C 在半圆上,OC AB ⊥,垂足为点O ,P 为半圆上任意一点,过P 点作PE OC ⊥于点E .设OPE △的内心为M ,连接OM ,PM . (1)求OMP ∠的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.24.(本小题满分12分)如图,在矩形ABCD 中,2AB =,AD ,P 是BC 边上的一点,且2BP CP =. (1)用尺规在图1中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法); (2)如图2,在(1)的条体下,判断EB 是否平分AEC ∠,并说明理由;(3)如图3,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP .不添加辅助线,PFB △能否由都经过P 点的两次变换与PAE △组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离);如果不能,也请说明理由.图1图2图325.(本小题满分12分)如图,在平面直角坐标系xOy 中,点A 是反比例函数32m m y x-=(0x >,1m >)图象上一点,点A 的横坐标为m ,点B (,)m 0-是y 轴负半轴上的一点,连接AB ,AC AB ⊥,交y 轴于点C ,延长CA 到点D ,使得AD AC =.过点A 作AE 平行于x 轴,过点D 作y轴平行线交AE 于点E.(1)当3m =时,求点A 的坐标; (2)DE = ;设点D 的坐标为(),x y ,求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A ,B ,D ,F 为顶点的四边形是平行四边形?5 / 22贵州省贵阳市2018年初中毕业生学业(升学)考试一、选择题 1.【答案】B【解析】解:把1x =-代入31312x +=-+=-,故选:B . 【考点】代数式求值,运算法则. 2.【答案】B【解析】解:根据三角形中线的定义知线段BE 是ABC △的中线,故选:B . 【考点】三角形的中线. 3.【答案】A【解析】解:由主视图和俯视图可得几何体为三棱柱,故选:A . 【考点】空间图形的三视图. 4.【答案】D【解析】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D . 【考点】抽样调查. 5.【答案】A【解析】解:∵E 是AC 中点, ∵EF BC ∥,交AB 于点F , ∴EF 是ABC △的中位线, ∴12EF BC =, ∴6BC =,∴菱形ABCD 的周长是4624⨯=.故选:A . 【考点】三角形中位线的性质及菱形的周长公式. 6.【答案】C【解析】解:∵点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处, ∴点C 对应的数是1,故选:C . 【考点】数轴,正确确定原点位置. 7.【答案】B【解析】解:连接BC ,由网格可得AB BC =AC 即222AB BC AC +=,6∴ABC △为等腰直角三角形,∴45BAC ∠=,则tan 1BAC ∠=,故选:B .【考点】锐角三角函数的定义,解直角三角形,以及勾股定理. 8.【答案】A【解析】解:共有54312++=, 所以恰好摆放成如图所示位置的概率是112,故选:A . 【考点】列表法与树形图法. 9.【答案】C【解析】解:∵一次函数1y kx =-的图象的y 的值随x 值的增大而增大, ∴0k >,A 、把点()5,3-代入1y kx =-得到:405k =-<,不符合题意;B 、把点(1,)3-代入1y kx =-得到:20k =-<,不符合题意;C 、把点(2,2)代入1y kx =-得到:302k =>,符合题意;D 、把点(5,1)-代入1y kx =-得到:=0k ,不符合题意;故选C . 【考点】一次函数图象上点的坐标特征,一次函数的性质. 10.【答案】D【解析】解:如图,当0y =时,260x x -++=,解得12x =-,23x =,则0()2,A ﹣,()3,0B , 将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为()(3)2y x x =+-, 即26y x x =--(23x -≤≤),当直线y x m =-+经过点0()2,A -时,20m +=,解得2m =-;当直线y x m =-+与抛物线26y x x =--(23x -≤≤)有唯一公共点时,方程26x x x m --=-+有相等的实数解,解得6m =-,所以当直线y x m =-+与新图象有4个交点时,m 的取值范围为62m -<<-.故选:D .7 / 22【考点】抛物线与x 轴的交点二次函数图象与几何变换. 二.填空题 11.【答案】10【解析】解:∵=⨯频数总数频率, ∴可得此分数段的人数为:500.210⨯=. 故答案为:10. 【考点】频数与频率. 12.【答案】92【解析】解:设点P 坐标为(),0a ,则点A 坐标为()3,a a ,B 点坐标为(6,)a a -,111316922222ABC APO OPB S S S AP OP BP OP a a a a =+=+=+=△△△.故答案为:92. 【考点】反比例函数中比例系数k 的几何意义. 13.【答案】72【解析】解:连接OA 、OB 、OC ,360725AOB ︒∠==︒, ∵AOB BOC ∠=∠,OA OB =,OB OC =, ∴OAB OBC ∠=∠, 在AOM △和BON △中,OA OB OAM OBN AM BN =⎧⎪=⎨⎪=⎩∠∠ ∴AOM BON △≌△, ∴BON AOM ∠=∠,∴72MON AOB ∠=∠=︒,故答案为:72.8【考点】正多边形和圆的有关计算. 14.【答案】2a ≥【解析】解:530x a x -⎧⎨-⎩﹣1 ①②≥<,由①得:2x ≤, 由②得:x a >, ∵不等式组无解,∴2a ≥,故答案为:2a ≥. 【考点】一元一次不等式组. 15.【解析】解:如图,作AQ BC ⊥于点Q ,交DG 于点P ,∵四边形DEFG 是矩形, ∴AQ DG ⊥,GF PQ =, 设GF PQ x ==,则4AP x =-, 由DG BC ∥知ADG ABC △∽△, ∴AP DG AQ BC =,即446x DG-=, 则342()EF DG x ==-,∴EG ,===,9 / 22∴当1613x =时,EG 取得最小值,,【考点】相似三角形的判定与性质. 三、解答题16.【答案】(1)补全表格如下:(2)135人(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好.【解析】解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100, 所以初二年级成绩的中位数为97.5分; 补全表格如下: (2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共30025%30020%135⨯+⨯=人;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好. 【考点】本频数分布表.17.【答案】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,10把7m =,4n =代入()()11333m n m n +-=⨯=. 【解析】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,把7m =,4n =代入()()11333m n m n +-=⨯=. 【考点】列代数式问题. 18.【答案】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=, 同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【解析】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=,11 / 22同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【考点】直角三角形.19.【答案】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. (2)设他们可购买y 棵乙种树苗,依题意有30110%50()()401500y y ⨯--+≤, 解得71113y ≤,∵y 为整数, ∴y 最大为11.答:他们最多可购买11棵乙种树苗.【解析】解:(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. 答:他们最多可购买11棵乙种树苗. 【考点】分式方程的应用.20.【答案】(1)∵AB 与AG 关于AE 对称,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形;(2 【解析】解:(1)∵AB 与AG 关于AE 对称, ∴AE BC ⊥,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=︒,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形; (2)记AG 、EF 交点为H ,∵AEF △是等边三角形,且AE 与AF 关于AG 对称, ∴30EAG ∠=,AG EF ⊥, ∵AB 与AG 关于AE 对称,∴30BAE GAE ∠=∠=,90AEB ∠=,13 / 22∴1BE =、DF AF AE ===则12EH AE ==32AH =,∴1322ADF S ==△ 【考点】直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质. 21.【答案】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【解析】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【考点】列表法与树状图,概率公式.22.【答案】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【解析】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【考点】二次函数的应用.23.【答案】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,15 / 22∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长=90π180⨯(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =. 【解析】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =.【考点】弧长的计算公式,三角形内心的性质,三角形全等的判定与性质,圆周角定理和圆的内接四边形的性质.24.【答案】解:(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠,17 / 22∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.【解释】(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠, ∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.19 / 22【考点】矩形的性质,全等三角形的判定和性质,锐角三角函数,图形的变换. 25.【答案】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=, ∴点A 坐标为(3,6); (2)如图延长EA 交y 轴于点F , ∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠, ∵AD AC =, ∴FCA EDA △≌△, ∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =, ∵Rt CAB △中,AF x ⊥轴, ∴AFC BFA △∽△, ∴2AF CF BF =, ∴22m CF m =,∴1CF =, ∴1DE =, 故答案为:1, 由上面步骤可知, 点E 坐标为22m,m (-m), ∴点D 坐标为22m,m -(m-1), ∴2m x =,21y m m =--,∴把12m x =代入21y m m =--, ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b , ∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(),解得12m =,20m =(舍去), 当FD 、AB 为平行四边形对角线时, 同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形. 【解析】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=,21 / 22 ∴点A 坐标为(3,6);(2)如图延长EA 交y 轴于点F ,∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠,∵AD AC =,∴FCA EDA △≌△,∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =,∵Rt CAB △中,AF x ⊥轴,∴AFC BFA △∽△,∴2AF CF BF =,∴22m CF m =,∴1CF =,∴1DE =,故答案为:1,由上面步骤可知,点E 坐标为22m,m (-m),∴点D 坐标为22m,m -(m-1),∴2m x =,21y m m =--, ∴把12m x =代入21y m m =--,22 ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b ,∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(), 解得12m =,20m =(舍去),当FD 、AB 为平行四边形对角线时,同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形.【考点】三角形的全等、相似、平行四边形判定,用字母表示坐标.。
贵州省贵阳市中考数学试卷(含答案)

贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1..计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣12..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠53..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4C.5D.64..如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.276..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:277..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.A D∥BC D.DF∥BE9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 310..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3 D.y<3二、填空题(每小题4分,共20分)11..方程组的解为.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于.13..分式化简的结果为.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.三、解答题16.(8分)(2015•贵阳)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?18..如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)19..在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.20..小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D 处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.21.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?22..如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.23..如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B 两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.25.如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)2018年贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣1考点:有理数的加法.分析:利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.解答:解:﹣3+4=1.故选:C.点评:此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据内错角的定义找出即可.解答:解:根据内错角的定义,∠1的内错角是∠5.故选D.点评:本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4C.5D.6考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将64000用科学记数法表示为6.4×104.故n=4.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4..如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.考点:简单组合体的三视图.分析:空心圆柱体的左视图是矩形,且有两条竖着的虚线;依此即可求解.解答:解:一个空心圆柱体,其左视图为.故选:B.点评:本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.27考点:众数;折线统计图.分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中32是出现次数最多的,故众数是32.故选C.点评:本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.6..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27考点:相似三角形的性质.分析:根据相似三角形的面积的比等于相似比的平方,据此即可求解.解答:解:两个相似三角形面积的比是(2:3)2=4:9.故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条考点:用样本估计总体.分析:300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.解答:解:150÷(30÷300)=1500(条),故选A.点评:本题考查的是通过样本去估计总体,得出作标记的所占的比例是解答此题的关键.8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.A D∥BC D.DF∥BE考点:全等三角形的判定与性质.分析:利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.解答:解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.点评:此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 3考点:函数的图象.分析:根据l1是从原点出发可得不打电话缴费为0元,因此是无月租费的收费方式;l2是从(0,20)出发可得不打电话缴费为20元,因此是有月租费的收费方式;两函数图象交点为(400,40),说明打电话400分钟时,两种收费相同,超过500分钟后,当x取定一个值时,l1所对应的函数值总比l2所对应的函数值大,因此当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.解答:解:①l1描述的是无月租费的收费方式,说法正确;②l2描述的是有月租费的收费方式,说法正确;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱,说法正确.故选:D.点评:此题主要考查了函数图象,关键是正确从图象中获取信息.10..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3 D.y<3考点:二次函数的性质.分析:先求出x=2时y的值,再求顶点坐标,根据函数的增减性得出即可.解答:解:当x=2时,y=﹣4+4+3=3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x>1时,y随x的增大而减小,∴当x≥2时,y的取值范围是y≤3,故选B.点评:本题考查了二次函数的性质的应用,能理解二次函数的性质是解此题的关键,数形结合思想的应用.二、填空题(每小题4分,共20分)11..方程组的解为.考点:解二元一次方程组.分析:用代入法即可解答,把②y=2,代入①即可求出x的值;解答:解:解,把②代入①得x+2=12,∴x=10,∴.故答案为:.点评:本题考查了解二元一次方程组,有加减法和代入法两种,根据y的系数互为相反数确定选用加减法解二元一次方程组是解题的关键.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于2π.考点:正多边形和圆.分析:根据正方形的面积公式求得半径,然后根据圆的面积公式求解.解答:解:正方形的边长AB=2,则半径是2×=,则面积是()2π=2π.故答案是:2π.点评:本题考查了正多边形的计算,根据正方形的面积求得半径是关键.13..分式化简的结果为.考点:约分.分析:将分母提出a,然后约分即可.解答:解:==.故答案为:.点评:本题考查了约分的知识,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.考点:几何概率;勾股定理.分析:首先确定小正方形的面积在大正方形中占的比例,根据这个比例即可求出针扎到小正方形(阴影)区域的概率.解答:解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为,=,针扎到小正方形(阴影)区域的概率是.点评:本题将概率的求解设置于“赵爽弦图”的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.易错点是得到两个正方形的边长.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.考点:切线的性质;轨迹.专题:应用题.分析:根据切线的性质得到OH=PH,根据锐角三角函数求出PH的长,得到答案.解答:解:如图,当圆心O移动到点P的位置时,光盘在直尺边上沿着CD向右滚动到再次与AB相切,切点为Q,∵ON⊥AB,PQ⊥AB,∴ON∥PQ,∵ON=PQ,∴OH=PH,在Rt△PHQ中,∠P=∠B=60°,PQ=1,∴PH=,则OP=,故答案为:.点评:本题考查的是直线与圆相切的知识,掌握圆的切线垂直于过切点的半径是解题的关键.三、解答题16.先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.考点:整式的混合运算—化简求值.分析:根据乘法公式和单项式乘以多项式法则先化简,再代入求值即可.解答:解:原式=x2﹣1+x2﹣x3+x3=2x2﹣1;当x=2时,原式=2×22﹣1=7.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查400人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)调查的总人数=;(2)“南江大峡谷”所对的圆心角=“南江大峡谷”所占的百分比×360°;(3)首选去黔灵山公园观光的人数=29%×2500.解答:解:(1)84÷21%=400(人)400×25%=100(人),补全条形统计图(如图);故答案是:400;(2)360°×21%=75.6°;(3)2500×=725(人),答:去黔灵山公园的人数大约为725人.点评:本题考查了条形统计图,用样本估计总体以及频数(率)分别表.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.18..如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)考点:菱形的判定与性质.分析:(1)先证明四边形ADCE是平行四边形,再证出一组邻边相等,即可得出结论;(2)过点D作DF⊥CE,垂足为点F;先证明△BCD是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt△CDF中,由三角函数求出DF即可.解答:(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=CD1sin60°=6×=3.点评:本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质、三角函数;熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.19..在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.考点:列表法与树状图法.分析:(1)由题意可得共有小丽、小敏、小洁三位同学,恰好选中小英同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.解答:解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=;(2)列表如下:小英小丽小敏小洁小英(小英,小丽)(小英,小敏)(小英,小洁)小丽(小丽,小英)(小丽,小敏)(小丽,小洁)小敏(小敏,小英)(小敏,小丽)(小敏,小洁)小洁(小洁,小英)(小洁,小丽)(小洁,小敏)所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==.点评:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20..小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D 处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义求得AF 得出答案即可.解答:解:(1)在Rt△BCD中,∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD=5.2(m).答:小华与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.点评:本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.21.某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?考点:分式方程的应用.分析:设传说故事的单价为x元,则经典著作的单价为(x+8)元,根据条件用12000元购买经典著作与用8000元购买传说故事的本数相同,列分式方程即可.解答:解:设传说故事的单价为x元,则经典著作的单价为(x+8)元.由题意,得,解得x=16,经检验x=16是原方程的解,x+8=24,答:传说故事的单价为16元,经典著作的单价为24元.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.22..如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)先将点A(2,1)代入y=求得k的值,再将点A(2,1)代入反比例函数的解析式求得n,最后将A、B两点的坐标代入y=x+m,求得m即可.(2)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.解答:解:(1)将A(2,1)代入y=中,得k=2×1=2,∴反比例函数的表达式为y=,将A(2,1)代入y=x+m中,得2+m=1,∴m=﹣1,∴一次函数的表达式为y=x﹣1;(2)B(﹣1,﹣2);当x<﹣1或0<x<2时,反比例函数的值大于一次函数的值.点评:本题考查了反比例函数与一次函数的交点问题,是一道综合题目,解题过程中注意数形结合的应用,是中档题,难度不大.23..如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)考点:圆周角定理;全等三角形的判定与性质;扇形面积的计算.分析:(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.解答:解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.点评:本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.24.如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B 两点.(1)a>0,b2﹣4ac>0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据抛物线开口向上,且与x轴有两个交点,即可做出判断;(2)由抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,理由为:假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.解答:解:(1)a>0,b2﹣4ac>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=﹣,c=﹣4,∴抛物线的函数表达式为y=x2﹣x﹣4;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,∵抛物线y=x2﹣x﹣4关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,又∵OC=4,∴E的纵坐标为﹣4,∴存在点E(4,﹣4);(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,。
2018年贵阳中考数学试卷及答案

25.(12。00 分)如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y=
(x>0,m>
1)图象上一点,点 A 的横坐标为 m,点 B(0,﹣m)是 y 轴负半轴上的一点,连接 AB,AC⊥
9
2018 年贵阳中考数学试卷及答案(word 版可编辑修改)
AB,交 y 轴于点 C,延长 CA 到点 D,使得 AD=AC,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E. (1)当 m=3 时,求点 A 的坐标; (2)DE= ,设点 D 的坐标为(x,y),求 y 关于 x 的函数关系式和自变量的取 值范围; (3)连接 BD,过点 A 作 BD 的平行线,与(2)中的函数图象交于点 F,当 m 为何值时, 以 A、B、D、F 为顶点的四边形是平行四边形?
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离 大约 800m,他需要多少时间才能到达终点? (2)将得到的二次函数图象补充完整后,向左平移 2 个单位,再向上平移 5 个单位, 求平移后的函数表达式. 23.(10.00 分)如图,AB 为⊙O 的直径,且 AB=4,点 C 在半圆上,OC⊥AB,垂足为 点 O,P 为半圆上任意一点,过 P 点作 PE⊥OC 于点 E,设△OPE 的内心为 M,连接 OM、PM. (1)求∠OMP 的度数; (2)当点 P 在半圆上从点 B 运动到点 A 时,求内心 M 所经过的路径长.
10
2018 年贵阳中考数学试卷及答案(word 版可编辑修改)
2018 年贵州省贵阳市中考数学试卷
参考答案与试题解析
一、选择题(以下每个小题均有 A、B、C、D 四个选项。其中只有一个选项正确。请 用 2B 铅笔在答题卡相应位置作答。每题 3 分。共 30 分) 1.(3。00 分)当 x=﹣1 时,代数式 3x+1 的值是( ) A.﹣1 B.﹣2 C.4 D.﹣4 【分析】把 x 的值代入解答即可. 【解答】解:把 x=﹣1 代入 3x+1=﹣3+1=﹣2, 故选:B. 【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 2.(3。00 分)如图,在△ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是△ABC 的中线,则该线段是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=BN,点 O 是正五边形的中心,则∠MON 的度数是________度.
第 12 题图
第 13 题图
第 15 题图
5-3x≥-1
14. 已知关于 x 的不等式组
无解,则 a 的取值范围是________.
a-x<0
15. 如图,在△ABC 中,BC=6,BC 边上的高为 4,在△ABC 的内部作一个 矩形 EFGH,使 EF 在 BC 边上,另外两个顶点分别在 AB,AC 边上,则对角线 EG 长的最小值为________.
初一:
68 88 100 100 79 94 89 85 100 88
100 90 98 97 77 94 96 100 92 67
初二:
69 97 96 89 98 100 99 100 95 100
99 69 97 100 99 94 79 99 98 79
(1)根据上述数据,将下列表格补充完整;
18. (本题满分 8 分)
如图①,在 Rt△ABC 中,以下是小亮探索 a 与 b 之间关系的方法: sinA sinB
∵sinA=a,sinB=b,
c
c
∴c= a ,c= b , sinA sinB
∴a=b . sinA sinB
根据你掌握的三角函数知识,在图②的锐角△ABC 中,探索 a , b , c sinA sin B sinC
贵阳市 2018 年初中毕业生学业(升学)考试·数学
一、选择题(以下每小题均有 A、B、C、D 四个选项,其中只有一个选项正
确,请用 2B 铅笔在答题卡相应位置作答,每小题 3 分,共 30 分)
1. 当 x=-1 时,代数式 3x+1 的值是( )
A. -1
B. -2
C. -3
D. -4
2. 如图,在△ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是
之间的关系,并写出探索过程.
19. (本题满分 10 分) 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树
苗让其栽种,已知乙种树苗价格比甲种树苗贵 10 元,则 480 元购买乙种树苗的 棵数恰好与用 360 元购买甲种树苗的棵树相同.
(1)求甲、乙两种树苗每棵的价格各是多少元; (2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共 50 棵.此时,甲种 树苗的售价比第一次购买时降低了 10%,乙种树苗的售价保持不变.如果此次购 买两种树苗的总费用不超过 1500 元,那么他们最多可购买多少棵乙种树苗?
滑行时间 x/s 0 1 2 3 … 滑行距离 y/m 0 4 12 24 … (1)根据表中数据求出二次函数的表达式,现测量出滑雪者的出发点与终点 的距离大约 840 米,他需要多少时间才能到达终点? (2)将得到的二次函数图象补充完整后,向左平移 2 个单位,再向下平移 5 个单位,求平移后所得函数的表达式.
三、解答题(本大题 10 小题,共 100 分)
16. (本题满分 10 分)
在 6·26 国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生
禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛,某校初一、初二年级分
别有 300 人,现从中各随机抽取 20 名同学的测试成绩进行调查分析,成绩如下:
整理、描述数据:
分数段
60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100
初一人数
2
2
4
12
初二人数
2
2
1
15
分析数据:样本数据的平均数、中位数、满分率如下表:
年级 平均数
中位数
满分率
初一 90.1
93
25%
初二 92.8
_____
20%
得出结论:
(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共_____ 人;
12. 如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y=3(x>0), x
y=-6(x>0)的图象交于 A 点和 B 点,若 C 为 y 轴上任意一点,连接 AC,BC, x
则△ABC 的面积为________.
13. 如图,点 M,N 分别是正五边形 ABCDE 的两边 AB,BC 上的点,且 AM
△ABC 的中.线.,则该线段是(
)
A. 线段 DE B. 线段 BE C. 线段 EF D. 线段 FG
3. 如图是一个几何体的主视图和俯视图,则这个几何体是( )
A. 三棱柱 B. 正方体 C. 三棱锥 D. 长方体
第 2 题图
第 3 题图
4. 在“生命安全” 主题教育活动中,为了解甲、乙、丙、丁四所学校学生
23. (本题满分 10 分) 如图,AB 为⊙O 的直径,且 AB=4,点 C 在半圆上,OC⊥AB,垂足为点 O, P 为半圆上任意一点,过 P 点作 PE⊥OC 于点 E,设△OPE 的内心为 M,连接 OM,PM. (1)求∠OMP 的度数; (2)当点 P 在半圆上从点 B 运动到点 A 时,求内心 M 所经过的路径长.
A. (-5,3) B. (1,-3) C. (2,2) D. (5,-1) 10. 已知二次函数 y=-x2+x+6 及一次函数 y=-x+m,将该二次函数在 x 轴 上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新图象(如 图所示),当直线 y=-x+m 与新图象有 4 个交点时,m 的取值范围是( )
∠BAC 的值为( )
A. 1 2
B. 1
C. 3
D. 3
第5题
第 6 题图
第 7 题图
8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且
两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( )
A. 1 12
B. 1
C. 1
D. 2
10
6
5
9. 一次函数 y=kx-1 的图象经过点 P,且 y 的值随 x 值的增大而增大,则点 P 的坐标可以为( )
(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.
17. (本题满分 8 分) 如图,将边长为 m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿 掉边长为 n 的小方形纸板后,再将剩下的三块拼成一个新矩形. (1)用含 m 或 n 的代数式表示拼成的矩形周长; (2)当 m=7,n=4 时,求拼成的矩形面积.
(1)当 m=3 时,求点 A 的坐标; (2)DE=________:设点 D 的坐标为(x,y),求 y 关于 x 的函数关系式和自 变量的取值范围; (3)连接 BD,过点 A 作 BD 的平行线,与(2)中的函数图象交于点 F,当 m 为 何值时,以 A,B,D,F 为顶点的四边形是平行四边形?
20. (本题满分 10 分) 如图,在平行四边形 ABCD 中,AE 是 BC 边上的高,点 F 是 DE 的中点, AB 与 AG 关于 AE 对称,AE 与 AF 关于 AG 对称. (1)求证:△AEF 是等边三角形; (2)若 AB=2,求△AFD 的面积.
21. (本题满分 10 分) 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字 1,2, 3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏.规则是:将 这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的 A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按 第一次的方法跳动.
第 24 题图
25. (本题满分 12 分)
如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y=m3-m2(x>0,m>1) x
图象上一点,点 A 的横坐标 m,点 B(0,-m)是 y 轴负半轴上的一点,连接 AB, AC⊥AB,交 y 轴于点 C,延长 CA 到点 D,使 AD=AC,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴的平行线交 AE 于点 E.
第 8 题图
第 10 题图
A. -25<m<3 4
B. -25<m<-2 4
C. -2<m<3 D. -6<m<-2
二、填空题(每小题 4 分,共 20 分)
11. 某班 50 名学生在 2018 年适应性考试中,数学成绩在 100~110 分这个
分数段的频率为 0.2,则该班在这个分数段的学生为________人.
24. (本题满分 12 分) 如图,在矩形 ABCD 中,AB=2,AD= 3,P 是 BC 边上的一点,且 BP= 2CP. (1)用尺规在图①中作出 CD 边上的中点 E,连接 AE,BE(保留作图痕迹,不 写作法); (2)如图②,在(1)的条件下,判断 EB 是否平分∠AEC,并说明理由; (3)如图③,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F,连接 AP, 不添加辅助线,△PFB 能否由都经过 P 点的两次变换与△PAE 组成一个等腰三 角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向、 旋转角或平移方向和平移距离);如果不能,也请说明理由.
对生命安全知识掌握的情况,小丽制定了如下调查方案,你认为最合理的是
()
A. 抽取乙校初二年级学生进行调查
B. 在丙校随机抽取 600 名学生进行调查
C. 随机抽取 150 名老师进行调查
D. 在四个学校各随机抽取 150 名学生进行调查
5. 如图,在菱形 ABCD 中,E 是 AC 的中点,EF∥CB,交 AB 于点 F,如果
(1)随机掷一次骰子,则棋子跳动到点 C 处的概率是_____; (2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点 C 处 的概率.
图①