蛋白质组学复习资料

合集下载

蛋白质工程复习试题

蛋白质工程复习试题

蛋白质工程复习题一、名词解释结构域:基因突变:融合蛋白:蛋白的表达模式:蛋白质的分子设计:构型:构象:α氨基酸:原核表达:蛋白质的二级结构:蛋白质的三级结构:蛋白质分子的四级结构:蛋白质的分子设计:分子伴侣:启动子:增强子:乳糖操纵子:二、单选题1.下列不属于蛋白质结构测定的技术是()A X射线晶体衍射技术B 核磁共振波谱技术C 生物信息学预测蛋白质结构D 缺失突变技术2. 下列不属于蛋白质结晶技术的是()A 悬滴法B 坐滴法C 微量扩散小室法D 插入突变法3. 增加蛋白质分子的热稳定性的常用方法是()A 提高脯氨酸的含量B 在蛋白质分子中引入二硫键C 增加蛋白质分子的α螺旋D 增加β折叠4. 蛋白质工程的最终目的是( )A 开发新产品B 创造新理论C 制造具有新性能的新蛋白质结构D 研究蛋白质的氨基酸组成5. 抗体属于()A 基因B 蛋白质C DNAD RNA6、不属于蛋白质空间结构的基本组件的是()A α螺旋B β层C 环肽链D 结构域7、不属于强烈倾向于形成α螺旋的氨基酸()A AlaB GluC ProD Met8、蛋白质分子的完全从头设计属于()A 小改B 中改C 大改D 没改9. 蛋白质工程的基本原理是()A 中心法则B 热力学第二定律C 中心法则的逆推D 模型对比三、填空题1. 维持蛋白质一级结构的作用力是()和()。

2.目的蛋白的表达模式检测的方法有()和()3.蛋白质分子设计的目的是()和()4.常用的蛋白表达系统有()、()和()。

5. 蛋白质工程的基本原理是()6.常用的蛋白表达系统有()、()和()。

四、简答题1.简述蛋白质工程研究的基本途径。

2.欲使目的蛋白在大肠杆菌中表达,则表达载体的一般特点是什么?3、简述X射线晶体衍射技术测定蛋白质晶体结构的具体步骤。

4、简述目的蛋白原核表达的基本步骤。

5、简述蛋白质在生物体内的形成的过程.6、蛋白质分子设计的步骤是什么?7. 一个蛋白质由300个氨基酸组成,请简述用搭桥PCR的方法在该蛋白的150个氨基酸处插入GAATCT这6 个碱基的基本步骤。

蛋白质工程复习要点

蛋白质工程复习要点

1.定点突变技术:它以单链的克隆基因为模板在一段含有一个或几个错配碱基的寡核苷酸引物存在下合成双链闭环DNA分子。

用该双链闭环DNA分子转入宿主细胞,可解链成两条单链,各自可进行复制,合成自己的互补链,从而可得到野生型和突变型两种环状DNA,分离出突变型基因, 并引入到表达载体中就可经转化利用宿主细胞获得突变型的目的蛋白质。

2.杂合蛋白技术:原理:将不同来源的功能结构域经过组合,产生具有新的生物学功能的杂合多肽举例:鼠源scFv+大肠杆菌β-半乳糖苷酶N-末端3.易错PCR(error prone PCR, EP PCR):利用低保真度TaqDNA 聚合酶,或者改变PCR 反应体系的条件,在新链DNA 聚合过程中随机引入错配碱基,经多轮PCR 扩增,构建序列多种多样的突变库。

特点:不改变基因长度,突变频率控制在适度范围,能有效地获得有益突变体举例:厌氧菌N. patriciarum 中,木聚糖酶4.DNA 改组技术(DNA shuffling):原理:先切割产生随机大小的DNA 片段,再用无引物PCR 将其连接成为接近目的基因长度的DNA分子,最后进行扩增得全长基因举例:α-干扰素5.交错延伸( Stagger extension process):原理:a.在PCR 反应中把常规的退火和延伸合并为一步,并大大缩短其反应时间(55 →5s),从而只能合成出非常短的新生链,b.经变性的新生链再作为引物与体系内同时存在的不同模板退火而继续延伸。

c.此过程反复进行,产生间隔的含不同模板序列的新生DNA 分子。

酯酶KCTC1767稳定性和底物耐受性。

6.酶工程:是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学。

研究酶制剂大规模生产及应用所涉及的理论与技术方法。

7.蛋白质工程:通过对蛋白质已知结构和功能的了解,借助计算机辅助设计,利用基因定位诱变等技术,特异性地对蛋白质结构基因进行改造,产生具有新的特性的蛋白质的技术,并由此深入研究蛋白质的结构与功能的关系,并使蛋白质更好地造福于人类。

生化蛋白质复习笔记

生化蛋白质复习笔记

第四章蛋白质化学蛋白质是生命的物质基础,存在于所有的细胞及细胞的所有部位。

所有的生命活动都离不开蛋白质。

第一节蛋白质的分子组成蛋白质结构复杂,它的结构单位——氨基酸很简单。

所有的蛋白质都是由20种氨基酸合成的,区别只是蛋白质分子中每一种氨基酸的含量及其连接关系各不相同。

一、一、氨基酸的结构氨基酸是由C、H、O、N等主要元素组成的含氨基的有机酸。

用于合成蛋白质的20种氨基酸称为标准氨基酸。

标准氨基酸都是α-氨基酸,它们有一个氨基和一个羧基结合在α-碳原子上,区别在于其R基团的结构、大小、电荷以及对氨基酸水溶性的影响。

在标准氨基酸中,除了甘氨酸之外,其他氨基酸的α-碳原子都结合了4个不同的原子或基团:羧基、氨基、R基团和一个氢原子(甘氨酸的R基团是一个氢原子)。

所以α-碳原子是手性碳原子,氨基酸是手性分子。

天然蛋白质中的氨基酸为L-构型,甘氨酸不含手性碳原子,但我们习惯上还是称它L-氨基酸。

苏氨酸、异亮氨酸各含两个手性碳原子。

其余标准氨基酸只含一个手性碳原子。

二、氨基酸的分类根据R基团的结构可以分为脂肪族、芳香族、杂环氨基酸;根据R基团的酸碱性可以分为酸性、碱性、中性氨基酸;根据人体内能否自己合成可以分为必需、非必需氨基酸;根据分解产物的进一步转化可以分为生糖、生酮、生糖兼生酮氨基酸;根据是否用于合成蛋白质(或有无遗传密码)可以分为标准(或编码)、非标准(或非编码)氨基酸。

(一)含非极性疏水R基团的氨基酸这类氨基酸的侧链是非极性疏水的。

其中包括丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、甲硫氨酸(蛋氨酸)、脯氨酸。

(二)含极性不带电荷R基团的氨基酸这类氨基酸包括丝氨酸、苏氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、酪氨酸,其侧链具亲水性,可与水形成氢键(半胱氨酸除外),所以与非极性氨基酸相比,较易溶于水。

(三)碱性氨基酸pH7.0时侧链带正电荷的氨基酸包括赖氨酸、精氨酸、组氨酸——含咪唑基。

(四)酸性氨基酸包括天冬氨酸、谷氨酸四、氨基酸的理化性质(一)两性电离与等电点所有的氨基酸都含有氨基,可以结合质子而带正电荷;又含有羧基,可以给出质子而带负电荷,氨基酸的这种电离特性称为两性电离。

蛋白质组学复习资料

蛋白质组学复习资料

蛋白质组学复习资料一、名词解释1、蛋白质组学:蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。

2、二维(双向)电泳原理:根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。

二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。

3、三步纯化策略:第一步:粗提。

纯化粗样快速浓缩 (减少体积) 和稳定样品 (去除蛋白酶)最适用层析技术: 离子交换/疏水层析第二步:中度纯化。

去除大部分杂质最适用层析技术: 离子交换/疏水层析第三步:精细纯化。

达到最终纯度(去除聚合物,结构变异物)最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析4、高效纯化策略:在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。

5、离子交换色谱:离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。

如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。

固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。

阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。

其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。

蛋白质化学复习题======1.doc

蛋白质化学复习题======1.doc

2. 在各种蛋白质中含量相近的元素是A. CB. HC. 03. 蛋白质的元素组成中氮的平均含量是A. 8%B. 12%C. 16% 4. 组成蛋白质的氨基酸有A. 10 种B. 15 种C. 20 种D.NE. S D.20%E. 24% D. 25 种 E. 30种E. Tyr E. VaiB.氧化供能 D.抵御异物对机体的侵害和蛋白质化学(48题)1. 下列蛋白质的生物学功能中,哪种相对是不重要的?A. 作为物质运输载体C. 作为生物催化剂E.调节物质代谢和控制遗传信息5. 用酸水解蛋白质时,易被破坏的氨基酸是: A. Met B. Trp C. Thr D. Vai 6. 下列哪一种氨基酸的不解引起偏振光的旋转。

A. AlaB. GlyC. LeuD. Ser7. 氨基酸的等电点是:A. 溶液ph7. 0时氨基酸所带正负电荷数比值B. 氨基酸琉基和氨基均质子化的溶液PH 值C. 氨基酸水溶液的ph 值D. 氨基酸净电荷等于零时的溶液ph 值E. 氨基酸的可解离基因均是解离状态的溶液ph 值8. 关于多肽''Lys-Ala-Ser-Arg-Gly-Phe ”电泳的以下描述,哪项是错崛误的?A. PH3时泳向负极B. ph5时泳向负极C. PH7时泳向负极D. ph9时泳向正极E. PH9时泳向负极9. 含有 Gly 、Asp 、Arg 、Cys 的混合液,其 PI 依次分别是 5. 97、2. 77、崛 10. 76、5. 07, 在PH10环境中电泳分离这四种氨基酸,自正极开始,电崛泳区带顺序是A. Gly. Asp. Arg. CysB. Asp. Cys. Gly. ArgC. Arg. Gly. Cys. AspD. Cys. Arg. Gly. AspE.均处于同一位置10. 蛋白质吸收紫外光能力的大小,主要取决于A. 含硫氨基酸的多少B.脂肪族氨基酸的多少C.碱性氨基酸的多少 D.芳香族氨基酸的多少E.亚氨基酸的含量多少11. 哪一种蛋白质组份在280nm 处具有最大光吸收 A. Trp B. Tyr C. Phe D. Cys E.肽键 12. 除脯氨酸外,所有的a-氨基酸都能与前三酮作用是:A.红色反应 B,黄色反应 C.绿色反应 D.紫兰色反应E.紫红色13. 与前三酮反应呈黄色的氨基酸是A. PheB. TyrC. TrpD. HisE. Pro 14. 蛋白质分子中的主键是A.肽键B.二硫键C.酯键D.盐键E.氢键 15. 关于肽键特点描述的错误是A. 肽键中的C-N 键较N-C 键短B. 肽键中的C-N 键有单,双键双重性C. 肽键有顺反两种构型D.与C-N相连的六个原子处于同一平面E.肽键的旋转性,使蛋白质形成各种立体构象16.蛋白质三维结构的构象特征主要取决于A.氨基酸的组成,顺序和数目B.氨键、盐键、范德华等力和疏水力C.温度、ph和曷子强度D.肽键间及肽键内的二硫键E.各种氨基酸的形成的肽键17.蛋白质的高级结构取决于A.蛋白质肽链中的氢键B.蛋白质肽链中的肽键C.蛋白质肽链中的肽键平面D.蛋白质肽链中氨基酸组成和顺序E.蛋白质肽链中的肽单位18.蛋白质的一级结构是指A.蛋白质含氨基酸的种类和数目B.蛋白质中氨基酸的排列顺序C.蛋白质分子多肽链的折叠盘曲D.包括A.B.C.E,以上都不是19.关于蛋白质二级结构的描述,其中错误的是A.每种蛋白质分子必须有二级结构形式B.有的蛋白质几乎整个分子都折叠成片层状C.有的蛋白质几乎整个分子都呈a-螺旋状D.几种二级结构形式可用处于同一蛋白质分子中E.大多数蛋白质都有阡回折和三股螺旋结构20.a-螺旋的特点是:A.左手螺旋B.由4. 6个氨基酸残基构成一圈C.由肽键维持稳定D.在脯氨以残基处,螺旋最稳定E,以上都不对21.典型的a-螺旋是A. 2. 6ioB. 3. OioC. 3. 6BD. 4. OisE. 4. 41622.一个含有78个氨基酸的以-螺旋肽链其轴长度为A. 105AB. 117AC. 129AD. 131AE. 143A23.维持蛋白质以-螺旋结构的主要的化学键是A.肽键B.肽键原子间氢键C.侧链间氢键D.盐键E.二硫键24.某蛋白质的多肽链在一其区段为a-螺旋构象,在另一点区段为阡构象,该蛋白质的分子量为240. 000,多肽链外长度为5. 66xlO°Cm。

生物化学蛋白质化学复习题1

生物化学蛋白质化学复习题1

第二章蛋白质化学(1)一、单项选择题1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g2.下列含有两个羧基的氨基酸是:A.精氨酸 B.赖氨酸 C.甘氨酸 D.色氨酸 E.谷氨酸3.维持蛋白质二级结构的主要化学键是:A.盐键 B.疏水键 C.肽键 D.氢键 E.二硫键4.关于蛋白质分子三级结构的描述,其中错误的是:A.天然蛋白质分子均有的这种结构B.具有三级结构的多肽链都具有生物学活性C.三级结构的稳定性主要是次级键维系D.亲水基团聚集在三级结构的表面bioooE.决定盘曲折叠的因素是氨基酸残基5.具有四级结构的蛋白质特征是:A.分子中必定含有辅基B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成C.每条多肽链都具有独立的生物学活性D.依赖肽键维系四级结构的稳定性E.由两条或两条以上具在三级结构的多肽链组成6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:A.溶液pH值大于pIB.溶液pH值小于pIC.溶液pH值等于pID.溶液pH值等于7.4E.在水溶液中7.蛋白质变性是由于:A.氨基酸排列顺序的改变 B.氨基酸组成的改变C.肽键的断裂 D.蛋白质空间构象的破坏E.蛋白质的水解8.变性蛋白质的主要特点是:A.粘度下降 B.溶解度增加 C.不易被蛋白酶水解D.生物学活性丧失 E.容易被盐析出现沉淀9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:A.8 B.>8 C.<8 D.≤8 E.≥810.蛋白质分子组成中不含有下列哪种氨基酸?A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸二、多项选择题(在备选答案中有二个或二个以上是正确的,错选或未选全的均不给分)1.含硫氨基酸包括:A.蛋氨酸 B.苏氨酸 C.组氨酸 D.半胖氨酸2.下列哪些是碱性氨基酸:A.组氨酸 B.蛋氨酸 C.精氨酸 D.赖氨酸3.芳香族氨基酸是:A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸4.关于α-螺旋正确的是:A.螺旋中每3.6个氨基酸残基为一周B.为右手螺旋结构C.两螺旋之间借二硫键维持其稳定D.氨基酸侧链R基团分布在螺旋外侧5.蛋白质的二级结构包括:A.α-螺旋 B.β-片层 C.β-转角 D.无规卷曲6.下列关于β-片层结构的论述哪些是正确的:A.是一种伸展的肽链结构B.肽键平面折叠成锯齿状C.也可由两条以上多肽链顺向或逆向平行排列而成D.两链间形成离子键以使结构稳定7.维持蛋白质三级结构的主要键是:A.肽键 B.疏水键 C.离子键 D.范德华引力8.下列哪种蛋白质在pH5的溶液中带正电荷?A.pI为4.5的蛋白质 B.pI为7.4的蛋白质C.pI为7的蛋白质 D.pI为6.5的蛋白质9.使蛋白质沉淀但不变性的方法有:A.中性盐沉淀蛋白 B.鞣酸沉淀蛋白C.低温乙醇沉淀蛋白 D.重金属盐沉淀蛋白10.变性蛋白质的特性有:A.溶解度显著下降 B.生物学活性丧失C.易被蛋白酶水解 D.凝固或沉淀三、填空题1.组成蛋白质的主要元素有_________,________,_________,_________。

最新蛋白质化学复习题-09

最新蛋白质化学复习题-09

蛋白质化学复习题简述题氨基酸的分类?重要的理化性质?缩写符号。

氨基酸的分离与测定的常用方法?蛋白质中有哪些常见的氨基酸?写出其中文名称和三字缩写符号,它们的侧链基团各有何特点?什么是氨基酸的等电点,如何进行计算?何谓谷胱甘肽?简述谷胱甘肽的结构特点和功能(生物学作用)?多肽的骨架是什么原子的重复顺序,写出一个三肽的通式,并指明肽单位和氨基酸残基。

一个三肽有多少NH2和COOH端?牛胰岛素呢?什么是构型和构象?它们有何区别?蛋白质的定义及重要生理功能(在生命活动中有何重要意义)?蛋白质的重要性质?哪些因素可导致其沉淀?为什么?蛋白质有哪些结构层次?分别解释它们的含义。

简述蛋白质结构与功能的关系。

蛋白质分离与纯化的方法?方法的依据?蛋白质是由哪些元素组成的?其基本结构单元是什么?写出其结构通式。

维系蛋白质结构的化学键有哪些?它们分别在哪一级结构中起作用?为什么说蛋白质的水溶液是一种稳定的亲水胶体?利用哪些化学反应可以鉴定蛋白质的N-端和C-端?简述蛋白质变性与复性的机理,并概要说明变性蛋白质的特点。

简述蛋白质功能的多样性?蛋白质如何分类,试评述之。

简述蛋白质的一、二、三、四级结构,并举例说明蛋白质结构与功能的关系。

简述蛋白质的二级结构及其维持键.蛋白质是在哪些酶的催化下分解的?这些酶各具什么催化特点?生物体内的氨基酸可以合成哪些生物活性物质?简述凝胶色谱、离子交换色谱及亲和色谱的基本原理,并举例说明其在蛋白质分离纯化中的具体应用。

试列举出三种电泳方法,比较其优缺点和应用范围。

试述聚丙烯酰胺凝胶电泳的主要特点及用途。

按层析过程的机理,层析法分哪四类?按层析操作形式不同又分为哪三类?凝胶过滤分离大分子物质的机理是什么?影响泳动度的主要因素有哪些?区带电泳的操作步骤一般有哪些?如何制备聚丙烯酰胺凝胶?不连续电泳样品压缩成层原理。

SDS-聚丙烯酰胺凝胶电泳原理。

采用电泳技术如何测定蛋白质分子量?如何测定蛋白质等电点?名词解释氨基酸和蛋白质的PI、简单蛋白质、结合蛋白质,蛋白质的一级结构、二级结构、超二级结构、结构域、三级结构、四级结构?维系稳定的因素?α-螺旋、β-折叠、β-转角?Sanger反应、Edman反应、茚三酮反应、双缩脲反应、肽平面及两面角、酸性氨基酸、碱性氨基酸、电泳、蛋白质变性与复性、分子病、肽及肽键、蛋白质的亚基、电泳、电渗作用、泳动度、分子筛效应、离子交换色谱、朗伯-比尔定律、摩尔消光系数、超滤法、冷冻真空干燥法、分配系数、阴离子交换树脂、分辨率、Rf值、差速离心法、盐析和盐溶选择题1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:A.8.3% B.9.8% C.6.7% D.5.4% E.7.2%2.下列含有两个羧基的氨基酸是:A.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸3.下列哪一种氨基酸是亚氨基酸:A.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸4.维持蛋白质一级结构的主要化学键是:A.离子键B.疏水键C.肽键D.氢键E.二硫键5.关于肽键特点的错误叙述是:A.肽键中的C-N键较C-N单键短B.肽键中的C-N键有部分双键性质C.肽键的羰基氧和亚氨氢为反式构型D.与C-N相连的六个原子处于同一平面上E.肽键的旋转性,使蛋白质形成各种立体构象6.关于蛋白质分子三级结构的描述,其中错误的是:A.天然蛋白质分子均有这种结构B.有三级结构的多肽链都具有生物学活性C.三级结构的稳定性主要是次级键维系D.亲水基团聚集在三级结构的表面E.决定盘曲折叠的因素是氨基酸残基7.具有四级结构的蛋白质特征是:A.依赖肽键维系四级结构的稳定性B.每条多肽链都具有独立的生物学活性C.分子中必定含有辅基D.由两条或两条以上具有三级结构的多肽链组成E.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:A.Ala,Cys,Lys,Asp B.Asp,Cys,Ala,Lys C.Lys,Ala,Cys,AspD.Cys,Lys,Ala,Asp E.Asp,Ala,Lys,Cys9.变性蛋白质的主要特点是:A.粘度下降B.溶解度增加C.不易被蛋白酶水解D.生物学活性丧失E.容易被盐析出现沉淀10.蛋白质分子在280nm处的吸收峰主要是由哪种氨基酸引起的A.谷氨酸B.色氨酸C.苯丙氨酸D.组氨酸E.赖氨酸11.蛋白质合成A.由mRNA的3′端向5′端进行B.由N端向C端进行C.由C端向N端进行D.由28SrRNA指导E.由4SrRNA指导12.氨基酸是通过下列哪种化学键与tRNA结合的?A.糖苷键B.磷酸酯键C.酯键D.氢键E.酰胺键13.哺乳动物细胞中蛋白质合成的主要部位是A.细胞核B.高尔基复合体C.核仁D.粗面内质网E.溶酶体14.氨基酰-tRNA合成酶的特点是A.存在于细胞核内B.只对氨基酸的识别有专一性C.只对tRNA的识别有专一性D.对氨基酸、tRNA的识别都有专一性E.催化反应需GTP15.区分极性氨基酸和非极性氨基酸是根据A. 所含的羧基和氨基的极性B. 所含氨基和羧基的数目C. 所含R基团的大小D. 脂肪族氨基酸为极性氨基E. 所含的R基团为极性或非极性16.下列氨基酸中哪一种是生糖兼生酮氨基酸A.丝氨酸B.亮氨酸C.异亮氨酸D.精氨酸E.甘氨酸17.下列哪一种氨基酸不属于人体必需氨基酸A.亮氨酸B.异亮氨酸C.苯丙氨酸D.色氨酸E.酪氨酸17-1下列哪一种氨基酸是非必需氨基酸:A.酪氨酸B.苯丙氨酸C.亮氨酸D.异亮氨酸E.赖氨酸18.蛋氨酸不参与下列哪一种物质的生成A.半胱氨酸B.精脒,精胺C.肌酸D.胆酸E.肾上腺素19.有一个肽,用胰蛋白酶水解得:①H-Met-Glu-Leu-Lys-OH②H-Ser-Ala-Arg-OH③H-Gly-Tyr-Oh三组片段,用BrCN处理得:④H-Ser-Ala-Arg-Met-Oh⑤H-Glu-Leu-Lys-Gly-Tyr-OH两组片段,按肽谱重叠法推导出该九肽的序列应为:A. 3+2+1B. 5+4C. 2+1+3D. 2+3+1E. 1+2+320.上述9肽中含有的碱性氨基酸是:A.组氨酸,精氨酸B.精氨酸,赖氨酸C.谷氨酸,赖氨酸D.谷氨酸,丝氨酸E.丝氨酸,酪氨酸21.欲获得不变性的蛋白质制剂,可采用下述哪种分离方法:A. 生物碱试剂沉淀B. 重金属盐沉淀C. 常温乙醇沉淀D. 低温盐析E. 加热。

蛋白质工程复习题

蛋白质工程复习题

蛋白质工程复习题名词解释构造域:生物大分子中具有特异构造和独立功能的区域,特别指蛋白质中这样的区域基因突变:基因组DNA分子发生的突然的、可遗传的变异现象融合蛋白:将两个或多个开放阅读框按肯定序列挨次连接,融合阅读框表达出一杂合蛋白。

蛋白的表达模式:蛋白质的分子设计:构型:是一个分子中原子的特定空间排布。

构型转变必需有共价键的断裂和重形成。

最根本的分子构型为L-型和D-型,这种异构体在化学上可以分别。

构象:组成分子的原子或基团绕单键旋转而形成的不同空间排布。

构象转变,无共价键的断裂和重形成,化学上难于区分和分别α-氨基酸:原核表达:是指通过基因克隆技术,将外源目的基因,通过构建表达载体并导入表达菌株的方法,使其在特定原核生物或细胞内表达蛋白质的二级构造:在一段连续的肽单位中具有同一相对取向,可以用一样的构象角来表征,构成一种特征的多肽链线性组合。

构造域:二级构造和构造模体以特定的方式组合连接,在蛋白质分子中形成2 个或多个在空间上可以明显区分的三级折叠实体,称为构造域。

蛋白质的三级构造:构造域在三维空间中以专一的方式组合排布,或者二级构造、构造模体及其与之相关联的各种环肽链在空间中的进一步协同盘曲、折叠,形成包括主链、侧链在内的专一排布。

蛋白质分子的四级构造:指蛋白质分子的亚基构造〔subunit〕,亚基的数目、类型、空间排布方式和亚基间相互作用的性质,构成四级构造的根本内容。

亚基:很多蛋白质作为完整的活性分子,是由两条以上的多肽链组成,它们各自以独特的一级、二级、三级构造相互以非共价作用联结,共同构成完整的蛋白质分子,这些肽链单位称为亚基。

其聚合整体称为寡聚体蛋白质的分子设计:从蛋白质分子水平上通过数据库等大量试验数据,结合现代的理论方法通过计算机设计的分子。

分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的构造完成正确的组装,而且在组装完毕后与之分别,不构成这些蛋白质构造执行功能时的组份启动子:由核苷酸组成,本身并不掌握基因活动而是通过与转录因子的这种蛋白质结合而掌握基因活动的增加子:能强化转录起始的一段DNA序列为增加子或强化子乳糖操纵子:是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质组学学习纲要讲授内容人类基因组序列(human genome project, HGP)揭示基因组的精细结构,显示了基因数量有限性和基因结构的相对稳定性,与生命现象的复杂性和多变性之间存在着巨大反差。

促使人们认识到:基因只是遗传信息的载体。

基因组学在基因活性和疾病的相关性方面为人类提供了有力根据, 但是基因的表达方式错综复杂,同样的一个基因在不同条件、不同时期可能会起到完全不同的作用。

因此研究生命现象,阐释生命活动的规律,只了解基因组的结构是不够的,还须对生命活动的直接执行者——蛋白质进行更深入的探讨。

事实上对蛋白质的数量、结构、性质、相互关系和生物学功能进行全面深入的研究已成为生命科学研究的迫切需要和重要任务。

以“蛋白质组”(proteome)为研究对象的生命科学新时代已经到来。

第一节蛋白质组学的概念及其发展史一、蛋白质组学的概念蛋白质组是澳大利亚学者Williams和Wilkins于1994年首先提出, 源于蛋白质(protein)与基因组(genome)两个词的杂合,指“一个细胞或一个组织基因组所表达的全部蛋白质”。

是对应于一个基因组的所有蛋白质构成的整体,而不是局限于一个或几个蛋白质。

同一基因组在不同细胞、不同组织中的表达情况各不相同,即使是同一细胞,在不同的发育阶段、不同的生理条件甚至不同的环境影响下,其蛋白质的存在状态也不相同。

因此,蛋白质组是一个在空间和时间上动态变化着的整体。

而蛋白质组学(proteomics)是指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。

研究内容主要包括:了解某种特定的细胞、组织或器官制造的蛋白质种类;明确各种蛋白质分子是如何形成类似于电路的网络的;描绘蛋白质的精确三维结构,揭示其结构上的关键部位——与药物结合并且决定其活性的部位。

蛋白质组概念的提出标志着生命科学的一个崭新时代——蛋白质组时代已经开始,它是继基因组研究之后的又一“大学科”。

即以蛋白质组为研究对象,在蛋白质多肽谱和基因产物图谱技术的基础上发展起来的一门科学,是通过对基因表达产物——蛋白质进行整体、动态、定量水平上的研究来阐述环境、疾病、药物等对细胞代谢的影响,并分析其主要作用机理、解释基因表达调节的主要方式。

要对“全部蛋白质” 进行研究是非常困难的,功能蛋白质组学的提出解决了这一难题,其研究对象是功能蛋白质组,即细胞在一定阶段或与某一生理现象相关的所有蛋白质,它是介于对个别蛋白质的传统蛋白质化学研究和以全部蛋白质为研究对象的蛋白质组学研究之间的层次,并把目标定位在蛋白质群体上,这一群体可大可小,从局部入手研究蛋白质组的各个功能亚群体,以便把多个亚群体组合起来,逐步描绘出接近于生命细胞的“全部蛋白质”的蛋白质组图谱。

功能蛋白质组学从理论和技术上使以“全部蛋白质”为研究对象的蛋白质组学更具体化,更易于从时、空、量效方面动态、整体、深入地研究生理状态下同一组织细胞在不同发育阶段或同一组织细胞在不同个体间或同一基因组在不同组织细胞间,以及病理情况下同一疾病的不同发展阶段的蛋白质表达模式和功能模式的变化,揭示一些重要的生命现象和一些重大疾病的发生发展规律。

二、蛋白质组学的产生与发展20世纪中期以来,随着DNA双螺旋结构的提出和蛋白质空间结构的X射线解析,开始了分子生物学时代,对遗传信息载体DNA 和生命功能的主要体现者蛋白质的研究,成为生命科学研究的主要内容。

90年代初期,美国生物学家提出并实施了人类基因组计划,经过各国科学家多年的努力,人类基因组计划取得了巨大成绩,一些低等生物的DNA序列已被阐明,人类DNA序列的框架图已经测定,迄今已测定的表达序列标签(EST)几乎覆盖了人类所有基因。

在这样的形势下,生命科学已进入了后基因组时代。

在后基因组时代,生物学研究的重点已从揭示生命所有遗传信息转移到在整体水平上对生物功能的研究。

这种转向的第一个标志就是产生了一门称为功能基因组学的新科学。

功能基因组学的主要任务是解析和综合大量的遗传信息,阐明基因遗传信息与人类生命活动之间的联系。

基因的功能是通过其产物—mRNA和蛋白质来体现的。

近年来利用基因表达系列分析(serial analysis of gene expression,SAGE)、微阵列(microarray)和DNA芯片(chip)等新技术研究mRNA水平上的基因活动规律取得了较大进展。

但mRNA水平的基因表达状况并不能完全代表蛋白质水平的状况,mRNA与蛋白质间的相关系数仅为0.4~0.5,蛋白质才是生命功能的主要执行者,它存在着翻译后的加工修饰、转移定位、构象变化、蛋白质与蛋白质及蛋白质与其它生物大分子相互作用等自身特点,难以从DNA和mRNA水平得到解答,从而促使人们从组织或细胞内整体蛋白质的组成、表达和功能模式去研究生命活动的基本规律。

自“蛋白质组”概念提出并开始从整体蛋白质水平研究生命现象以来,蛋白质组研究在国际上进展十分迅速。

不论是基础理论,还是技术方法,都在不断地进步和完善。

许多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷,众多的制药厂和公司在巨大财力的支持和商业利益的诱惑下纷纷加入蛋白质组研究领域,蛋白质组研究的文章每年成倍增长。

1996年澳大利亚建立了世界上第一个蛋白质组研究中心(Australia Proteome Analysis Facility,APAF),得到了政府部门的大力支持。

同年丹麦、加拿大也先后成立了国家蛋白质组研究中心,随后美国、丹麦、瑞士、瑞典、英国、法国、意大利、日本和德国等也加入了蛋白质组研究行列。

国际著名学府如哈佛、斯坦福、耶鲁、密西根、华盛顿大学、欧洲分子生物学实验室、巴士德研究所、瑞士联邦工业学院均挤身此类研究。

如美国国立癌症研究院(NCI)投资1 000万美元建立肺、直肠、乳腺、卵巢肿瘤的蛋白质组数据库。

NCI和FDA共同投资数百万美元建立癌症不同阶段的蛋白质组数据库。

英国建立三个蛋白质组研究中心对已完成或即将完成全基因组测序的生物体进行蛋白质组研究。

独立完成人类基因组测序的Celera公司投资上亿美元独自启动了全面鉴定和分类汇总人类组织、细胞和体液中的蛋白质及其异构体,构建新一代的蛋白质表达数据库的工作,以帮助研究者更深入了解细胞生理和病理过程,并为药物的开发选择靶分子。

1997年召开了第一次国际“蛋白质组学”会议,预测21世纪生命科学的重心将从基因组学转移到蛋白质组学,为生命科学和医药学领域的研究带来了新的生机。

1998年在美国旧金山召开了第二届国际蛋白质组学会议,参加者大都来自各大药厂和公司。

1999年1月在英国伦敦举行了应用蛋白质组会议。

1999年5月在日本召开的国际电泳会议上,约三分之一的文章与蛋白质组有关。

我国也于1998年启动了蛋白质组学研究。

1998年在中国科学院上海生物化学研究所举办了两次全国性的蛋白质组学研讨会,并在此基础上,提出了功能蛋白质组学的研究战略。

科技部已将疾病蛋白质组研究列入我国“973”计划项目和“863”计划项目;国家自然科学基金委员会也将“蛋白质组研究”列为重点项目。

我国在鼻咽癌、白血病、肝癌和肺癌蛋白质组研究方面取得了较大的进展,并且于2003成立了中国人类蛋白质组组织(CHHUPO)。

并分别于2003年9月、2004年8月以及2005年8月召开了中国蛋白质组学首届、第二届及第三届学术大会,于2004年10月在中国北京召开了第三届国际蛋白质组学会议。

因此,蛋白质科学及技术已经成为21世纪生命科学与生物技术的重要战略前沿,是生命科学突破与生物技术创新的必由之路,并且成为生命科学与生物技术引领自然科学与技术的龙头。

第二节蛋白质组学研究方法概述蛋白质组研究比基因组研究更复杂和困难,一方面,蛋白质的数目大大超过基因的数目。

人基因组有2.5~4.0万个编码基因,而其表达的蛋白质可达十几万或更多;另一方面,基因是相对静态的,一种生物仅有一个基因组,而蛋白质是动态的,即随时间和空间而变化,同时还有着复杂的翻译后修饰。

组成蛋白质的氨基酸有20种,加上修饰的氨基酸则更多,而DNA仅4种核苷酸组成。

因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。

最初的蛋白质组学主要是研究蛋白质组的组成成分,即蛋白质组表达模式(expression profile)。

蛋白质组表达模式研究的支撑技术主要有双向凝胶电泳和以质谱为代表的蛋白质鉴定技术及生物信息学。

随着学科的发展,蛋白质组学的研究范围不断扩展,蛋白质组功能模式的研究不断深入。

蛋白质翻译后修饰和蛋白质-蛋白质相互作用的研究已成为蛋白质组学的重要部分。

一、蛋白质组表达模式的研究方法(一)蛋白质组研究中的样品制备通常可采用细胞或组织中的全蛋白质组分进行蛋白质组分析。

也可以进行样品预分级,即采用各种方法将细胞或组织中的全体蛋白质分成几部分,分别进行蛋白质组研究。

样品预分级的主要方法包括根据蛋白质溶解性和蛋白质在细胞中不同的细胞器定位进行分级,如专门分离出细胞核、线粒体或高尔基体等细胞器的蛋白质成分。

样品预分级不仅可以提高低丰度蛋白质的上样量和检测,还可以针对某一细胞器的蛋白质组进行研究。

对临床组织样本进行研究,寻找疾病标记,是蛋白质组研究的重要方向之一。

但临床样本都是各种细胞或组织混杂,而且状态不一。

如肿瘤组织中,发生癌变的往往是上皮类细胞,而这类细胞在肿瘤中总是与血管、基质细胞等混杂。

所以,常规采用的癌和癌旁组织或肿瘤与正常组织进行差异比较,实际上是多种细胞甚至组织蛋白质组混合物的比较。

最近在组织水平上的蛋白质组样品制备方面已有新的进展,如采用激光捕获显微切割(laser capture microdissection,LCM) 方法可直接在显微镜下从组织切片中精确分离特定的细胞或细胞群。

(二)蛋白质组研究中的样品分离利用蛋白质的等电点和分子量通过双向凝胶电泳(two-dimensional electrophoresis,2-DE)的方法将各种蛋白质区分开来是最主要的基于胶的蛋白质组学分离技术。

双向凝胶电泳(2-DE)技术于1975年首先由O’Farrell等创立,其原理是第一向在高压电场下对蛋白质进行等电聚焦(IEF), 再在第一向垂直方向上进行第二向SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)。

第一向的IEF电泳,经历了从最初的载体两性电解质pH梯度等电聚焦电泳到80年代固相pH梯度等电聚焦电泳(immobilized pH gradient,IPG)的发展过程。

相关文档
最新文档