人教版高三数学一轮复习导数的概念及运算
导数的概念及运算课件——2025届高三数学一轮复习

B.2f ′(3)<2f ′(5)<f (5)-f (3)
C.f (5)-f (3)<2f ′(3)<2f ′(5)
D.2f ′(5)<2f ′(3)<f (5)-f (3)
A
[由题图知:f
5 − 3
′(3)<
5−3
<f ′(5),
即2f ′(3)<f (5)-f (3)<2f ′(5).故选A.]
y-f (x0)=f ′(x0)(x-x0)
斜率
线的____,相应的切线方程为_____________________.
提醒:求曲线的切线时,要分清在点P处的切线与过点P的切线的区别,前者只
有一条,而后者包括了前者.
第1课时 导数的概念及运算
链接教材
夯基固本
典例精研
核心考点
3.基本初等函数的导数公式
)
第1课时 导数的概念及运算
链接教材
夯基固本
4.(人教A版选择性必修第二册P81习题5.2T7改编)函数f
典例精研
核心考点
课时分层作业
1
x
(x)=e + 的图象在x=1
y=(e-1)x+2
处的切线方程为_______________.
y=(e-1)x+2
1
[∵f ′(x)=ex- 2 ,∴f ′(1)=e-1,又f (1)=e+1,∴切点为(1,
cf ′(x)
(4)[cf (x)]′=_______.
5.复合函数的定义及其导数
一般地,对于两个函数y=f (u)和u=g(x),如果通过中间变量u,y可以表示成x
人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算

3.1 导数的概念、意义及运算
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
【知识筛查】
对于函数y=f(x),设自变量x从x0变化到x0+Δx,相应地,函数值就从f(x0)变化
到f(x0+Δx),这时,x的变化量为Δx,y的变化量为Δy=f(x0+Δx)-f(x0).
(2)设曲线与经过点 A(2,-2)的切线相切于点 P(x0,03 -402 +5x0-4).
∵f'(x0)=302 -8x0+5,
∴切线方程为 y-(-2)=(302 -8x0+5)(x-2),
又切线过点 P(x0,03 -402 +5x0-4),
∴03 -402 +5x0-2=(302 -8x0+5)(x0-2),
它的导数与函数y=f(u),u=g(x)的导数间的关系为yx'= yu'·ux' .
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是
周期函数.
1 ' 1
2.熟记以下结论:(1)
=- 2 ;
1
(2)(ln|x|)'=;
1 '
'()
(3) () =2(f(x)≠0);
[()]
于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
3.已知切线方程(斜率)求参数的值(取值范围)的关键是能利用函数的导数
等于切线斜率列出方程.
对点训练2
(1)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的
高考数学人教版理科第一轮复习: 导数的概念及运算 ppt

2019年6月1日
缘分让我们相遇,缘分让我们在一起
8
知识梳理 双基自测
123456
6.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为
y'x= y'u·u'x
,即y对x的导数等于
u对x 的导数的乘积.
y对u 的导数与
2019年6月1日
缘分让我们相遇,缘分让我们在一起
16
考点1
考点2
解题心得函数求导应遵循的原则: (1)求导之前,应利用代数、三角恒等式变形等对函数进行化简, 然后求导,这样可以减少运算量,提高运算速度,减少差错. (2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切 忌记错记混. (3)复合函数的求导,要正确分析函数的复合层次,通过设中间变 量,确定复合过程,然后求导.
(2)[f(x)·g(x)]'= f'(x)g(x)+f(x)g'(x);
(3)
������(������) ������(������)
'=������'(������)������[(������������()���-������)���](2������)������'(������)(g(x)≠0).
.
由
f'(x)=1-���l���n2 ������ ,得
f'(2)=1-ln2 .
4
1-ln2 4
2019年6月1日
缘分让我们相遇,缘分让我们在一起
关闭 关闭
12 解析 答案
知识梳理 双基自测
12345
4.(2017山西太原模拟)函数f(x)=xex的图象在点(1,f(1))处的切线
2024届高考一轮复习数学课件(新教材人教A版 提优版):导数的概念及其意义、导数的运算

fx+Δx-fx Δx .
知识梳理
2.导数的几何意义 函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0)) 处的切线的 斜率 ,相应的切线方程为 y-f(x0)=f′(x0)(x-x0) .
知识梳理
3.基本初等函数的导数公式 基本初等函数 f(x)=c(c为常数)
知识梳理
f(x)=logax(a>0,且a≠1) f(x)=ln x
1 f′(x)=_x_ln__a_
1 f′(x)=__x _
知识梳理
4.导数的运算法则 若f′(x),g′(x)存在,则有 [f(x)±g(x)]′= f′(x)±g′(x) ; [f(x)g(x)]′= f′(x)g(x)+f(x)g′(x) ; gfxx′=f′xg[xg-xf]2xg′x(g(x)≠0); [cf(x)]′= cf′(x) .
教材改编题
1.若函数f(x)=3x+sin 2x,则
√A.f′(x)=3xln 3+2cos 2x
C.f′(x)=ln3x3+cos 2x
B.f′(x)=3x+2cos 2x D.f′(x)=ln3x3-2cos 2x
因为函数f(x)=3x+sin 2x, 所以f′(x)=3xln 3+2cos 2x.
对于
C,2sxin2
x′=2sin
x′x2-2sin x4
xx2′=2xcos
x-4sin x3
x,故
C
错误;
对于D,(2x+cos x)′=(2x)′+(cos x)′=2xln 2-sin x,故D正确.
(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则
f′(2)等于
专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处
高三数学第一轮复习(新人教A)导数的概念及运算

导数的概念及运算一.复习目标:理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程.二.知识要点:1.导数的概念:;.2.求导数的步骤是.3.导数的几何意义是.三.课前预习:1.函数的导数是()2.已知函数的解析式可()3.曲线上两点,若曲线上一点处的切线恰好平行于弦,则点的坐标为()4.若函数的图象的顶点在第四象限,则函数的图象是()5.已知曲线在处的切线的倾斜角为,则,.6.曲线与在交点处的切线的夹角是.四.例题分析:例1.(1)设函数,求;(2)设函数,若,求的值.(3)设函数,求.解:(1),∴(2)∵,∴由得:,解得:或(3)例2.物体在地球上作自由落体运动时,下落距离其中为经历的时间,,若,则下列说法正确的是()(A)0~1s时间段内的速率为(B)在1~1+△ts时间段内的速率为(C)在1s末的速率为(D)若△t>0,则是1~1+△ts时段的速率;若△t<0,则是1+△ts~1时段的速率.小结:本例旨在强化对导数意义的理解,中的△t可正可负例3.(1)曲线:在点处的切线为在点处的切线为,求曲线的方程;(2)求曲线的过点的切线方程.解:(1)已知两点均在曲线C上. ∴∵∴,可求出∴曲线:(2)设切点为,则斜率,过切点的切线方程为:,∵过点,∴解得:或,当时,切点为,切线方程为:当时,切点为,切线方程为:例4.设函数(1)证明:当且时,;(2)点(0<x0<1)在曲线上,求曲线上在点处的切线与轴,轴正向所围成的三角形面积的表达式.(用表示)解:(1)∵,∴,两边平方得:即:,∵,∴,∴∴(2)当时,,曲线在点处的切线方程为:,即:∴切线与与轴,轴正向的交点为∴所求三角形的面积为例5.求函数图象上的点到直线的距离的最小值及相应点的坐标.解:首先由得知,两曲线无交点.,要与已知直线平行,须,故切点:(0 , -2). .五.课后作业:班级学号姓名1.曲线在点处的切线方程为()2.已知质点运动的方程为,则该质点在时的瞬时速度为()120 80 503.设点是曲线上的任意一点,点处切线的倾斜角为,则角的取值范围是()4.若,则5.设函数的导数为,且,则已知曲线(1)求曲线在点处的切线方程;(2)求过点并与曲线相切的直线方程.7.设曲线:,在哪一点处的切线斜率最小?设此点为求证:曲线关于点中心对称.8.已知函数. 若,且,,求.9..曲线上有一点,它的坐标均为整数,且过点的切线斜率为正数,求此点坐标及相应的切线方程.10.已知函数的图像过点.过点的切线与图象仅点一个公共点,又知切线斜率的最小值为2,求的解析式.。
2020高三数学(人教版)一轮复习导数的概念与计算

f′(x)= ex
f′(x)= axln a
f′(x)=
1 x
f′(x)=
1 xln a
4.导数的运算法则 若 f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′= f′(x)±g′(x) ; (2)[f(x)·g(x)]′= f′(x)g(x)+f(x)g′(x) ; (3)gfxx′=f′xg[xg-xf]2xg′x(g(x)≠0).
解:(1)y′=(x2)′sin x+x2(sin x)′=2xsin x+x2cos x.
(2)y′=ln
x+1x′=(ln
x)′+1x′s
x′ex-cos ex2
xex′
=-sin
x+cos ex
x .
考点三 导数的几何意义及应用(多维探究) [命题角度 1] 求切线方程
数学运算——求切线方程的“在”“过”两重天 求曲线的切线问题时,要明确所运算的对象(切线)涉及的点是 “在”还是“过”,然后利用求切线方程的方法进行求解. (1)“在”曲线上一点处的切线问题,先对函数求导,代入点的 横坐标得到斜率. (2)“过”曲线上一点的切线问题,此时该点未必是切点,故应 先设切点,求切点坐标.
1.(2018·全国Ⅰ卷)设函数 f(x)=x3+(a-1)x2+ax,若 f(x)为奇函
数,则曲线 y=f(x)在点(0,0)处的切线方程为( )
A.y=-2x
B.y=-x
C.y=2x
D.y=x
解析:D [因为函数 f(x)是奇函数,所以 a-1=0,解得 a=1, 所以 f(x)=x3+x,f′(x)=3x2+1, 所以 f′(0)=1,f(0)=0, 所以曲线 y=f(x)在点(0,0)处的切线方程为 y-f(0)=f′(0)x, 化简可得 y=x,故选 D.]
2025版高考数学全程一轮复习第三章一元函数的导数及其应用第一节导数的概念及其几何意义导数的运算课件

答案:D
解析:由题意得f′(x)=3x2-2,故f′(2)=3×4-2=10,则f(x)=x3-2x+20,故 f(2)=8-4+20=24.故选D.
题后师说
巩固训练1
(1)(多选)[2024·吉林长春模拟]已知下列四个命题,其中不正确的是
()
A.(e2x)′=2e2x
导函数 f′(x)=____0____ f′(x)=__n_x_n_-_1__ f′(x)=___co_s_x___ f′(x)=__-__si_n_x__
f(x)=ax(a>0且a≠1) f(x)=ex
f(x)=logax(x>0,a>0且a≠1) f(x)=ln x(x>0)
f′(x)=___a_x _ln_a__
关键能力·题型剖析
题型一导数的运算
例1 (1)(多选)[2024·河南南阳模拟]下列求导数的运算正确的是( )
A.(x3-1x)′=3x2+x12
B.(ln 2)′=12
C.(xex)′=(x+1)ex
D.(sin
3x)′=cos
x 3
答案: AC
(2)[2024·广东深圳模拟]已知函数f(x)=x3-2x+2f′(2),其中f′(x)是f(x) 的导函数,则f(2)=( )
【常用结论】 1.曲线的切线与曲线的公共点不一定只有一个,而直线与二次曲线 相切时只有一个公共点. 2.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导 数还是周期函数.
夯实基础 1.思考辨析(正确的打“√”,错误的打“×”) (1)导函数f′(x)的定义域与函数f(x)的定义域相同.( × ) (2)f′(x0)与[f(x0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的运算法则
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x ) g ( x ) f ( x ) g ( x )
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x ) g ( x )
注意:曲线在某点处的切线, (1)与该点的位置有关;
(2)要根据割线是否有极限来判断与求解.如有极限,则在此点有
切线,且切线是唯一的;如不存在,则在此点处无切线; (3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚 至可以无穷多个.
因为两切线重合,
2 x1 2( x2 2) x1 0 x1 2 或 . 2 2 x1 x2 4 x2 2 x2 0
f ( x ) g ( x ) f ( x ) g ( x )
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x ) f ( x ) g ( x ) f ( x ) g ( x ) ( g ( x ) 0) g ( x) 2 g ( x)
例4:求下列函数的导数:
1 4 (1) y 2 3 ; x x
1 x2 ( 2) y ; 2 2 (1 x )
( 3) y
1 ; 2 cos x
2.复合函数的导数: 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间关系为
y x y u u x ;
y对x的导数等于y对u的导数与u对x的导数的乘积.
四、导数的几何意义
f ( x0 x ) f ( x0 ) y lim 即: k切线 tan lim x 0 x x 0 x
故曲线y=f(x)在点P(x0 ,f( x 0 ) f ( x 0 )( x x 0 )
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4. 所以所求l的方程为:y=0或y=4x-4.
考点一 导数的概念及运算
一、导数的概念
2.有关导数定义的几点理解:
f (x0 Δx) f ( x0 ) f ( x0 ) lim . x 0 x
定义法求函数的导数
习题:
三、导数的计算
公式1.若f ( x ) c, 则f '( x ) 0; 公式2.若f ( x ) x n , 则f '( x ) nx n 1 ; 公式3.若f ( x ) sin x, 则f '( x ) cos x; 公式4.若f ( x ) cos x, 则f '( x ) sin x; 公式5.若f ( x ) a x , 则f '( x ) a x ln a (a 0); 公式6.若f ( x ) e x , 则f '( x ) e x ; 1 公式7.若f ( x ) log a x, 则f '( x ) (a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x