八年级数学上册第2章平方根与立方根之间的区别与联系(北师大版)
北师大版八年级上册数学:2.2平方根与立方根

平方根与立方根【知识要点】一.平方根1、一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方,读作“根号a”.2、一般地,如果一个数x的平方等于a,即2x a=,那么这个数就叫做a的平方根.3.一个正数有两个平方根;0只有一个平方根,它就是0本身;负数没有平方根.口诀:(正二零一负没有)4.求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数.5a ==,0,,0.a aa a≥⎧⎨-<⎩二.立方根1、一般地,如果一个数x的立方等于a,即3x a=,那么这个数x就叫做a的立方根.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3. 求一个数a的立方根的运算,叫做开立方,其中a叫做被开立方数三.开方步骤1.戴帽子:即加根号,给要开方数加上根号,原有根号的先去掉根号再加根号2.添符号:即在根号前加符号,开平方加“±”开立方根符号根题目一致3.4.脱外套:即去掉根号,括号及括号外的次数,留下符号和括号内的数就是结果【经典例题】1、求下列各数的算术平方根和平方根.(1)81 (2)0.04 (3)9716(4)16125-练习:求下列个数的平方根.(1)289 (2)610- (3)24298 (4)2 (5)182.求下列各数的立方根:(1)1216-(2)54250 (3)15.625(4)338(5)5- (6)3203、求满足下列各式的未知数x .(1)2169x = (2)2(2)9x -=(3)21(1)182x -= (4)21(1)123x -=(1)38270x += (2)37(2)18x ++=(3)31(1)64x -=- (4)41516x -=.4、求下列各式的值.(1(2(3(4(5(6)(7)35、(1)已知2a-1的平方根是±3,3a+b-1的平方根为±4,求a+2b的平方根.+=,求2+的值.()a b+的值(2)m n【课堂小练】一、选择题1.下列各数中没有平方根的数是()A.-(-2)3B.3-3C.a0D.-(a2+1)2.2a等于()A.aB.-aC.±aD.以上答案都不对3.如果a(a>0)的平方根是±m,那么()A.a2=±mB.a=±m2C.a=±mD.±a=±m4.下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-5.在下列各式中:327102 =34 3001.0=0.1,301.0 =0.1,-33)27(-=-27,其中正确的个数是( )A.1B.2C.3D.46.若m<0,则m 的立方根是( ) A.3m B.- 3m C.±3m D. 3m -7.如果36x -是6-x 的三次算术根,那么( )A.x<6B.x=6C.x ≤6D.x 是任意数8.若x <0,则332x x -等于( )A.xB.2xC.0D.-2x二、填空题1. 一个数的算术平方根为a ,比这个数大2的数的平方根是_____________2.下列各数:-8,()23-,25-,4.0-,52,0,()2--中有平方根的数有 个. 3.式子2-x ,当x 时,这个式子有意义.4.如果一个数的平方根是3+a 与152-a ,那么这个数是 .若45+x 的平方根是±1,则x =5.225±= ,2516-= , ()27±= ,()()2299--= .6. -9是数a 的一个平方根,那么数a 的另一个平方根是 ,数a 是 .7.已知|x -4|+y x +2=0,那么x=________,y=________. 8.364的平方根是______.9.(3x -2)3=0.343,则x=______.10.若81-x3x =______.11.若x<0,则2x =______,33x =______.12.若a2=1,则3a =_________.三、解答题:1、已知:()()7233=-+++y x y x ,求y x +的值.2、已知2a -1的平方根是±3,4a +2b +1的平方根是±5,求a -2b 的平方根.3,当a 取何值时,它有意义?a 取何值时,无意义?a 取何值时,其值为0?40=,求22006a b --的值.5.已知643+a +|b3-27|=0,求(a -b)b 的立方根.6.21a =-,求a 的值.。
北师大版八年级数学上册2.2.1《平方根》教案

举例:
-难点解释:对于负数没有平方根的概念,可以通过数轴上的点来解释,正数的平方根在数轴上对称,而负数没有对应的正数平方根。
-计算方法:以√9为例,讲解如何通过试错法或近似法(如牛顿迭代法)来估算平方根,强调计算过程的逐步精确。
4.应用平方根解决实际问题。
二、核心素养目标
1.理解平方根的定义,形成对数学概念的本质认识,培养数学抽象素养。
2.通过对平方根性质的探究,提高逻辑推理能力和数学运算能力,发展数学逻辑思维。
3.学会运用平方根解决实际问题,培养数学建模素养,增强数学应用意识。
4.在探索平方根的过程中,增强数据分析能力,学会从数学角度发现问题和提出问题,培养数学探究素养。
首先,我发现在导入新课的环节,虽然我试图通过日常生活中的例子来引起学生的兴趣,但可能由于例子不够贴近他们的实际经验,部分学生显得不够投入。下次我可以尝试寻找更贴近学生生活的例子,或者让学生自己分享他们在哪里见过平方根,以提高他们的参与度。
在理论介绍环节,我讲解了平方根的定义和性质,但可能讲解得太快,导致一些学生跟不上。我应该在讲解时更加注意语速,并在关键点处暂停,让学生有时间消化和理解。此外,我可以通过提问的方式检查学生的理解程度,确保他们能够跟上课程的进度。
在实践活动和小组讨论中,学生们表现得比较积极,但我也注意到有些小组在讨论时偏离了主题。未来,我应该在分组讨论时提供更明确的指导,确保每个小组都能围绕核心知识点进行深入的探讨。
对于教学难点,比如负数没有平方根的概念,我尝试通过数轴来解释,但效果似乎并不理想。我考虑在下次课中引入更多的图形和实际操作,如使用卡片或教具来直观展示正数平方根的对称性,从而帮助学生更好地理解负数平方根的不存在。
(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师大版-数学-八年级上册-《立方根》教学设计

第二章实数3.立方根一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用半径为1m的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为334R =v ,R 为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数? (1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-.提问:35-是否可写例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 反馈练习 1.求下列各数的立方根:().1656464125.03333333 ;;-;;- 2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想:(1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢? (2)3a -与3a -有何关系? 目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a =33,3a -=3a -;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用半径为1m 的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生学力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值.2.求下列各式中的x . ()()--=+=-=3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.x x x x 目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。
初中数学“平方根”与“立方根”知识点小结

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x2=a,则x叫做a的平方根,记作“(a称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a的正的平方根叫做a的算术平。
2、立方根:⑴、定义:如果x3=a,则x叫做a的立方根,记作(a称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3有意义的条件是a≥0。
4、公式:⑴)2=a(a≥0)=(a取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
例1求下列各数的平方根和算术平方根(1)64;(2)2)3(-;(3)49151;⑷21(3)-例2 求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-. (5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴343;⑵10227-;⑶0.729二、巧用被开方数的非负性求值.大家知道,当a≥0时,a的平方根是±a,即a是非负数.例4、若,622=----yxx求y x的立方根.练习:已知,21221+-+-=xxy求y x的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a≥0时,a的平方根是±a,而.0)()(=-++aa例5、已知:一个正数的平方根是2a-1与2-a,求a的平方的相反数的立方根.练习:若32+a和12-a是数m的平方根,求m的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。
八年级数学上册 2.3 立方根教学课件 (新版)北师大版

2.开立立方方根的性质:
(1)任意实数������有且只有_____个立方根,且正数������的立方根是
_____数,负数的立方根是_1____数,0的立方根是_____;
(2正)立方根的符号与被开方数负的符号一致;
0
(33.学)������习-立������=方-������根������的,������定������义������=、������符,(号������ 表������)示3=���及���.求法时,要注意类比平方根
储气罐的体积是原来的4倍,那么它的半径又是
多少?
K12课件
3
1.请简述立方根与平方根的区别与联系,并与同伴交流。
区别:(1)根指数不同:平方根的根指数为2,且可以省略不写;
立方根的根指数为3,不能省略不写。
(2)被开方数的取值范围不同:平方根中被开方数必须为非负
数;立方根中被开方数可以为任何数。
(3)结果个数不同:除了0的平方根只有一个外,其余正数的平
规律吗?小组讨论交流.
������ -������=-������ ������.
3.试着解决“问题导引”中的问题,并与同伴交流一下。 略
Байду номын сангаас
K12课件
5
1.如果一个数x的立方等于������,即x3=������,那么这个数___x__就叫作
__������_的_立__方__根___.求一个数的立方根的运算,叫作_________。
第二章 实 数
2.3 立方根
K12课件
1
• 1.理解立方根的概念,会用符号表示一个数 的立方根;
• 2.能用开立方运算求一个数的立方根,体会 开立方与立方
• 互为逆运算。(重点)
八年级上册数学《立方根》知识点北师大版
八年级上册数学《立方根》知识点北师
大版
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
如果一个数的平方等于a,那么这个数叫做a的平方根。
0的平方根是0。
负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。
例如:-1的平方根为i,-9的平方根为3i。
平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即√a=x 后练习
19的算术平方根是
A-3
B3
±3
D81
2下列计算不正确的是
A=±2
B=9
=04
D=-6
3下列说法中不正确的是
A9的算术平方根是3
B的平方根是±2
27的立方根是±3
D立方根等于-1的实数是-1 4的平方根是
A±8
B±4
±2
D±
9的立方根是_______
6求下列各数的平方根100;0;;1;1;009。
北师大版数学八年级上册第二章实数知识点归纳及例题
北师大版八年级上册第二章实数知识点归纳及例题1 平方根和开平方【知识点梳理】知识点一、平方根和算术平方根的概念 1.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方. 叫做被开方数.平方与开平方互为逆运算. 2.算术平方根的定义正数的两个平方根可以用“的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.知识点诠释:0,≥0.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根2x a =x a a a a a a a a a a 0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥250=25= 2.5=0.25=C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.=5,所以本说法正确;B.=±1,所以l 是l 的一个平方根说法正确;C.=±4,所以本说法错误;D.因为=0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)没有平方根.( ) (2.( ) (3)的平方根是.() (4)是的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2;(4)是的算术平方根. 2、填空:(1)是的负平方根. (2表示 的算术平方根,.(3的算术平方根为 .(4,则 ,若,则 . 【思路点拨】(3的算术平方根=,此题求的是的算术平方根. ()24-9-4=±21()10-110±25--4254=254254-=3=x =3=x =1811919【答案与解析】(1)16;(2)(3) (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3. ③4是8的正的平方根.④ 是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的. 【变式2】(2015•凉山州)的平方根是 . 【答案】±3. 解:因为=9,9的平方根是±3,所以答案为±3.3、(2016•古冶区二模)如果一个正数的平方根为2a+1和3a-11,则a=() A. ±1 B.1 C. 2 D. 9【思路点拨】根据一个正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值. 【答案】C . 【解析】解:根据题意得:2a+1+3a-11=0解得:a=2. 故选C.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】代数式 =有意义,则的取值范围是 . 【答案】.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值,(1)169x 2=144(2)(x ﹣2)2﹣36=0. 【思路点拨】(1)移项后,根据平方根定义求解; (2)移项后,根据平方根定义求解. 【答案与解析】 解:(1)169x 2=144, x , x=, 11;164138-y 3-x x 3x ≥2144=169x=. (2)(x ﹣2)2﹣36=0,(x ﹣2)2=36, x ﹣2=,x ﹣2=±6, ∴x=8或x=﹣4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数. 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为,长为3, 由题意得,·3=1323 3=1323=-21(舍去) 答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.1213±x x x x 2x 21x =±x2 立方根【知识点梳理】知识点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a知识点诠释:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.知识点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.知识点三、立方根的性质==a3=a知识点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.6660. 【典型例题】类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【思路点拨】根据立方根的定义判断即可.【答案】D;【解析】A.如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B.一个数的立方根不是正数就是负数,错误,还有0;C.负数有立方根,故错误;D.正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义.举一反三:【变式】下列结论正确的是()A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D=【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4(5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)(2(3)43===9 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)=331=1-++(5)3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1=______;(2)=364611______;(3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125,可得:x ﹣2=﹣5,解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗).3 无理数与实数【知识点梳理】知识点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数叫无理数. 知识点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,知识点二、实数有理数和无理数统称为实数.有理数和无理数组成了一个新的数集——实数集,实数集通常用字母R 表示.1.实数的分类 按定义分:实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.知识点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 知识点四、实数的运算有理数中关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】 类型一、实数概念1、指出下列各数中的有理数和无理数:222,,0,,10.1010010001 (7)3π--【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有222,0,,73-,10.1010010001π……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数叫无理数.常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如1举一反三:【变式】下列说法错误的是( )①无限小数一定是无理数; ②无理数一定是无限小数; ③带根号的数一定是无理数;④不带根号的数一定是有理数. A .①②③ B. ②③④ C. ①③④ D. ①②④【答案】C ;类型二、实数大小的比较2、(2014秋•新华区校级期中)比较和1的大小.【答案与解析】解:∵<<, 即2<<3, ∵1<﹣1<2, ∴<1.【总结升华】此题主要考查了实数比较大小,得出﹣1的取值范围是解题关键. 举一反三:【变式】比较大小___ 3.14π--4__32 03___- |___(7)--- 【答案】<; >; <; <; <; >; <.3、(2016•通州区二模)如图,数轴上的A ,B ,C ,D 四点中,与表示数的点数接近的点是( )A .点AB .点BC .点CD .点D 【思路点拨】先估算出与比较接近的两个整数,再根据数轴即可得到哪个点与最接近,本题得以解决. 【答案】C ; 【解析】解:∵,∴4<<5, ∴数轴上与表示数的点数接近的点是C ,故选C .【总结升华】本题考查实数与数轴,解题的关键是明确数轴的特点,可以估算出与哪两个整数最接近. 类型三、实数的运算4、化简:(1) 1.4|(2)4||(3)|12| 【答案与解析】解: 1.4|1.4=4||4|12|121==.【总结升华】有理数中关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用. 举一反三:【变式】(2015•乌鲁木齐)计算:(﹣2)2+|﹣1|﹣.【答案】解:原式=4+﹣1﹣3=.5、若2|2|3(4)0a b c -+-+-=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值. 【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|0x y +++=【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.12=.4 二次根式—知识讲解【要点梳理】知识点一、二次根式的概念一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号. 知识点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数. 知识点二、二次根式的性质 1.a ≥0,(a ≥0); 2.(a ≥0);3..4.积的算术平方根等于积中各因式的算术平方根的积,即(a ≥0,b ≥0).5.商的算术平方根等于被除数的算术平方根与除数的算术平方根的商, 即()a aa b a b b b=÷=÷或(a ≥0,b >0). 知识点诠释: (1)二次根式(a ≥0)的值是非负数。
北师大版八年级数学上册_平方根与立方根之间的区别与联系
平方根与立方根之间的区别与联系平方根与立方根是两个很相近的概念,如果不正确地认识和理解它们的异同,在解题中很容易引起混淆而造成解题错误,为此,笔者将其区别与联系小结如下。
一、两者的区别1、定义不同平方根:如果a x =2,那么x 叫做a 的平方根立方根:如果a x =3 ,那么x 叫做a 的立方根2、表示方法不同正数a 的平方根记为a ±,数a 的立方根记为3a 。
表示平方根时,根指数2一般省略不写,但是用根号表示立方根时,根指数3绝对不能省略,否则就与二次根式混淆了。
3、读法不同正数a 的平方根记为a ± ,读作“正、负根号 a ”。
3a 读作“ 三次根号a 或a的立方根”。
4、被开方数的取值范围不同 在平方根a ±中,被开方数a 是非负数,即 0≥a 。
但在3a 中,a 可以是任意的数。
5、根的个数不同一个正数的平方根有两个,它们是互为相反数,0的平方根是0,负数没有平方根。
任何数都存在立方根,一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0。
二、二者的联系求平方根与立方根的运算都是开方运算,开平方与平方互为逆运算,开立方与立方互为逆运算,都是乘方的逆运算。
三、应用举例例1、 求下列各式的值(1)1211- (2) 16.0± (3) 32764- (4)3216125 解:(1)1111211,1211)111(2-=-∴=(2)2(0.4)0.16,0.4±==±(3)342764,2764)34(33-=-∴-=- (4)65216125,216125)65(33=∴= 例2、 求下列各式中的x(1)48)43)(43(=-+x x(2)343)35(3=-x解:(1)481692=-x 即9642=x 38964±=±=∴x (2)734335,343)35(33==-∴=-x x 即2,105=∴=x x。
探讨平方根、算术平方根、立方根的联系与区别
解:由题意得AC=5.5米, BC=4.5米,∠ABC=90°,
在Rt△ABC中,由勾股定理得:
AB2=AC2-BC2=-4.52=10
AB= 10 米 所以帐篷支撑竿的高是 10 米
做一做:
2、求x的值
3 x 12 363 解: x 12 121
x 1 121
x 1 11 或 x 1 11
平方根包含算术平方根, 算术平方根 是平方根的一种.
只有非负数才有平方根和算术平方根.
2.平方根、算术平方根、立方根的联系:
0的平方根是0 0的算术平方根是0 0的立方根是0
区别 1. 定义不同:
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根.
一般地,如果一个数x 的平方等于a,即 x2=a, 那么这个数x 叫做a 的平方根(也叫做二次方根).
6.等于它本身的数不同:
算术平方根等于它本身的数是0、1 平方根等于它本身的数是0 立方根等于它本身的数是0、1、-1
7.探索发现的公式不同:
灵活运用公式:
a2 | a|
( a)2 a
, 3
3a a
3 a3 a, 3 a 3 a;
解决问题:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子 AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐 篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多
北师大版数学八年级上册
探讨算术平方根、平方根、 立方根的联系与区别
问题引入:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一 根绳子AC固定帐篷.若绳子的长度为5.5米,地 面固定点C到帐篷支撑竿底部B的距离是4.5米,
则帐篷支撑竿的高是多少米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根与立方根之间的区别与联系
平方根与立方根是两个很相近的概念,如果不正确地认识和理解它们的异同,在解题中很容易引起混淆而造成解题错误,为此,笔者将其区别与联系小结如下。
一、两者的区别
1、定义不同
平方根:如果a x =2,那么x 叫做a 的平方根
立方根:如果a x =3 ,那么x 叫做a 的立方根
2、表示方法不同
正数a 的平方根记为a ±,数a 的立方根记为3a 。
表示平方根时,根指数2一般省略不写,但是用根号表示立方根时,根指数3绝对不能省略,否则就与二次根式混淆了。
3、读法不同
正数a 的平方根记为a ± ,读作“正、负根号 a ”。
3a 读作“ 三次根号a 或a
的立方根”。
4、被开方数的取值范围不同 在平方根a ±中,被开方数a 是非负数,即 0≥a 。
但在3a 中,a 可以是任意的数。
5、根的个数不同
一个正数的平方根有两个,它们是互为相反数,0的平方根是0,负数没有平方根。
任何数都存在立方根,一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0。
二、二者的联系
求平方根与立方根的运算都是开方运算,开平方与平方互为逆运算,开立方与立方互为逆运算,都是乘方的逆运算。
三、应用举例
例1、 求下列各式的值
(1)121
1- (2) 16.0± (3) 32764- (4)3216125 解:(1)1111211,1211)111(
2-=-∴=Θ
(2)2(0.4)0.16,0.4±==±Q
(3)3
42764,2764)34(33-=-∴-=-Θ (4)6
5216125,216125)65(33=∴=Θ 例2、 求下列各式中的x
(1)48)43)(43(=-+x x
(2)343)35(3=-x
解:(1)481692=-x 即9642=
x 3
8964±=±=∴x (2)734335,343)35(33==-∴=-x x Θ 即2,105=∴=x x。