经典线性回归模型的Eviews操作
试验二 一元线性回归模型Eviews操作

试验二一元线性回归模型Eviews操作案例:建立我国最终消费支出与国内生产总值(单位:亿元)之间的回归模型,并进行变量和方程整体的显著性检验。
当显著性水平为0.05, 2004年国内生产总值为38000亿元时,对2004年我国最终消费支出和平均最终消费支出进行点预测和区间预测。
一、创建工作文件建立工作文件的方法有以下几种。
1.菜单方式在主菜单上依次单击File→New→Workfile(见图2-1),选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本例中在Start Data里输入1978,在End data 里输入2003,见图2-3。
单击OK后屏幕出现Workfile工作框,如图2-4所示。
2.命令方式在命令窗口直接输入建立工作文件的命令CREATE,命令格式:CREATE 数据频率起始期终止期其中,数据频率类型分别为A(年)、Q(季)、M(月)、U(非时间序列数据)。
输入Eviews 命令时,命令字与命令参数之间只能用空格分隔。
如本例可输入命令:CREATE A 1978 2003工作文件创立后,需将工作文件保存到磁盘,单击工具条中Save→输入文件名、路径→保存,或单击菜单兰中File→Save或Save as→输入文件名、路径→保存。
图2-1这时屏幕上出现Workfile Range对话框,如图2-2所示。
图2-2图2-3图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。
输入数据有两种基本方法:命令方式和菜单方式。
1.命令方式命令格式:data 〈序列名1〉〈序列名2〉…〈序列名n〉功能:输入新变量的数据,或编辑工作文件中现有变量的数据。
在本例中,在命令窗口直接输入:Data Y X2.菜单方式在主菜单上单击Objects→New object,在New object对话框里,选Group并在Name for Object上定义变量名(如变量X、Y),单击OK,屏幕出现数据编辑框。
用eviews进行一元线性回归分析

用eviews进行一元线性回归分析LT目录一、引言 (1)(一)研究背景 (1)(二)研究意义 (1)二、研究综述 (2)(一)模型设定 (2)1.定义变量 (2)2.数据来源 (2)(二)作散点图 (3)三、估计参数 (4)(一)操作步骤 (4)(二)回归结果 (4)四、模型检验 (5)(一)经济意义检验 (5)(二)拟合优度和统计检验 (5)(三)回归预测 (5)五、结论 (5)参考文献: (6)一元回归分析居民收入与支出的关系一、引言(一)研究背景随着近年来我国成为世界第二大经济体,居民的高生活水平也日益显著。
我国人口正在高速城镇化,2011年中国大陆城镇人口为69079万人,城镇人口占总人口比重达到51.27%。
因此城镇居民作为消费主体,研究城镇居民人均可支配收入以及人均可支配消费性支出之间的关系,可以有效的了解到我国各地区的人民生活水平以及经济状况,因此能更好的的带动我国GDP的飙升,改善居民的生活水平。
(二)研究意义居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这要是人民生活水平的具体体现。
改革开饭以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2007年的城市居民家庭平均每人每年消费支出,最高的是上海市达人均20667.91元,最低的则是新疆,人均只有8871.27元,上海是新疆的2.33倍。
为了研究全国居民消费水平及其变动的原因,需要做具体的分析。
影响各地区居民消费指出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售业物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
Eviews 实验操作手册(部分)

Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。
②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。
相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。
个人感觉0.5左右的相关关系(趋势)就比较弱了。
eviews提供的相关计算是指序列之间的线性相关关系。
如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。
通常显著性是和建设检验关联的。
统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。
这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。
Eviews6.0线性回归

R2 k1
F1R2Tk
在原假设为误差正态分布下,统计量服从 F(k – 1 , T – k) 分布。
25
F统计量下的P值,即Prob(F-statistic), 是F检验的边际显 著性水平。如果P值小于所检验的边际显著水平,比如说 0.05,则拒绝所有系数都为零的原假设。注意F检验是一个 联合检验,即使所有的t统计量都是不显著的,F统计量也可 能是高度显著的。
变量名下;如果是使用公式法来说明方程,EViews会列出实际 系数 c(1), c(2), c(3) 等等。
对于所考虑的简单线性模型,系数是在其他变量保持不变
的情况下自变量对因变量的边际收益。系数 c 是回归中的常数 或者截距---它是当其他所有自变量都为零时预测的基本水平。 其他系数可以理解为假设所有其它变量都不变,相应的自变量
ARCH方法。 EViews计算R2 的公式为:
R21 uˆuˆ
, uˆyXb
(yy)(yy)
其中,uˆ是残差,y 是因变量的均值。
19
(2) R2 调整 使用R2 作为衡量工具存在的一个问题,即在增加新的自变 量时R2 不会减少。在极端的情况下,如果把样本观测值都作R 2为 自变量,总能得到R2 为1。
s uˆuˆ/(Tk)
(4)残差平方和 残差平方和可以用于很多统计计算中,为了方便,现在将 它单独列出:
T
uˆuˆ (yt Xtb)2 t1 21
(5) 对数似然函数值 EViews可以作出根据系数的估计值得到的对数似然函数 值(假设误差为正态分布)。似然比检验可通过观察方程严 格形式和不严格形式的对数似然值之间的差异来进行。 对数似然计算如下:
eviews实验报告一元线形回归模型

【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。
经验分享使用eviews做回归分析

[经验分享] 使用eview s做线性回归分析Glossa ry:ls(least square s)最小二乘法R-sequar ed样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaur ed()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criter ion赤池信息量(AIC)(越小说明模型越精确)Schwar z ctiter ion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statis t ic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同g dp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
回归分析实验1 Eviews基本操作及一元线性回归

第一部分EViews基本操作第一章预备知识一、什么是EViewsEViews (Econometric Views)软件是QMS(Quantitative Micro Software)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EViews具有现代Windows软件可视化操作的优良性。
可以使用鼠标对标准的Windows菜单和对话框进行操作。
操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。
EViews还拥有强大的命令功能和批处理语言功能。
在EViews的命令行中输入、编辑和执行命令。
在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。
EViews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包,是专门从事数据分析、回归分析和预测的工具,在科学数据分析与评价、金融分析、经济预测、销售预测和成本分析等领域应用非常广泛。
应用领域■ 应用经济计量学■ 总体经济的研究和预测■ 销售预测■ 财务分析■ 成本分析和预测■ 蒙特卡罗模拟■ 经济模型的估计和仿真■ 利率与外汇预测EViews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。
其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行T 检验、方差分析、协整检验、Granger 因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、ARCH 模型估计法等;(6)对选择模型进行Probit、Logit 和Gompit 估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换EViews可用于回归分析与预测(regression and forecasting)、时间序列(Time Series)以及横截面数据(cross-sectional data )分析。
多元线性回归eviews操作

一.模型设定本例中我们假设拟建立如下多元回归模型:01122Y X X u βββ=+++二.估计参数1.建立工作文件首先,进入Eviews 主页,在菜单中依次点击File\New\Workfile ,出现对话框Work Create 。
截面数据Unstructured/undated 只需输入样本数就可以。
时间序列数据Dated-regular frequency 在Date specification 中选择数据频率: Annual (年度) Weekly (周数据) Quarterly (季度)Daily (5 day week )每周5天日数据 Daily (7 day week )每周7天日数据 Monthly (月度) integer date (未注明日期或者不规则的) Semi Annual (半年度)其次,点击OK ,出现未命名文件的Workfile UNTITLED 工作框。
其中c 为截距项,resid 为残差项。
若要将文件存盘,点击save ,在save as 对话框中选择存盘路径,并输入文件名。
如多元线性回归案例2.输入数据方法一:Quick\Empty Group 等方法二:data Y X1 X2,得到如下表;3.估计参数方法一:Quick\Estimate Equation 方法二: LS Y C X1 X2三、解释表里参数标准差1β∧S =0.075308,回归标准差=被解释变量标准差=回归模型标准差:σ∧残差平方和:2i e ∑=4170093被解释变量的标准差:2=2388.459 AIC 和SC 准则:这两个准则要求仅当所增加的解释变量能减少AIC 值或SC 值时才在原模型中增加该解释变量。
与调整的可决系数相似。
多元小于一元,可以将前期人均居民消费作为解释变量包括在模型中。
四、模型检验1.经济意义检验估计的参数值都为正数,经济意义合理。
所估计的参数120.555644,0.250085ββ∧∧==,说明在2006年可支配收入不变的情况下,2005年消费支出每增加1元,平均来说,可导致2006年消费支出提高0.250085元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典线性回归模型经典回归模型在涉及到时间序列时,通常存在以下三个问题:1)非平稳性→ ADF单位根检验→ n阶单整→取原数据序列的n阶差分(化为平稳序列)2)序列相关性→D.W.检验/相关图/Q检验/LM检验→n阶自相关→自回归ar(p)模型修正3)多重共线性→相关系数矩阵→逐步回归修正注:以上三个问题中,前两个比较重要。
整体回归模型的思路:1)确定解释变量和被解释变量,找到相关数据。
数据选择的时候样本量最好多一点,做出来的模型结果也精确一些。
2)把EXCEL里的数据组导入到Eviews里。
3)对每个数据序列做ADF单位根检验。
4)对回归的数据组做序列相关性检验。
5)对所有解释变量做多重共线性检验。
6)根据上述结果,修正原先的回归模型。
7)进行模型回归,得到结论。
Eviews具体步骤和操作如下。
一、数据导入1)在EXCEL中输入数据,如下:除去第一行,一共2394个样本。
2)Eviews中创建数据库:File\new\workfile, 接下来就是这个界面(2394就是根据EXCEL里的样本数据来),OK3)建立子数据序列程序:Data x1再enter键就出来一个序列,空的,把EXCEL里对应的序列复制过来,一个子集就建立好了。
X1是回归方程中的一个解释变量,也可以取原来的名字,比如lnFDI,把方程中所有的解释变量、被解释变量都建立起子序列。
二、ADF单位根检验1)趋势。
打开一个子数据序列,先判断趋势:view\graph,出现一个界面,OK。
得到类似的图,下图就是有趋势的时间序列。
X1.4.2.0-.2-.4-.6-.8100020003000400050002)ADF检验。
直接在图形的界面上进行操作,view\unit root test,出现如下界面。
在第二个方框内根据时序的趋势选择,Intercept指截距,Trend为趋势,有趋势的时序选择第二个,OK,得到结果。
上述结果中,ADF值为-3.657113,t统计值小于5%,即拒绝原假设,故不存在单位根。
若大于5%,则存在单位根。
按照这个做法将所有的序列都操作一遍。
3)修正。
倘若原序列存在单位根,就对原序列进行一阶差分。
程序:genr dx1=D(x1)Enter键后,Eviews里会自动生成子序列dx1,x1只是解释变量,可以自己命名。
再对该一阶差分序列进行ADF检验,若所得均显著,即为一阶单整序列,此序列不存在单位根。
按照一阶单整序列建立模型,模型的数据序列是平稳的。
三、模型回归程序:data y x1 x2Y是模型的被解释变量,后面的解释变量随模型的具体情况而定。
Enter键,出来一个数据组合,我这里DX11做为被解释变量。
接下来是回归的操作。
点击Proc/make equation,出来界面,直接点确定。
其中,dx11是被解释变量,其余都为解释变量。
得到结果,形式如下。
结果说明:coefficient是每个解释变量对应的系数,第四列是t统计值,最后一列是伴随概率。
R-squared是拟合优度,下面那个是调整的拟合优度。
分析时遵循下列原则:<1>模型总体拟合优度R2,一般而言50%以上就很好。
这个说明的是方程解释变量总体对被解释变量的解释力度好,即你的模型建立的比较正确。
F值和此类似,判断方法和t统计值的一样,看伴随概率。
<2>系数。
看t值和伴随概率,如果伴随概率小于自己设定的显著性水平(1%、5%、10%),则拒绝原假设,说明该一个解释变量对被解释变量有显著的贡献度。
注:R2看的是整体(所有解释变量),t注重的是单个解释变量的贡献度。
四、序列相关性检验序列相关性指的是模型回归后产生的残差序列(resid序列)具有自相关性,即前一个时间段的残差对现今的残差有影响,因此需要进行修正。
方法有下列4种:D.W.统计量检验,相关图,Q检验,LM检验。
可随机选一种,但要注意:D.W.检验法方便但比较粗糙,而且只能针对一阶自回归,无法进行高阶自回归的验证和模型自带滞后项的验证。
LM检验能克服以上问题。
另外,相关图和Q检验也较常用。
1)D.W.检验——只针对一阶自相关DW值直接在模型回归结果中显示,下述红色值。
Sample (adjusted): 2 5957Included observations: 5956 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.DX1 0.963865 0.006527 147.6794 0.0000DX2 0.006964 0.001868 3.727361 0.0002DX3 0.002006 0.001365 1.469924 0.1416DX13 0.004876 0.001101 4.430584 0.0000DX4 0.024139 0.006576 3.670863 0.0002C 1.01E-06 4.96E-06 0.203737 0.8386R-squared 0.994890 Mean dependent var 6.02E-05Adjusted R-squared 0.994886 S.D. dependent var 0.005341S.E. of regression 0.000382 Akaike info criterion -12.90144Sum squared resid 0.000868 Schwarz criterion -12.89470Log likelihood 38426.50 Hannan-Quinn criter. -12.89910F-statistic 231679.7 Durbin-Watson stat 2.398212Prob(F-statistic) 0.0000002)相关图与Q检验在模型回归后的界面上进行操作,view\Residual Diagnostics\Correlogram-Q-statistics弹出对话框后直接OK,出现下述结果。
AC代表自相关系数,PAC表示偏自相关系数,判断模型是几阶自相关,看其AC和PAC 图形有多少超出区域,图中有临界值线,这张图不是很清楚。
也可以观察Q值和伴随概率,若小于5%就显著,拒绝原假设。
但是,这个方法在一些模型结果中不太明显,所以不清楚的时候进行LM检验比较直观。
3)LM统计量检验同样,在回归结果界面操作,view\Residual Diagnostics\Serial Correlation LM test 弹出对话框,意在选择阶数,在不确定具体是几阶自相关时,可以一步一步来。
这是一阶的检验,结果中会给出RESID(-1)的结果,且t统计值的伴随概率Prob小于5%,即拒绝原假设(不存在自相关性),说明该模型存在自相关性。
继续进行二阶的检验,重复上述操作,在对话框输入2,得到结果。
仍然拒绝假设,再进行操作,直到RESID(-n)的t值不显著。
当进行到6阶的时候,RESID(-6)的t值不显著,故该模型的自相关阶数为5阶。
4)修正。
对于自相关模型的修正,也有一系列方法,但是建立自回归模型ar(p)比较简单。
操作如下,在原模型数据组界面进行操作,即进行简单回归的界面。
点击Proc/make equation,出来界面,根据模型自相关阶数,进行修改如下。
在出来的结果中,可以看到模型的拟合优度R2有所提高,且模型的DW值接近2。
一般而言,DW值为2时说明该模型不存在自相关性。
(可与上面的结果比较)Dependent Variable: DX5Method: Least SquaresDate: 04/29/15 Time: 18:26Sample (adjusted): 7 5957Included observations: 5951 after adjustmentsConvergence achieved after 4 iterationsVariable Coefficient Std. Error t-Statistic Prob.DX1 0.960615 0.006150 156.1974 0.0000DX2 0.006804 0.001632 4.168534 0.0000DX3 0.002038 0.001244 1.638556 0.1014DX13 0.003691 0.000967 3.815573 0.0001DX4 0.028310 0.006244 4.533668 0.0000C 1.25E-06 2.96E-06 0.422018 0.6730AR(1) -0.249123 0.012972 -19.20470 0.0000AR(2) -0.196537 0.013365 -14.70575 0.0000AR(3) -0.084137 0.013549 -6.209773 0.0000AR(4) -0.048747 0.013350 -3.651427 0.0003AR(5) -0.041069 0.012971 -3.166196 0.0016R-squared 0.995270 Mean dependent var 6.04E-05Adjusted R-squared 0.995262 S.D. dependent var 0.005342S.E. of regression 0.000368 Akaike info criterion -12.97650Sum squared resid 0.000803 Schwarz criterion -12.96413Log likelihood 38622.56 Hannan-Quinn criter. -12.97220F-statistic 124979.4 Durbin-Watson stat 2.000095Prob(F-statistic) 0.000000Inverted AR Roots .32+.43i .32-.43i -.20+.50i -.20-.50i-.49这样回归出来的结果就自动进行了序列相关性的修正。
做分析结果时,直接按照上述结果的系数就可以,不存在系数不可信的问题。
五、多重共线性检验多变量的线性回归模型可能存在多重共线性问题,即模型的解释变量之间存在相关性,可通过相关系数矩阵进行检验。
1)相关系数矩阵建立解释变量的数据组,程序:data dx1 dx2 dx3 dx13 dx4Enter键,跳出数据组。
其中,dx1 dx2 dx3 dx13 dx4是我模型中的解释变量,其他模型视具体情况而定。
点击Quick\Group Statistics\Correlations在弹出的对话框内输入需要进行相关关系检验的解释变量:dx1 dx2 dx3 dx13 dx4,OK 在弹出的对话框中点击YES,出现结果。