低噪声功率放大器设计
低噪声放大器的设计

低噪声放大器的设计参数:低噪声放大器的中心频率选为2.4GHz,通带为8MHz通带内增益达到11.5dB,波纹小于0.7dB通带内的噪声系数小于3通带内绝对稳定通带内输入驻波比小于1.5通带内的输出驻波比小于2系统特性阻抗为50欧姆微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤:1.打开工程,命名为dzsamplifier。
2.新建设计,命名为dzsamplifier。
设置框如下:点击OK后,如下图。
模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。
3.在ADS元件库中选取晶体管。
单击原理图工具栏中的,打开元件库,然后单击,在搜索“32011”。
其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。
以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。
4.按照下图进行连接5.将参数扫描控制器中的【Start】项修改为Start=0.6.点击进行仿真,仿真结束后,数据显示窗自动弹出。
如下图:7.晶体管S参数扫描。
(1)重新新建一个新的原理图S_Params,进行S参数扫描。
如下图:点击OK后,出现:(2)在ADS元件库中选取晶体管。
单击原理图工具栏中的,打开元件库,然后单击,在搜索“32011”。
此处选择sp 开头的。
(3)以如图的形式连接。
(4)双击S参数仿真空间SP,将仿真控件修改如下。
(5)点击仿真按钮,进行仿真。
数据如下图所示:(6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图执行后:注意:晶体管参数指标如下:1.晶体管sp_hp_AT32011_5_1995105的频率范围为0.1GHz-5.1GHz,满足技术指标。
2.通带内噪声系数满足技术指标。
3.通带内增益不满足技术指标。
4.通带内输入驻波比不满足技术指标。
5.通带内输出驻波比不满足技术指标。
结论如下:1.频率范围和噪声系数满足技术指标,可以选取该晶体管。
《低噪声放大器设计》课件

采用线性化和稳定化技术,提高放 大器的线性度和稳定性。
低噪声放大器设计的案例分析
我们将分享几个具体的低噪声放大器设计案例,包括设计过程、技术方案和 实际效果分析,帮助您更好地理解和应用低噪声放大器设计。
结语
低噪声放大器设计是通信系统中重要的一环,通过深入研究和应用设计原理 和技巧,我们可以提高系统的性能和可靠性。感谢您的聆听!
《低噪声放大器设计》 PPT课件
噪声放大器设计是通信系统中关键的组成部分,为了提高系统的性能和可靠 性,我们需要深入了解低噪声放大器的设计原理和应用。本课件将介绍低噪 声放大器的基本概念、设计技巧和应用案例。
什么是低噪声放大ห้องสมุดไป่ตู้?
低噪声放大器是一种具有较高信号放大增益且噪声水平较低的放大器。它主 要用于在信号链的前端进行信号放大,从而提升整个系统的信噪比和灵敏度。
低噪声放大器具有宽 频带特性,适用于不 同频段的信号处理。
低噪声放大器的常见应用
无线通信
低噪声放大器在接收机和发射机中广泛应 用,提高通信质量和覆盖范围。
医疗设备
低噪声放大器在医学检测和成像设备中起 到关键作用,提高信号质量和可靠性。
传感器系统
低噪声放大器用于信号采集和处理,提高 传感器系统的灵敏度和精度。
卫星通信
低噪声放大器用于卫星通信系统,提供可 靠的信号接收和转发功能。
如何设计低噪声放大器?
1
放大器电路的优化设计
2
利用合适的电路结构和元件参数,
优化放大器的性能和噪声系数。
3
调试和测试技巧
4
合理调试和测试放大器的工作状态, 确保其性能和可靠性。
前端设计
选择合适的前端元件和电路拓扑, 降低系统的噪声输入。
低噪声放大器设计

低噪声放大器设计随着电子技术的不断发展,低噪声放大器(Low Noise Amplifier,简称LNA)在无线通信和微波领域的重要性不断提升。
低噪声放大器的主要作用是在前置放大器中放大微弱信号,同时将噪声压制到最小,以保证整个系统的性能。
低噪声放大器的噪声系数是衡量其性能的重要指标,通常用dB比值或者分贝数来表示,简称Nf。
低噪声放大器的设计要确保Nf足够低,才能在微弱信号中产生足够的增益且不引入过多的噪声。
因此,低噪声放大器的设计非常重要。
一、低噪声放大器设计的挑战在设计低噪声放大器时,需要面临几个挑战。
第一,如何处理噪声。
在放大器中,噪声来自于电阻、晶体管的温度、元器件的起伏等因素,噪声在传输信号时会被放大。
因此,设计低噪声放大器需要充分考虑噪声的来源,并采取合适的抑制措施,以保证系统的高效运作。
第二,如何改善热噪声。
热噪声是低噪声放大器中一个常见的问题,是由器件本身热引起的噪声。
为了减小热噪声,需要减小器件的温度,采用低噪声晶体管等高品质元器件来代替常规器件,并减小元器件之间的串扰。
第三,如何平衡增益和噪声。
低噪声放大器需要在增益和噪声之间进行权衡,在增益和噪声之间找到平衡点。
增加放大器的增益会对噪声产生影响,因此需要采用低失真、高效率的放大器设计来保证放大器的性能。
二、低噪声放大器的设计要点低噪声放大器的设计要点主要包括器件选择、电路结构、滤波器和匹配等。
器件选择是设计低噪声放大器时非常关键的一个方面,选择适当的低噪声、低电荷、高频率的晶体管材料,能提高系统的性能,也能减小噪声系数。
电路结构是设计低噪声放大器时的另外一个重要方面。
直接耦合放大器和共源放大器是常见的电路结构,其中直接耦合放大器简单、稳定,但增益和噪声系数会受到限制。
而共源放大器的增益和噪声系数的选择范围更大,但也更过程更为复杂。
此外,混频器的阻抗匹配和反馈网络设计也是设计低噪声放大器的重要方面。
滤波器也是设计低噪声放大器时需要重点考虑的方面之一。
MHz低噪声射频功率放大器的设计方案毕业设计方案开题报

毕业设计开题报告433MHz低噪声射频功率放大器的设计学院:班级:学生姓名:指导教师:职称:年月日433MHz低噪声射频功率放大器的设计一、研究的目的:低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。
低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。
前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。
对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大的动态范围。
随着工作频率升高,低噪声放大器却因为其强烈的非线性而要依赖非线性模型来预测其电性能,且电路设计的精度取决于非线性模型的准确度。
厂商一般都是给出某个的s参数值,对于那些不是常用的频段获取参数相当的困难。
因此选择合适的仿真软件对器件进行建模仿真变得非常重要。
同时,由于晶体管在高频工作时,受到寄生效应的影响,要保持低噪声放大器的稳定性就需要电路板布局合理、输入输出匹配之间的有效配置都是设计射频放大器的关键。
着手分析并解决这些问题,为以后开展更深一步的研究做好铺垫。
二、主要研究内容功率放大器设计指标:工作频率:433MHz接选用晶体管:AT41511;工作频率:433MH ±50MHz ;带宽:100MHz ;偏置电压:5 V ;增益:20dB ;噪声系数<1.输入输出驻波比<2输出功率:1W.低噪声放大器的主要技术指标是噪声系数和增益,这些是研究射频低噪声放大器的关键。
本文对此进行了一些研究,主要包括下面几个方面:1.射频电路的噪声系数二端口的噪声系数定义为二端口输入端的信噪比与输出端的信噪比:用符号/S N P P (或 S/N)表示。
放大器噪声系数是指放大器输入端信号噪声功率比/SI NI P P 与输出端信号噪声功率比/SO NO P P 的比值,以分贝数表示噪声系数: NF=101g(F)。
低噪声放大器毕业设计_西安电子科技大学

摘要随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商,的普遍追求,这就对系统的接收灵敏度提出了更高的要求,这就对处于接收机最前端的低噪声放大器提出更高的要求:低噪声,合适的增益,工作频段内的稳定性。
本文详细介绍使用ADS软件设计微波低噪声小信号放大器。
放大器选用安捷伦的ATF54143增强型伪高电子迁移率晶体管(E-pHEMT),其中工作频率范围在2010MHz~2025MHz。
本文先分析了一般低噪声放大器的基本结构和要求指标和设计原则。
再基于ATF54143晶体管初步设计匹配网络,偏置电路的,和解决不稳定性的方法。
最后通过ADS软件仿真设计优化好电路并绘制好PCB电路图,完成电路设计,并对电路进行调试和实际电路的测试。
各种测试结果表明,低噪声放大器性能良好。
关键词:低噪声放大器ATF54143ADS仿真阻抗匹配SMITH圆图射频(微波)AbstractWith the rapid development of communications industries, there is a variety of wireless communication tools have become more sophisticated requirements, small power radiation, the role of distance, large-scale coveragehas become the largest operator of wireless communications equipment as well as manufacturers, the general pursuit of this sensitivity of the system to receive a higher demand, which on most front-end receiver in the low-noise amplifier to higher requirements: low-noise, the appropriate gain, the stability of working frequency band.This paper describes the use of ADS software design of microwave low-noise small-signal amplifier. Selection of Agilent Technologies’s ATF-54143 amplifier transistor (E-pHEMT), Work in which frequency range 2010MHz ~ 2025MHz. This article first analyzes the general low-noise amplifier of the basic structure and requirements of indicators and design principles. Re-ATF54143 transistors based on the preliminary design of matching networks, bias circuits, and methods to resolve the instability. Finally, ADS software simulation through good circuit design optimization and a good PCB circuit diagram drawn to complete the circuit design and circuit debug and test the actual circuit. Various test results show that low-noise amplifier performance.Key words:low-noise amplifier ATF54143 ADS simulation SMITH Chart impedance matching RF (microwave)第一章绪论 (5)1.1 低噪声放大器 (5)1.1.1 概念 (5)1.1.2 主要功能 (5)1.1.3 主要应用领域 (6)1.2 低噪声放大器的研究现状 (6)1.3 本文的主要研究成果和内容安排 (7)第二章低噪声放大器的分析与研究 (9)2.1 低噪声放大器的基本结构 (9)2.2 低噪声放大器的基本指标 (9)2.2.1 噪声系数 (10)2.2.2 增益 (10)2.2.3 输入输出驻波比 (11)2.2.3 反射系数 (11)2.2.4 放大器的动态范围(IIP3) (11)2.3 低噪声放大器设计设计的基本原则 (12)2.3.1 低噪声放大管的选择原则 (12)2.3.2 输入输出匹配电路的设计原则 (12)第三章低噪声放大器的设计 (15)3.1 放大器设计的主要流程 (15)3.2 低噪声放大管的选择 (15)3.3 稳定性计算 (17)3.4 输入输出匹配电路电路设计 (18)3.5 偏置电路 (19)3.6 电路中需要注意的一些问题 (19)第四章ADS软件仿真设计及电路的最终实现 (21)4.1 ADS软件介绍 (21)4.2 ADS仿真设计 (23)4.2.1 S参数仿真 (23)4.2.2 SP模型仿真 (26)4.2.3 封装模型仿真 (39)4.3 ADS仿真设计结果分析 (46)第五章PCB板设计和最终电路的测试 (47)5.1 PCB板电路图 (47)5.1.1 Protel的介绍 (47)5.1.2 用Protel绘制PCB图 (47)5.2 电路焊接和测试结果 (49)第六章总结与展望 (52)6.1 本文总结 (52)6.2 不足与进一步的工作 (52)第七章结束语 (54)参考文献 (55)致谢 (56)附录A (57)第一章绪论1.1 低噪声放大器在无线通信系统中,为了提高接受信号的灵敏度,一般在接收机前端放置低噪声放大器用来提高增益并降低系统的噪声系数。
低噪声放大器的设计与实现

低噪声放大器的设计与实现低噪声放大器是一种特殊的放大器,它主要用于在频率范围内放大微小信号,且尽可能地减小噪声干扰。
在现代电子通信、无线网络、雷达等领域都有广泛的应用。
本文将介绍低噪声放大器的设计与实现,同时探讨一些常见的优化方法。
一、低噪声放大器的设计基本原理低噪声放大器的实现需要满足多个条件,如宽带、低噪声、高增益、稳定性等,这些条件相互制约,需要在设计时进行平衡考虑。
首先,低噪声放大器需要使用低噪声信号源作为输入,这样才能尽可能减少噪声产生的影响。
其次,为了达到高增益的要求,可以使用多级放大器来实现。
不过,每一级放大器都会引入一些噪声,因此需要对每一级放大器进行优化,以达到低噪声的目标。
低噪声放大器的设计还要满足传输线和匹配网络的要求。
传输线的设计需要尽可能减少传输线的损耗和噪声,同时匹配网络的设计则需要将输出端的负载和输入端的驱动电路匹配,以保证信号传输的最大功率。
二、低噪声放大器的实现方法低噪声放大器的实现方法有很多种,这里我们介绍一种常用的方法:差分放大器。
差分放大器是一种基于差分放大器电路结构而形成的放大器,它有两个输入,每个输入通过独立放大的电路,输出相减。
差分放大器可以通过噪声消除的方式减少输入信号中的噪声干扰,同时也可以增加信号的线性范围和热稳定性。
差分放大器的实现需要使用两个宽带放大器,一个用于正向增益,一个用于反转增益。
为了保证放大器的相位稳定性和增益平衡,需要使用一些调节网络和补偿电路。
其中,调节网络可以在信号到达输入端时调整放大器的增益,从而保证放大器的线性度。
而补偿电路则可以减少放大器中信号反馈的影响,提高放大器的稳定性。
三、低噪声放大器的优化方法在低噪声放大器的设计中,需要综合考虑多种因素,如噪声、增益、速度、频率响应等。
针对这些因素,有几种常用的优化方法可以帮助提高低噪声放大器的性能。
1. 选择适当的放大器器件放大器的选型是影响低噪声放大器性能的重要因素。
选择合适的放大器器件可以大大提高低噪声放大器的增益和灵敏度。
关于低噪声放大器的设计详细剖析

关于低噪声放大器的设计详细剖析在整个接收系统中,低噪声放大器总是处于前端的位置。
整个接收系统的噪声取决于低噪声放大器的噪声。
与普通放大器相比,低噪声放大器一方面可以减小系统的杂波干扰,提高系统的灵敏度;另一方面放大系统的信号,保证系统工作的正常运行。
总之,低噪声放大器的性能不仅制约了整个接收系统的性能,而且,对于整个接收系统技术水平的提高,也起了决定性的作用。
1 低噪声放大器的设计指标低噪声放大器的主要性能指标包括:稳定性、功率增益、噪声系数、增益平坦度等,在这些指标之中噪声系数和放大增益对系统性能的影响较大。
因此对低噪声放大器的设计主要从稳定性、功率增益、噪声系数、输入输出电压驻波比等方面进行考虑。
1.1 稳定性放大器电路必须满足的首要条件之一是其在工作频段内的稳定性。
因为假如在设计和制造放大器时不谨慎从事,在微波频率上一些不可避免的寄生因素往往足以引起振荡。
所以为了保证电路的稳定性,主要采取以下措施:1)可以在源极引入负反馈,使电路处于稳定状态;2)采用铁氧体隔离器能稳定电路;3)在漏极串联电阻或∏型阻性衰减器,通常接在低噪声放大器末级或末前级输出口。
而目前提高电路稳定性常用的是引入负反馈。
1.2 功率增益以及增益平坦度放大电路的增益是放大电路最重要性能指标,也是设计放大电路的一个基本参数。
因此在放大器的设计中增益指标的完成很是重要,功率增益主要有3种描述方式:可用功率增益GA,工作功率增益GP,转换功率增益GT。
增益平坦度对于低噪声放大电路来说,就是全频带范围内增益变化要平缓,不允许增益变化陡变。
1.3 噪声系数噪声系数是LNA的另一重要指标,如果接收系统噪声系数过大,信号会被噪声埋没,致。
低噪声放大器设计

低噪声放大器设计1. 引言本文档旨在讨论低噪声放大器的设计。
低噪声放大器在电子电路中起着重要的作用,可以提供高增益而又尽可能降低输入信号的噪声。
因此,低噪声放大器在无线通信、雷达系统和敏感测量等领域中得到广泛应用。
2. 设计原则低噪声放大器的设计应遵循以下原则:2.1 最小化噪声系数噪声系数是衡量放大器噪声性能的重要指标。
因此,在设计过程中应采取措施最小化噪声系数,例如使用低噪声元件、优化电路布局以降低噪声等。
2.2 选择合适的放大器拓扑结构不同的放大器拓扑结构具有不同的性能特点。
根据具体应用需求,选择合适的拓扑结构可以提高低噪声放大器的性能。
2.3 优化功率匹配功率匹配是低噪声放大器设计中的一个重要考虑因素。
通过优化功率匹配,可以提高放大器的效率和性能。
3. 设计步骤以下是一个简单的低噪声放大器设计的步骤:3.1 确定应用需求和规格首先,确定放大器的应用需求和规格。
这包括增益要求、频率范围、输入输出阻抗等。
3.2 选择合适的放大器拓扑结构根据应用需求,选择合适的放大器拓扑结构,例如共源放大器、共栅放大器等。
3.3 选取适当的元件选择适当的元件来实现放大器的设计。
对于低噪声放大器,应选择具有低噪声特性的元件,如低噪声晶体管等。
3.4 进行电路模拟和优化使用电路模拟工具进行低噪声放大器的电路设计和仿真。
通过不断优化电路参数,以满足设计需求和要求。
3.5 PCB设计和布局进行PCB设计和布局,优化电路的布局和连接,减少噪声干扰和信号损耗。
3.6 制造和测试根据设计要求,制造和测试低噪声放大器。
进行性能测试和验证。
4. 结论低噪声放大器设计是一个复杂而重要的工作,它需要综合考虑多个因素和技术。
本文档介绍了低噪声放大器设计的一般原则和步骤,希望能为读者提供一些参考和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波电子线路大作业——低噪声功率放大器设计班级:021013班学号:02011268姓名:低噪声放大器的设计一、设计要求:已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为S11=∠-60°,S21=∠81°,S12=∠26°,S22=∠-60°Fmin= dB Γout=∠100°RN=20 Ω设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。
若按单向化进行设计,则计算GT 的最大误差。
二、低噪声放大器设计原理及思路低噪声放大器功能概述低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。
低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。
低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数放大器工作组态分类A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。
B 类(导通角180度,最大理论效率%)和C 类(导通角小于180度,最大理论效率大于% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出D 类、E 类、P 类等放大器。
min114(dBm/Hz)NF 10log BW(MHz)/(dB)S S N =-+++32111212111n tot A A A A A AnF F F F FG G G G G G ---=++++放大器常用元器件①两端负阻的二极管器件变容二极管:参量放大隧道二极管:隧道效应耿氏二极管:转移电子碰撞雪崩渡越时间二极管:雪崩渡越时间特点:应用于放大器电路的早期器件,制造比较容易、便宜,但是两端口器件实现增益的相关电路价格确比较昂贵,且稳定性较差,调试工作困难。
②三端的晶体管器件双极晶体管(BJT)金属半导体场效应管(MESFET)拟晶态高电子迁移率晶体管(PHEMT)异质结晶体管(HBT)放大器的技术参数(1)频率范围:放大器的工作频率范围是选择器件和电路拓扑设计的前提。
(2)增益:它是放大器的基本指标。
按照增益可确定放大器的级数和器件类型。
实际功率增益:负载吸收功率与二端口网络输入端吸收功率之比,与源阻抗无关,与负载阻抗有关 ;资用功率增益:二端口网络输入资用功率与输出资用功率之比,源端和负载端均共扼匹配,与源阻抗有关,与负载阻抗无关。
它表示放大器增益的最大潜力;转换功率增益:负载吸收功率与二端口网络输入端的资用功率之比,与两端阻抗都有关。
实际增益测量时,常用插入法,即用功率计先测信号源能给出的功率P1;再把放大器接到信源上,用同一功率计测放大器输出功率P2,功率增益就是低噪声放大器都是按照噪声最佳匹配进行设计的。
噪声最佳匹配点并非最大增益点,因此增益G 要下降。
噪声最佳匹配情况下的增益称为相关增益。
通常,相关增益比最大增益大概低2-4dB 。
(3) 噪声系数放大器的噪声系数是输入信号的信噪比与输出信号的信噪比的比值,表示信号经过放大器后信号质量的变坏程度。
级联网络中,越靠前端的元件对整个噪声系数的影响越大,在接收前端:必须做低噪声设计。
放大器的设计要远离不稳定区。
噪声的好坏主要取决于器件和电路设计。
(4)动态范围放大器的线性工作范围。
最小输入功率为接收灵敏度,最大输入功率是引起1dB 压缩的功率。
放大器自身产生的噪声常用等效噪声温度Te 来表达。
噪声温度Te 与噪声系数F 的关系是 。
式中T0为环境温度,通常取为293K 。
根据公式,可以计算出常用的噪声系数和与之对应的噪声温度。
(5)非线性特性常用三阶交调截点P3rd 来表征放大器电路的非线性特性,三阶交调截点的典型值比P1dB 高10dB 。
(6)稳定性放大器电路的首要条件之一是其在工作频段内的严格稳定性,这一点对微波射频电路是非常重要的,因为射频电路在某些工作频率和终端条件下有产生振荡的倾向。
当放大器的输入和输出端的反射系数的模都小于1时,不管源阻抗和负载阻抗如何,网络都是稳定的,称为绝对稳定;当输入端或输出端的反射系数的模大于1时,网络是不稳定的,称为条件稳定。
对条件稳定的放大器,其负载阻抗和源阻抗不能任意选择,而是有一定的范围,否则放大器不能稳定工作。
定义:12P P G =0(1)e T T F =⋅-211211112S S S suficient ⋅--=211222122S S S suficient ⋅--=211222112221122111222S S S S S S S S necessary ⋅⋅-⋅+--=放大器在гS 输入平面上绝对稳定的充分必要条件为放大器在гL 输入平面上绝对稳定的充分必要条件为低噪声放大器特性分析1、增益与负载有关,输入输出匹配时输出增益最大如果输入匹配电路和输出匹配电路使微波器件的输入阻抗Z in 和输出阻抗Z out 都转换到标准系统阻抗Z 0,即Z in = Z 0, Z out = Z 0(或S = 1*,L = 2*)就可使器件的传输增益最高。
2、输入、输出匹配时,噪声并非最佳。
相反有一定失配,才能实现噪声最佳。
对于MES FET (金属半导体场效应晶体管)来说,其内部噪声源包括热噪声、闪烁噪声和沟道噪声。
这几类噪声是相互影响的,综合结果可归纳为本征FET 栅极端口的栅极感应噪声和漏极端口的漏极哭声两个等效噪声源。
这两个等效噪声源也是相关的,如果FET 输入口(即P 1面)有一定的失配,这样就可以调整栅极感应噪声和漏极噪声之间的相位关系,使它们在输出端口上相互抵消,从而降低了噪声系数。
对于双极型晶体管也存在同样机理。
根据分析,为获得最小的FET 本征噪声,从FET 输入口P 1面向信源方向视入的反射系数有一个最佳值,用out 表示。
当改变输入匹配电路使呈现S=out此时,放大器具有最小噪声系数Fmin ,称为最佳噪声匹配状态。
输入、输出不匹配时,增益将下降。
因为负载是复数,有可能在不同的负载下得到相同的输出,经分析在圆图上,等增益线为一圆,这个圆叫等增益圆。
输入匹配电路输出匹配电路微波器件[S]P3P1P2P4a1a2b1b20Z 0Γ1Γs LZ in Z out Zs Z L 11>>necessary suficient 102>>necessary suficient当输入匹配电路不能使信源反射系数S 和最佳反射系数opt (噪声系数最小时的反射系数)相等时,放大器噪声将增大。
由于S 是复数,不同的S值有可能得到相同的噪声系数,在圆图上噪声系数等值线为一圆,叫等噪声圆。
等噪声圆、等增益圆是我们设计输入输出匹配电路,尤其输入匹配电路的依据。
低噪声放大器的设计原则在优先满足噪声小的前提下,提高电路增益,即根据输入等增益圆、等噪声圆,选取合适的S ,作为输入匹配电路设计依据。
输出匹配电路设计以提高放大器增益为主, 满足稳定性条件 : out = Z0 ( L = 2*)结构工艺上易实现 低噪声放大器的设计流程:三、低噪声放大器设计过程放大器设计软件平台:AWR Design Environment。
设计步骤:①创建原理图;·本电路根据所给的指标参数,选择的元器件是富士FHX35LG;(富士FHX35LG的各项指标见附录)②选择元器件富士FHX35LG,导入数据文件,测量元器件的各项指标;a、IV特性测量电路b、IV特性c、FHX35LG的输入输出特性由上图分析可知:S12特别小,应该进行单向化设计。
d、增益参数e、噪声系数由图知:K=1,f=③创建稳态电路测量稳态下各项参数;a、稳态电路图b、稳定调节参数:(使用优化)c、稳态调节后输入特性与加稳定电路之前特性相比,可以看出反射系数减小,稳定度提高。
d 、稳定后的噪声系数由第二个图可以看出,K =1时,f大概在4GHz左右。
e、噪声系数圆图蓝色区域为潜在不稳定区域,由图可以看出,潜在不稳定区域较小。
④输入匹配电路设计;a 、输入匹配电路b、输入匹配电路参数设置使用软件自带的调谐工具调整后结果C 、输入匹配圆图图中制作Mark的地方为4GHz,输入匹配成功。
⑤输出匹配电路设计a、输出匹配电路b、总电路C、总电路特性噪声在4GHz处得到抑制,噪声系数为;d、单向化设计输出功率四、附件! 4/90! FHX35LG! @3V-10mA! .1GHZ 20GHZ 22# GHZ S MA R 50! S-parameter data.100 .996 .002 .516 .500 .994 .012 .517 .982 .023 .513.950 .043 .498.912 .059 .483.867 .071 .462.821 .079 .446.783 .085 .439.757 .087 .441.738 .088 .452.726 .090 .468.707 .092 .480.680 .090 .494.654 .090 .503.638 .091 .514.626 .093 .537.607 .094 .559.565 .097 .564.528 .102 .567.484 .109 .572.421 .116 .581 .380 .127 .547 ! Noise data 4/902 .81 .584 .74 .426 .69 .308 .64 .2010 .60 .1212 .56 .0814 .53 .0816 .50 .1018 .48 .14。