2019-2020年九年级数学试卷答案
2019-2020年临沂市河东区九年级上册期末数学试卷(有答案)-优质版

山东省临沂市河东区九年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形 C.正五边形D.圆2.(3分)若1﹣是方程2﹣2+c=0的一个根,则c的值为()A.﹣2 B.4﹣2 C.3﹣D.1+3.(3分)在平面直角坐标系中,将抛物线y=32先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(+1)2+2 B.y=3(+1)2﹣2 C.y=3(﹣1)2+2 D.y=3(﹣1)2﹣24.(3分)对于二次函数y=﹣+﹣4,下列说法正确的是()A.当>0时,y随的增大而增大B.当=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与轴有两个交点5.(3分)已知反比例函数图象上三个点的坐标分别是A(﹣2,y1)、B(﹣1,y2)、C(2,y3),能正确反映y1、y2、y3的大小关系的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y2>y3>y16.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135°B.100°C.110°D.120°7.(3分)如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A.B.πC.2π D.4π8.(3分)定义表示不超过实数的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=的图象如图所示,则方程=2的解为()A.0或 B.0或2 C.1或D.或﹣9.(3分)如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC 的中点,则△DEF与△ABC的面积比是()A.1:6 B.1:5 C.1:4 D.1:210.(3分)临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B 处,观察由东向西的动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.30011.(3分)标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:下列结论:①标枪距离地面的最大高度为20m;②标枪飞行路线的对称轴是直线t=;③标枪被掷出9s时落地;④标枪被掷出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.412.(3分)如图,已知双曲线y=(<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.413.(3分)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则cos∠PAP'的值为等于()A.B.C.D.14.(3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=,BD=y,则y关于的函数图象大致是()A. B.C.D.二、填空题(5小题,每小题3分,共15分)15.(3分)计算:2(cos45°﹣tan60°)= .16.(3分)如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 m .17.(3分)如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为 .18.(3分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .19.(3分)如图是二次函数y=a 2+b+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线=﹣1,给出以下结论: ①abc <0 ②b 2﹣4ac >0 ③4b+c <0④若B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2 ⑤当﹣3≤≤1时,y ≥0,其中正确的结论是(填写代表正确结论的序号) .三、解答题(本大题共6小题,共63分)(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设20.矩形一边长为,面积为S平方米.(1)求S与之间的函数关系式,并写出自变量的取值范围;(2)设计费能达到24000元吗?如果能请求出此时的边长,如果不能请说明理由;(3)当是多少米时,设计费最多?最多是多少元?21.(10分)如图,在平面直角坐标系中,反比例函数y=和一次函数y=(﹣2)的图象交点为A(3,2),B(,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.22.(10分)已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.(1)求∠CDB的度数;(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.23.(10分)如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.(1)求单摆的长度;(2)求从点A摆动到点B经过的路径长.24.(11分)如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转α(0°<α<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H;(ⅰ)求证:BD⊥CF;(ⅱ)当AB=2,AD=3时,求线段DH的长.25.(12分)如图,直线y=﹣+3与轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=2+b+c 与轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.山东省临沂市河东区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形 C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.2.(3分)若1﹣是方程2﹣2+c=0的一个根,则c的值为()A.﹣2 B.4﹣2 C.3﹣D.1+【解答】解:∵关于的方程2﹣2+c=0的一个根是1﹣,∴(1﹣)2﹣2(1﹣)+c=0,解得,c=﹣2.故选:A.3.(3分)在平面直角坐标系中,将抛物线y=32先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(+1)2+2 B.y=3(+1)2﹣2 C.y=3(﹣1)2+2 D.y=3(﹣1)2﹣2【解答】解:∵抛物线y=32的对称轴为直线=0,顶点坐标为(0,0),∴抛物线y=32向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(﹣1)2+2.故选:C.4.(3分)对于二次函数y=﹣+﹣4,下列说法正确的是()A.当>0时,y随的增大而增大B.当=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与轴有两个交点【解答】解:∵二次函数y=﹣+﹣4可化为y=﹣(﹣2)2﹣3,又∵a=﹣<0∴当=2时,二次函数y=﹣2+﹣4的最大值为﹣3.故选:B.5.(3分)已知反比例函数图象上三个点的坐标分别是A(﹣2,y1)、B(﹣1,y2)、C(2,y3),能正确反映y1、y2、y3的大小关系的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y2>y3>y1【解答】解:当=﹣2时,y1=﹣=3.5;当=﹣1时,y2=﹣=7;当=2时,y3=﹣=﹣3.5.∴y2>y1>y3.故选:C.6.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135°B.100°C.110°D.120°【解答】解:∵∠ACB=a∴优弧所对的圆心角为2a∴2a+a=360°∴a=120°.故选:D.7.(3分)如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A.B.πC.2π D.4π【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=,故S△OCE =S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠ABD=60°,∴∠CDB=30°,∴∠COB=60°,∴OC=2,∴S扇形OBD==,即阴影部分的面积为.故选:A.8.(3分)定义表示不超过实数的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=的图象如图所示,则方程=2的解为()A.0或 B.0或2 C.1或D.或﹣【解答】解:当1≤<2时, 2=1,解得1=,2=﹣(舍去);当0≤<1时, 2=0,解得=0;当﹣1≤<0时, 2=﹣1,方程没有实数解;当﹣2≤<﹣1时, 2=﹣2,方程没有实数解;所以方程= 2的解为0或.故选:A .9.(3分)如图,△DEF 与△ABC 是位似图形,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:6B .1:5C .1:4D .1:2【解答】解:∵△DEF 与△ABC 是位似图形,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,∴两图形的位似之比为1:2, 则△DEF 与△ABC 的面积比是1:4. 故选:C .10.(3分)临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B 处,观察由东向西的动车,当动车车头在A 处时,恰好位于B 处的北偏东60°方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(+1)B .20(﹣1)C .200D .300【解答】解:作BD ⊥AC 于点D .∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.11.(3分)标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:下列结论:①标枪距离地面的最大高度为20m;②标枪飞行路线的对称轴是直线t=;③标枪被掷出9s时落地;④标枪被掷出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴标枪距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,h=0,∴标枪被掷出9s时落地,故③正确,∵t=1.5时,h=11.25,故④错误.∴正确的有②③,故选:B.12.(3分)如图,已知双曲线y=(<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴=﹣3×2=﹣6,∴△BOC的面积=||=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.13.(3分)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则cos∠PAP'的值为等于()A.B.C.D.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA(SAS),∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴cos∠PAP′===.故选:A.14.(3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=,BD=y,则y关于的函数图象大致是()A. B.C.D.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=,BD=y,∴:4=y:(4﹣),∴y=﹣2+.故选:C.二、填空题(5小题,每小题3分,共15分)15.(3分)计算:2(cos45°﹣tan60°)= 2﹣2.【解答】解:原式=2(﹣)=2﹣2,故答案为:2﹣2.16.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 3 m.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m.答:路灯的高为3m.17.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.18.(3分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【解答】解:方法一:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.方法二:连接AM、NL,在△CAH中,AC=AH,则AM⊥CH,同理,在△MNH中,NM=NH,则NL⊥MH,∴∠AMO=∠NLO=90°,∵∠AOM=∠NOL,∴△AOM∽△NOL,∴,设图中每个小正方形的边长为a,则AM=2a,NL=a,∴=2,∴,∴,∵NL=LM,∴,∴tan∠BOD=tan∠NOL==3,故答案为:3.方法三:连接AE、EF,如右图所示,则AE∥CD,∴∠FAE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△FAE是直角三角形,∠FEA=90°,∴tan∠FAE=,即tan∠BOD=3,故答案为:3.19.(3分)如图是二次函数y=a 2+b+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线=﹣1,给出以下结论: ①abc <0 ②b 2﹣4ac >0 ③4b+c <0④若B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2 ⑤当﹣3≤≤1时,y ≥0,其中正确的结论是(填写代表正确结论的序号) ②③⑤ .【解答】解:由图象可知,a <0,b <0,c >0, ∴abc >0,故①错误. ∵抛物线与轴有两个交点, ∴b 2﹣4ac >0,故②正确.∵抛物线对称轴为=﹣1,与轴交于A (﹣3,0), ∴抛物线与轴的另一个交点为(1,0), ∴a+b+c=0,﹣=﹣1,∴b=2a ,c=﹣3a ,∴4b+c=8a ﹣3a=5a <0,故③正确.∵B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点, 又点C 离对称轴近, ∴y 1,<y 2,故④错误,由图象可知,﹣3≤≤1时,y ≥0,故⑤正确. ∴②③⑤正确, 故答案为②③⑤.三、解答题(本大题共6小题,共63分)20.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为,面积为S 平方米.(1)求S 与之间的函数关系式,并写出自变量的取值范围;(2)设计费能达到24000元吗?如果能请求出此时的边长,如果不能请说明理由; (3)当是多少米时,设计费最多?最多是多少元? 【解答】解:(1)∵矩形的一边为米,周长为16米, ∴另一边长为(8﹣)米,∴S=(8﹣)=﹣2+8,其中0<<8, 即S=﹣2+8(0<<8);(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即:﹣2+8=12,解得:=2或=6,∴设计费能达到24000元.(3)∵S=﹣2+8=﹣(﹣4)2+16,∴当=4时,S最大值=16,∴当=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.21.(10分)如图,在平面直角坐标系中,反比例函数y=和一次函数y=(﹣2)的图象交点为A(3,2),B(,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【解答】解:(1)∵点A(3,2)在反比例函数y=和一次函数y=(﹣2)的图象上;∴2=,2=(3﹣2),解得m=6,=2;∴反比例函数解析式为y=,一次函数解析式为y=2﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2﹣4,解得1=3,2=﹣1;∴B点的坐标为(﹣1,﹣6);(2)∵点M 是一次函数y=2﹣4与y 轴的交点,∴点M 的坐标为(0,﹣4),设C 点的坐标为(0,y c ),由题意知×3×|y c ﹣(﹣4)|+×1×|y c ﹣(﹣4)|=10, 解得|y c +4|=5,当y c +4≥0时,y c +4=5,解得y c =1,当y c +4≤0时,y c +4=﹣5,解得y c =﹣9,∴点C 的坐标为(0,1)或(0,﹣9).22.(10分)已知△ABC 内接于以AB 为直径的⊙O ,过点C 作⊙O 的切线交BA 的延长线于点D ,且DA :AB=1:2.(1)求∠CDB 的度数;(2)在切线DC 上截取CE=CD ,连接EB ,判断直线EB 与⊙O 的位置关系,并证明.【解答】解:(1)连接OC ,∵CD 是⊙O 的切线,∴∠OCD=90°.设⊙O 的半径为R ,则AB=2R ,∵DA :AB=1:2,∴DA=R ,DO=2R .∴A 为DO 的中点,∴AC=DO=R,∴AC=CO=AO,∴三角形ACO为等边三角形∴∠COD=60°,即∠CDB=30°.(2)直线EB与⊙O相切.证明:连接OC,由(1)可知∠CDO=30°,∴∠COD=60°.∵OC=OB,∴∠OBC=∠OCB=30°.∴∠CBD=∠CDB.∴CD=CB.∵CD是⊙O的切线,∴∠OCE=90°.∴∠ECB=60°.又∵CD=CE,∴CB=CE.∴△CBE为等边三角形.∴∠EBA=∠EBC+∠CBD=90°.∴EB是⊙O的切线.23.(10分)如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.(1)求单摆的长度;(2)求从点A摆动到点B经过的路径长.【解答】解:(1)如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°、∠FOB=60°,且OC⊥EF,∴∠AOP=60°、∠BOQ=30°,设OA=OB=,则在Rt△AOP中,OP=OAcos∠AOP=,在Rt△BOQ中,OQ=OBcos∠BOQ=,由PQ=OQ﹣OP可得﹣=7,解得:=7+7cm,答:单摆的长度为7+7cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+7,∴∠AOB=90°,则从点A摆动到点B经过的路径长为,答:从点A摆动到点B经过的路径长为cm.24.(11分)如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转α(0°<α<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H;(ⅰ)求证:BD⊥CF;(ⅱ)当AB=2,AD=3时,求线段DH的长.【解答】解:(1)BD=CF.理由如下:由题意得,∠CAF=∠BAD=α,在△CAF和△BAD中,,∴△CAF≌△BAD,∴BD=CF.(2)(ⅰ)由(1)得△CAF≌△BAD,∴∠CFA=∠BDA,∵∠FNH=∠DNA,∠DNA+∠NAD=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD⊥CF.(ⅱ)连接DF,延长AB交DF于M,∵四边形ADEF是正方形,AD=3,AB=2,∴AM=DM=3,BM=AM﹣AB=1,DB==,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴=,即=,解得,DH=.25.(12分)如图,直线y=﹣+3与轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=2+b+c 与轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣+3与轴、y轴分别交于点B、点C,令=0,得y=3,∴C(0,3),令y=0,得=3,∴B(3,0),∵经过B、C两点的抛物线y=2+b+c∴,解得,∴抛物线解析式为y=2﹣4+3;(2)由(1),得A(1,0),连接BP,∵∠CBA=∠ABP=45°,∵抛物线解析式为y=2﹣4+3;∴P(2,﹣1),∵A(1,0),B(3,0),C(0,3),∴BA=2,BC=3,BP=,当△ABC∽△PBQ时,∴,∴,∴BQ=3,∴Q(0,0),当△ABC∽△QBP时,∴,∴,∴BQ=,∴Q(,0),∴Q点的坐标为(0,0)或(,0).。
2019--2020学年第一学期期末考试试卷及答案

2019-—2020学年第一学期期末考试试卷九年级 数学一.选择题:(本大题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请将正确选项的代号填在左边的括号里. 1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程中是一元二次方程的是( )A .B .C .D .3.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性 4 已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47->k B .047≠-≥k k 且 C .47-≥k D .047≠->k k 且 5.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .106.如图,点O 为优弧ACB 所在圆的圆心,AOC 108∠=,点D 在AB 的延长线上,BD BC =,则D ∠= . A .540 B . 720 C . 270 D . 3007.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,下列结论正确的是( )A 不等式ax 2+bx+c <0的解集是X>3或X<-1 B 不等式ax 2+bx+c <0的解集是-1<X<3 012=+x 12=+x y 012=+x 0122=++x xDB A O8.已知实数a ,b 分别满足,,且,则的值是( )A . 11B . -7C . 7D . -119.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A. 4πB. 3πC. 2πD. 2π10. 已知二次函数()的图象如图所示,有下列4个结论:①②;③;④;其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题:(本题共8小题;每小题4分,共32分,不需写解答过程,请把结果填在横线上。
2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【解答】解:∵(﹣5)=0∴2﹣5=0,∴方程(﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程2+2+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD =70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣2﹣2+c转化成顶点坐标式为y=﹣(+1)2+c+1,又知二次函数的开口向下,对称轴为=﹣1,故当=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是4.【解答】解:把=2代入方程2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(+2)2﹣1.【解答】解:由“左加右减”的原则可知,二次函数y=22的图象向下平移1个单位得到y=22﹣1,由“上加下减”的原则可知,将二次函数y=22﹣1的图象向左平移2个单位可得到函数y=2(+2)2﹣1,故答案是:y=2(+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是2﹣6+4=0.【解答】解:设雕像的上部高m,则题意得:,整理得:2﹣6+4=0,故答案为:2﹣6+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=27°时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴=,∴1=,2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移2个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣+;(2)根据题意,得:(﹣+)=384,解得:=18或=32,∵墙的长度为24m,∴=18;(3)设菜园的面积是S,则S=(﹣+)=﹣2+=﹣(﹣25)2+∵﹣<0,∴当<25时,S随的增大而增大,∵≤24,∴当=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=,则AE=2,AH=,∵AE=EC,∴AC=2AH=2,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2,∴DC=CE=2,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣2+2+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=+b的图象l经过抛物线上的点C(m,n),∴3+b=0,∴b=﹣3,∴一次函数的解析式为y=﹣3,∵直线l与抛物线只有一个公共点,∴方程﹣3=﹣2+2+3有两个相等的实数根,∴(﹣2)2+4(3+3)=0,解得=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。
四川省眉山市仁寿县2019-2020年九年级(上)期末数学试卷 解析版

2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣22.下列计算正确的是()A.B.C.÷D.3.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 4.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.45.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:16.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.B.C.D.7.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.38.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5)B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小D.图象与x轴的两个交点之间的距离为59.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A.B.1 C.D.10.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%11.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣2 12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1 B.2 C.3 D.4二.填空题(共6小题)13.方程x2=x的解是.14.已知:a,b在数轴上的位置如图所示,化简代数式:=.15.如图,在△ABC中,AB>AC,D、E分别为边AB、AC上的一点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件使△FDB与△ADE相似,则添加的一个条件是.16.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为米.17.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为.三.解答题(共8小题)19.计算:20.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?21.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF =∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.22.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.23.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)24.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?25.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.26.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC,若存在,请求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣2【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:x+2≥0,∴x≥﹣2,故选:A.2.下列计算正确的是()A.B.C.÷D.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【解答】解:A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.3.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 【分析】方程有实数根,则根的判别式△≥0,且二次项系数不为零.【解答】解:∵△=b2﹣4ac=22﹣4×k×(﹣1)≥0,解上式得,k≥﹣1,∵二次项系数k≠0,∴k≥﹣1且k≠0.故选:D.4.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.4【分析】根据三角形中位线定理和三角形的面积即可得到结论.【解答】解:∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.5.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:1【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.6.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.B.C.D.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【解答】解:设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.7.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.3【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.8.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5)B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小D.图象与x轴的两个交点之间的距离为5【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【解答】解:A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.9.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A.B.1 C.D.【分析】连接BC,由勾股定理得AC2=BC2=12+22=5,AB2=12+32=10,则AC=BC,AC2+BC2=AB2,得出△ABC是等腰直角三角形,则∠BAC=45°,即可得出结果.【解答】解:连接BC,如图3所示;由勾股定理得:AC2=BC2=12+22=5,AB2=12+32=10,∴AC=BC,AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠BAC=45°,∴sin∠BAC=,故选:A.10.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%【分析】设平均每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设平均每次降价的百分率为x,依题意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.11.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣2 【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故选:C.12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH •PC;④FE:BC=,其中正确的个数为()A.1 B.2 C.3 D.4【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF﹣BC=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.二.填空题(共6小题)13.方程x2=x的解是x1=0,x2=1 .【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.已知:a,b在数轴上的位置如图所示,化简代数式:=2 .【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【解答】解:原式=|a﹣1|﹣|a+b|+|1﹣b|,=1﹣a﹣(﹣a﹣b)+(1﹣b),=1﹣a+a+b+1﹣b,=2,故答案为:2.15.如图,在△ABC中,AB>AC,D、E分别为边AB、AC上的一点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件使△FDB与△ADE相似,则添加的一个条件是DF∥AC,或∠BFD=∠A.【分析】结论:DF∥AC,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可.【解答】解:DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为:DF∥AC,或∠BFD=∠A.16.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为50米.【分析】作CD⊥直线l,由∠ACB=∠CAB=30°,AB=50m知AB=BC=50m,∠CBD=60°,根据CD=BC sin∠CBD计算可得.【解答】解:如图,过点C作CD⊥直线l于点D,∵∠BCD=30°,∠ACD=60°,∴∠ACB=∠CAB=30°,∵AB=100m,∴AB=BC=100m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BC sin∠CBD=100×=50(m),故答案是:50.17.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为﹣1 .【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x1+x2=3,x1x2=﹣m,∵,∴﹣3x1+x1+x2=2x1x2,∴m+3=﹣2m,∴m=﹣1,故答案为:﹣118.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【解答】解:由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b >0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.三.解答题(共8小题)19.计算:【分析】利用特殊角的三角函数值、二次根式的性质和二次根式的除法法则运算.【解答】解:原式=4×﹣(﹣)+2﹣+2×=2﹣3++2﹣+2=4﹣1.20.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.21.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF =∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到,等量代换得到,根据相似三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.22.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72 度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可.【解答】解:(1)条形统计图为;;扇形统计图中“优秀”所对应的扇形的圆心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有P(甲、丙)==,即选中的两名同学恰好是甲、丙的概率是.23.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF 的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.24.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?【分析】①根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式.②根据①中的函数关系式求得利润最大值.【解答】解:①设每件售价定为x元时,才能使每天利润为640元,(x﹣8)[200﹣20(x﹣10)]=640,解得:x1=12,x2=16.答:应将每件售价定为12元或16元时,能使每天利润为640元.②设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200=﹣20(x﹣14)2+720,∴当售价定为14元时,获得最大利润;最大利润为720元.25.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF =∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠PGC=90°,∴∠GEF+∠PGC=180°,∴BF∥PG∵BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.26.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC,若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),可以求得该抛物线的解析式,然后将解析式化为顶点式,即可得到顶点坐标;(2)根据两点之间线段最短,找到点A关于对称轴的对称点是点B,然后连接CB与对称轴的交点,即为所求的点P,然后根据点P在直线BC上,即可求得点P的坐标,进而求得三角形PAC的周长;(3)根据S△PAM=S△PAC,可知以PA为底边时,只要两个三角形等高即可,然后根据题目中的条件,画出相应的图形,利用分类讨论的方法可以求得点M的坐标,本题得以解决.【解答】解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△PAC的周长是:AC+CP+PA=AC+CB=,即点P的坐标为(1,2),△PAC的周长是;(3)存在点M(不与C点重合),使得S△PAM=S△PAC,∵S△PAM=S△PAC,∴当以PA为底边时,只要两个三角形等高即可,即点M和点C到PA的距离相等,当点M在点C的上方时,则CM∥PA时,点M和点C到PA的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).。
2019-2020学年北京市朝阳区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市朝阳区九年级(上)期末数学试卷一、选择题1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:96.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为.10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P 是上任意一点,则∠P 的正切值为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为,线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°【分析】根据随机事件的意义,这个选项进行判断即可.解:“通常温度降到0℃以下,纯净的水结冰”是必然事件;“随意翻到一本书的某页,这页的页码可能是偶数,也可能是奇数”因此选项B符合题意;“明天太阳从东方升起”是必然事件,不符合题意;“三角形的内角和是180°”因此“三角形的内角和是360°”是确定事件中的不可能事件,不符合题意;故选:B.2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)【分析】抛物线的顶点式为:y=a(x﹣h)2+k,其顶点坐标是(h,k),可以确定抛物线的顶点坐标.解:抛物线y=(x﹣2)2+1是以抛物线的顶点式给出的,其顶点坐标为:(2,1).故选:A.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍【分析】根据相似三角形的性质解答.解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:9【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质即可求出△ADE与△ABC的面积之比.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选:D.6.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,交点为旋转中心.解:如图,∵△MNP绕某点旋转一定的角度,得到△M'N'P',∴连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④【分析】根据圆心角、弧、弦的关系,圆周角定理即可得到结论.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:D.8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3【分析】根据抛物线y=﹣1与x轴交于A,B两点,可得A、B两点坐标,D是以点C(0,4)为圆心,根据勾股定理可求BC的长为5,E是线段AD的中点,再根据三角形中位线,BD最小,OE就最小.解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为(1,3).【分析】直接利用关于原点对称点的性质得出答案.解:点(﹣1,﹣3)关于原点的对称点的坐标为:(1,3).故答案为:(1,3).10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.【分析】直接利用射线的特点得出符合题意的反比例函数解析式.解:∵射线l的端点为(0,1),l∥x轴,∴写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.故答案为:答案不唯一,如y=.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为2.【分析】判断黄金矩形的依据是:宽与长之比为0.618,根据已知条件即可得出答案.解:∵矩形ABCD是黄金矩形,且AD=,∴,,∴AB=2,故答案为2.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=1,∠COD=90°,根据弧长公式求得即可.解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=1,∵AC=BD=1,OC=OD=1,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=π,故答案为:.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P是上任意一点,则∠P的正切值为.【分析】:连接OA、OB,作OD⊥AB于D,如图,利用等腰三角形的性质和圆周角定理得到∠AOD=∠APB,再利用正切的性质得到tan∠AOD=,从而得到tan∠P的值.解:连接OA、OB,作OD⊥AB于D,如图,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB,∵∠APB=∠AOB,∴∠AOD=∠APB,在Rt△AOD中,tan∠AOD==,∴tan∠P=.故答案为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为2.【分析】根据根与系数的关系解答即可.解:∵抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),∴m+n=﹣=2.故答案是:2.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为0.920(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.【分析】(1)根据表格中频率的变化情况,估计概率即可;(2)根据完好的概率进行列方程求解即可.解:(1)根据抽查的柑橘完好的频率,大约集中在0.920上下波动,因此估计柑橘的完好的概率为0.920,故答案为:0.920;(2)设总质量为m千克,从火车站运到A地柑橘完好的概率为x,由题意得,m×0.920×x=m×0.880,解得,x=,故答案为:.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是①②③.【分析】如图,设C(m,),D(n,),则P(n,),利用反比例函数k的几何意义得到S△AOC=3,S△BOD=3,则可对①进行判断;根据三角形面积公式可对②进行判断;通过计算S四边形OAPB和S△ACD得到m与n的关系可对对③进行判断.解:如图,设C(m,),D(n,),则P(n,),∵S△AOC=3,S△BOD=3,∴S△AOC=S△BOD;所以①正确;∵S△POA=﹣n×=﹣,S△POB=﹣n×=﹣,∴S△POA=S△POB;所以②正确;∵S四边形OAPB=﹣n×=﹣,S△ACD=×m×(﹣)=3﹣,∴当﹣=3﹣,即m2﹣mn﹣2n2=0,所以m=2n(舍去)或m=﹣n,此时P点为无数个,所以③正确.故答案为①②③.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.【分析】直接利用特殊角的三角函数值分别代入得出答案.解:原式==1.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.【分析】根据直角三角形中30°角所对的直角边是斜边的一半可以求得AD的长,然后即可求得BD的长,再根据AD的长和tan C=,可以求得CD的长,从而可以求得BC 的长,本题得以解决.解:∵AD⊥BC,∴∠ADB=∠ADC=90°.∵在Rt△ADB中,∠B=30°,AB=8,∴AD=4,BD=,∵在Rt△ADC中,tan C=,AD=4,∴,∴CD=3.∴BC=BD+CD=.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.【分析】首先证明∠ABD=90°,求出∠BDC,∠ADB即可解决问题.解:∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.根据题意可知BD=BC,∠DBC=30°.∴AB=BD.∴∠ABD=90°,∠BDC=75°.∴∠BDA=45°.∴∠ADC=30°.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.【分析】(1)根据题意设出y2的表达式,再把(0,0)代入,求出a的值,即可得出y2的表达式;(2)利用表中数据得到直线与抛物线的交点为(﹣2,0)和(1,3),x<﹣2或x>1时,y2>y1,从而得出不等式ax2+bx+c>kx+m的解集.解:(1)根据题意设y2的表达式为:y2=a(x+1)2﹣1,把(0,0)代入得a=1,∴y2=x2+2x;(2)当x=﹣2时,y1=y2=0;当x=1时,y1=y2=3;∴直线与抛物线的交点为(﹣2,0)和(1,3),而x<﹣2或x>1时,y2>y1,∴不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.故答案为:x<﹣2或x>1.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.【分析】(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,根据等边三角形的判定与性质即可求解;(2)根据切线的判定即可求解.解:(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,∴OA=OD.∵点C为OA的中点,CD⊥AB,∴AD=OD.∴OA=OD=AD.∴△OAD是等边三角形.∴∠AOD=60°.∴∠ABD=30°.(2)如图2,∵∠ADE=∠ABD,∴∠ADE=30°.∵∠ADO=60°.∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.∴直线DE与图形W的公共点个数为1.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=2.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;【分析】阅读材料:证明△ACP∽△CBP.得出.由等腰直角三角形的性质得出CB=AC得出=.PC=AP=.得出PB=PC=2.解决问题:证明△ACP∽△CBP.得出=,设AP=a,则PC=,得出PB=3a.即可得出.【解答】阅读材料:解:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴CB=AC,∴=.∵AP=1,∴PC=AP=.∴PB=PC=2.故答案为:∠PBC;;2;解决问题:解:作AD⊥BC于D,如图2所示:∵AB=AC,∴∠ABC=∠ACB=30°.BD=CD=BC,∴AD=AC,CD=AD,∴AC=2AD,BC=2CD=2AD,∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴==,设AP=a,则PC=,∴PB=3a.∴.24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.【分析】(1)根据题意求得B(3,1),C(1,3),D(,3),即可求得AB和CD 的长度;(2)根据题意得到A(a,),B(3a,).C(a,),D(,),进一步求得AB=2a,CD=.即可求得AB>CD.解:(1)∵AB∥x轴,A(1,1),B在反比例函数的图象上,∴B(3,1).同理可求:C(1,3),D(,3).∴AB=2,CD=.(2)AB>CD.证明:∵A(a,b),A在反比例函数的图象上,∴A(a,).∵AB∥x轴,B在反比例函数的图象上,∴B(3a,).同理可求:C(a,),D(,).∴AB=2a,CD=.∵a>0,∴2a>.∴AB>CD.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为 2.98和1.35 cm.【分析】(1)由函数的定义可得;(2)描点即可;(3)结合图象,即可求解.解:(1)由函数的定义可得:BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数,故答案为:BM,DF,DM;(2)如图所示.(3)由图象得到:当DF=2cm时,DM的长度约为2.98cm和1.35cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.【分析】(1)将点(3,3)代入解析式即可求得;(2)把y=4代入y=x+4a+4得到关于x的方程,解方程即可求得;(3)根据抛物线与线段AB恰有一个公共点,分两种情况讨论,即可得结论.解:(1)将点(3,3)代入y=ax2+bx,得9a+3b=3.∴b=﹣3a+1.(2)令x+4a+4=4,得x=﹣4a.∴B(﹣4a,4).(3)∵a<0,∴抛物线开口向下,抛物线与线段AB恰有一个公共点,∵A(1,4),B(﹣4a,4)∴点A、B所在的直线为y=4,由(1)得b=1﹣3a,则抛物线可化为:y=ax2+(1﹣3a)x,分两种情况讨论:①当抛物线y=ax2+(1﹣3a)x与直线y=4只有一个公共点时,且抛物线的顶点在点A、B之间,则1≤≤﹣4a或﹣4a≤≤1,方程ax2+(1﹣3a)x=4的根的判别式:△=0,即(1﹣3a)2+16a=0,解得a1=﹣,a2=﹣1,当a1=﹣时,=6(不符合题意),当a2=﹣1时,=2,则1≤≤﹣4a成立.②当抛物线经过点A时,即当x=1,y=4时,a+1﹣3a=4,解得a=﹣;∴a<﹣时,抛物线与线段AB恰有一个公共点,综上:a的取值为:a=﹣1或a<﹣时,抛物线与线段AB恰有一个公共点.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB 上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.【分析】(1)根据题意即可补全图形;(2)①由旋转得∠ACD=120°,由三角形内角和得出∠DCB+∠ACO=60°,∠OAC+∠ACO=60°,即可得出结论;②在OA上截取OE=OC,连接CE,则∠OEC=∠OCE=(180°﹣∠MON)=30°,∠AEC=150°,得出∠AEC=∠CBD,易证AE=BC,由ASA证得△AEC≌△CBD,即可得出结论;(3)猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH,在OH上截取OF=OC,连接CF、CH,则FH=OA,∠COF=180°﹣∠MON=60°,得出△OFC是等边三角形,则CF=OC,∠CFH=∠COA=120°,由SAS证得△CFH≌△COA,得出∠H=∠OAC,由三角形外角性质得出∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,则∠DCH=60°+∠H+∠DCB=60°+2∠OAC,由CA=CD,∠ACD=120°,得出∠CAD=30°,即可得出∠DCH=2∠DAH.【解答】(1)解:根据题意补全图形,如图1所示:(2)证明:①由旋转得:∠ACD=120°,∴∠DCB+∠ACO=180°﹣120°=60°,∵∠MON=120°,∴∠OAC+∠ACO=180°﹣120°=60°,∴∠OAC=∠DCB;②在OA上截取OE=OC,连接CE,如图2所示:则∠OEC=∠OCE=(180°﹣∠MON)=(180°﹣120°)=30°,∴∠AEC=180°﹣∠OEC=180°﹣30°=150°,由旋转得:∠CBD=150°,∴∠AEC=∠CBD,∵OA=OB,OE=OC,∴AE=BC,在△AEC和△CBD中,,∴△AEC≌△CBD(ASA),∴CD=CA;(3)解:猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由如下:在OH上截取OF=OC,连接CF、CH,如图3所示:则FH=OA,∠COF=180°﹣∠MON=180°﹣120°=60°,∴△OFC是等边三角形,∴CF=OC,∠CFH=∠COA=120°,在△CFH和△COA中,,∴△CFH≌△COA(SAS),∴∠H=∠OAC,∴∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,∴∠DCH=60°+∠H+∠DCB=60°+2∠OAC,∵CA=CD,∠ACD=120°,∴∠CAD=30°,∴∠DCH=2(∠CAD+∠OAC)=2∠DAH.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为(0,1),线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为6;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.【分析】(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2;②如图,过C作CM⊥y轴于点M,连接CP,CQ,M(0,1).在Rt△ACM中,由勾股定理可得CA=,CQ=.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①当k=1时,y=x+4,Q(t﹣4,t),P的纵坐标为4时,PQ与圆C相切,设B (m,0),则圆心为C(,1),由CQ⊥PQ,可求CQ的解析式为y=﹣x++1,Q 点横坐标为﹣=t﹣4,则C(2t﹣5,1),再由CQ=AC,得到t=6或t=2;②y =kx+k+3经过定点(﹣1,3),PQ是圆的切线,AO是圆的弦,则有PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以1﹣2<k≤﹣;当k >0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以≤k<1+2.解:(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2,∴PQ=,故答案为(0,1);;②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=.∴CQ=.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①如图1:当k=1时,y=x+4,∴Q(t﹣4,t),∵1≤PA≤2,∴P的纵坐标为4时,PQ与圆C相切,设B(m,0),∴C(,1),∵CQ⊥PQ,∴CQ的解析式为y=﹣x++1,∴Q点横坐标为﹣,∴﹣=t﹣4,∴m=4t﹣10,∴C(2t﹣5,1),∵CQ=AC,∴(2t﹣5)2+1=2(t﹣1)2,∴t=6或t=2,∴t的最大值为6;故答案为6.②∵﹣1≤x≤1,∵y=kx+k+3经过定点(﹣1,3),∵PQ是圆的切线,AO是圆的弦,∴PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=﹣,∴1﹣2<k≤﹣;当k>0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=,∴≤k<1+2.。
2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.32.(3分)下列几何体的主视图与众不同的是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×1044.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤25.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>38.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第象限.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.3【分析】根据①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.即可判断出答案.【解答】解:四个选项中,最小的数是﹣6.故选:B.2.(3分)下列几何体的主视图与众不同的是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:A、主视图是下面两个正方形,上面一个正方形相叠;B、主视图是下面两个正方形,上面一个正方形相叠;C、主视图是下面两个正方形,上面一个正方形相叠;D、主视图上下都是两个正方形相叠.故选:D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x>﹣2,解②得:x≤2,则不等式组的解集是:﹣2<x≤2.故选:D.5.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ 【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>3【分析】求y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围.【解答】解:y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围,从图上看当1<x<3时二次函数图象在一次函数图象下方,所以1<x<3.故选:A.8.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.【分析】原式利用二次根式乘法法则计算即可得到结果.【解答】解:原式==,故答案为:10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为13.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣5x+3=0根的判别式的值是:△=(﹣5)2﹣4×3=13.故答案为:13.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【分析】点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第二象限.【分析】观察图形得抛物线开口向下,抛物线与y轴的交点在x轴的上方,根据二次函数图形与系数的关系得到a<0,c>0,即可判断P点所在的象限.【解答】解:∵抛物线开口向下,∴a<0;∵抛物线与y轴的交点在x轴的上方,∴c>0.∴点P(a,c)在第二象限.故答案为二.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为24.【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得菱形ABCD的周长.【解答】解:∵在平面直角坐标系中,点点A是抛物线y=a(x﹣3)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=3,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是6,∴AB=6,∴菱形ABCD的周长为:6×4=24,故答案为:24.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.【分析】设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,根据时间=路程÷速度结合小刚比小明提前4min到达公园,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,依题意,得:﹣=4,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴3.5x=700.答:小刚乘公交车的平均速度为700米/分钟.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°=,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.【分析】(1)证明△BFG≌△DHE(AAS),即可得出BG=DE;(2)当点F与B重合,点H与D重合时,菱形EFGH的面积最大,由菱形的性质得出EG⊥BD,BE =DE=BG,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得出方程32+(4﹣x)2=x2,解得x=,得出CG=AE=4﹣=,菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FBG=∠HDE,∵四边形EFGH是菱形,∴FG=EH,∠EFG=∠EHG,∠GFH=∠EFG,∠EHF=∠EHG,∴∠GFH=∠EHG,∴∠BFG=∠DHE,在△BFG和△DHE中,,∴△BFG≌△DHE(AAS),∴BG=DE;(2)解:当点F与B重合,点H与D重合时,菱形EFGH的面积最大,如图所示:∵四边形EFGH是菱形,∴EG⊥BD,BE=DE=BG,∵四边形ABCD是矩形,∴∠BAD=90°,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴CG=AE=4﹣=,∴菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积=3×4﹣2×××3=;故答案为:.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=.故该二次函数解析式为y=(x﹣4)2﹣3;(2)令x=0,则y=(0﹣4)2﹣3=.则OC=.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC===,即tan∠ABC=.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可(答案不唯一).【解答】解:(1)如图,△MON即为所求.(2)四边形OMPQ即为所求.21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了3小时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)【分析】(1)根据题意和图象中的数据可以求得甲车到达B地休息了多长时间;(2)根据函数图象中的数据可以求得甲车返回A地途中y与x之间的函数关系式;(3)根据函数图象中的数据可以求得甲乙的速度,从而可以解答本题.【解答】解:(1)由题意可得,甲车到达B地休息了:7﹣2﹣2=3(小时),故答案为:3小;(2)设甲车返回A地途中y与x之间的函数关系式是y=kx+b,,得,即甲车返回A地途中y与x之间的函数关系式是y=80x﹣240;(3)甲车的速度为160÷2=80km/h,乙车的速度为:420÷7=60km/h,令60x=160,得x=,令60x=210+(210﹣160),得x=,当x为或时,两车与A地的距离恰好相同.22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC=S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为10【分析】【探究】(1)由旋转的性质可得CB=CD,∠CBD=∠CDE,∠BCD=60°,可得△BCD是等边三角形,可得∠CBD=60°=∠BCD=∠CDE,可得DE∥BC;(2)由平行线之间的距离处处相等,且底相同,可得S△BCE=S△BCD,通过证明AD=BD,可得S△BCD =S△ADC,可得S△ADC=S△BCE;【应用】由中线的性质可求S△BCD=S△ADC,由平行线的性质可求S△BCE=S△BCD=S△ADC=2,由三角形面积公式可求S△ACE=8,即可求解.【解答】证明:【探究】(1)∵将△EDC绕直角顶点C顺时针旋转60°,∴CB=CD,∠CBD=∠CDE,∠BCD=60°,∴△BCD是等边三角形,∴∠CBD=60°,∵∠CDE=60°=∠CBD,∴∠BCD=∠CDE,∴DE∥BC;(2)∵DE∥BC,∴S△BCE=S△BCD,∵∠ACB=90°,∠CBD=∠BCD=60°,∴∠A=∠ACD=30°,∴AD=CD,∴AD=BD,∴S△BCD=S△ADC,∴S△ADC=S△BCE,故答案为:=;【应用】∵CD是斜边AB的中线,∴S△BCD=S△ADC,∵DE∥BC,∠ACB=90°,∴S△BCE=S△BCD=S△ADC=2,∠AFD=∠ACB=90°,∵S△ACD=AC×DF=2,S△ACE=×AC×EF,且EF=4DF,∴S△ACE=8,∴四边形ADCE的面积=S△ADC+S△ACE=10,故答案为:10.23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.【分析】(1)证明△APE∽△AOB,可得=,由此即可解决问题.(2)如图2中,当PE被BC平分时,设PE交BC于F.由PF∥OB,BF=CF,推出OP=PC=OC,求出AP即可解决问题.(3)分两种情形:①如图3﹣1中,当0<t≤1时,重叠部分是△APE,根据S=•AE•PE求解.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,根据S=S△APE﹣S△BFE求解即可.(4)分两种情形:①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.证明∠EAQ=∠BNM,推出tan∠EAQ=tan∠BNM,可得=,由此构建方程即可解决问题.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.由BM∥QE,推出△ABM∽△AEQ,可得=,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴OB=OD=BD=2,∵BD⊥AB,PE⊥AB,∴OA===,PE∥BD,∴△APE∽△AOB,∴=,即=,解得:PE=2t;(2)如图2中,当PE被BC平分时,设PE交BC于F.∵PF∥OB,BF=CF,∴OP=PC=OC=,∴AP=OA+OP=,∴t=.(3)①如图3﹣1中,当0<t≤1时,重叠部分是△APE,S=•AE•PE=•3t•2t=3t2.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,S=S△APE﹣S△BFE=3t2﹣•(3t﹣3)•(4t﹣4)=﹣3t2+12t﹣6.综上所述,S=.(4)①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.在Rt△ABD中,AD===5,∵S△ABD=•AB•BD=•AD•BM,∴BM==,∴AM=MN===,∴NM=AN﹣AM=3﹣=,∵∠E′=∠AEQ=90°,QE=QE′.AQ=AQ,∴Rt△AQE≌Rt△AQE(HL),∴∠QAE=∠QAE′,∵∠E′AE=∠ABN+∠ANB,∠ANB=∠ABN,∴∠EAQ=∠BNM,∴tan∠EAQ=tan∠BNM,∴=,∴=,∴t=.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.∵∠QAB=∠QAE′,MB⊥AB,MN⊥AD,∴BM=MN,∠ABM=∥ANM=90°,∵AM=AM,∴△AMN≌△AMB(HL),∴AB=AN=3,设BM=MN=x,则DM=4﹣x,在Rt△DMN中,则有(4﹣x)2=x2+22,解得x=,∵BM∥QE,∴△ABM∽△AEQ,∴=,∴=,解得t=2,综上所述,满足条件的t的值为s或2s.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.【分析】(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,即可求解;(2)①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即可求解;②分DA是平行四边形的一条边、DA是平行四边形的对角线两种情况,分别求解即可;③直线MD把正方形面积分为1:5两部分时,则S△MKS=S正方形MNRS,即可求解.【解答】解:(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,故点A、B、C、D的坐标为:(1,0)、(3,0)、(2,﹣1)、(0,3),答:点C和点A的坐标分别为:(0,3)、(1,0);(2)y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折后的抛物线表达式为:y=x2+4x+3,①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即:x2﹣4x+3=±3或x2+4x+3=±3,解得:x=0或4或﹣4;答:点E的横坐标为:0或4或﹣4;②设点P(m,n),n=m2±4m+3,点Q(s,0),﹣﹣﹣﹣当DA是平行四边形的一条边时,当x≥0时,点D向右平移1个单位向下平移3个单位得到A,同样,点P(Q)向右平移1个单位向下平移3个单位得到Q(P),故:m+1=s,n﹣3=0或m﹣1=s,n+3=0,且n=m2﹣4m+3,解得:m=0或4(舍去0),故s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);当DA是平行四边形的对角线时,当x≥0时,m+s=1,n+0=3,且n=m2﹣4m+3,解得:s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);综上,Q的坐标为:(5,0)或(﹣3,0);③如下图:设边RS交直线AC于点K,设点M(m,m2﹣4m+3),则点N(﹣m,m2﹣4m+3),则MN=2m,直线MD函数表达式中的k值为:k ==m﹣4,tan∠MA=﹣k=4﹣m=tanα,则∠RSM=α,直线MD把正方形面积分为1:5两部分时,则S△MKS =S正方形MNRS,即×2m ×=×(2m)2,解得:m=1.第21页(共21页)。
2019-2020学年福建泉州南安九年级(上)期末数学试卷(含解析)

2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列实数中,介于与之间的是()A.B.C.D.π2.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a23.(4分)为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为()市文旅局获悉,A.1.7118×102B.0.17118×107C.1.7118×106D.171.18×104.(4分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都改变5.(4分)不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个球,摸出蓝球的概率是0.6,则袋子中有红球()A.4个B.6个C.8个D.10个6.(4分)如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30°B.45°C.55°D.60°7.(4分)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°8.(4分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12B.15C.20D.329.(4分)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m10.(4分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:|﹣3|﹣sin30°=.12.(4分)已知一组数据:12,10,8,15,6,8.则这组数据的中位数是.13.(4分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.14.(4分)如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.15.(4分)等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是.16.(4分)动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l 有交点,则b的取值范围是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组,并把解集在数轴上表示出来:18.(8分)如图:△ABC与△DEF中,边BC,EF在同一条直线上,AB∥DE,AC∥DF,且BF=CE,求证:AC=DF.19.(8分)先化简,再求值:,其中x=1﹣.20.(8分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?21.(8分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤50aC51≤m≤7550D m≥7666根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.22.(10分)阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.23.(10分)如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.24.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.25.(14分)已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当AC⊥BC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S 取得最大值时点P的坐标.2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵<<<<π<,∴介于与之间的是.故选:A.2.【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.【解答】解:将171.18万用科学记数法表示为:1.7118×106.故选:C.4.【解答】解:①的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;故选:A.5.【解答】解:设袋子中有红球x个,根据题意得=0.6,解得x=4.经检验x=4是原方程的解.答:袋子中有红球有4个.故选:A.6.【解答】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.7.【解答】解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角=,故选:B.8.【解答】解:如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD==5,∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入y=,得,k=8×4=32,故选:D.9.【解答】解:设小矩形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m﹣a)+2(m﹣3b)=2n+2m﹣2a+2m﹣6b=4m+2n﹣2n=4m,故选:D.10.【解答】解:设AB=x,则AE=EB=由折叠,FE=EB=则∠AFB=90°由tan∠DCE=∴BC=,EC=∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y=故选:D.二、填空题:本题共6小题,每小题4分,共24分.11.【解答】解:原式=3﹣=.故答案为:.12.【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.13.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.14.【解答】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.15.【解答】解:∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=2,故答案为:2.16.【解答】解:∵动点A(m+2,3m+4)在直线l上,∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC==若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴BC=∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为(﹣,0)或(+,0)∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为:三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:由不等式①得:x>4.由不等式②得:x>2.不等式组的解集:x>4.18.【解答】证明:∵AB∥DE,∴∠B=∠E,∵AC∥DF∴∠ACB=∠EFD,∵BF=CE∴BC=EF,且∠B=∠E,∠ACB=∠EFD,∴△ABC≌△DEF(ASA)∴AC=DF19.【解答】解:原式=÷=•=1﹣x,当x=1﹣时,∴原式=1﹣(1﹣)=;20.【解答】解:设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32﹣24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)﹣(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.21.【解答】解:(1)调查的样本容量为50÷25%=200(人),a=200﹣20﹣50﹣66=64(人),故答案为200,64;(2)刚好抽到A类学生的概率是20÷200=0.1,故答案为0.1;(3)全校学生中家庭藏书不少于76本的人数:2000×=660(人).答:全校学生中家庭藏书不少于76本的人数为660人.22.【解答】解:(1)方程的解为x1=c,x2=,验证:当x=c时,∵左边=c+,右边=c+,∴左边=右边,∴x=c是x+=c+的解,同理可得:x=是x+=c+的解;(2)方程整理得:(x﹣3)+=(a﹣3)+,解得:x﹣3=a﹣3或x﹣3=,即x=a或x=,经检验x=a与x=都为分式方程的解.23.【解答】解:如图所示:(1)作∠A的平分线交BC于点P,点P即为所求作的点.(2)作PE⊥AB于点E,则PE=PC=3,∴AB与圆相切,∵∠ACB=90°,∵AC与圆相切,∴AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,∵∠B=∠B,∠PEB=∠ACB,∴△PEB∽△ACB∴==∴==解得x=2,答:BD的长为2.24.【解答】解:(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=.(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=:2:,设AC=,则AD=2a,CD=a,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴,∵=,解得a=2,a=﹣2(舍去),∴,判断:CM不是△ACD的“匀称中线”.理由:假设CM是△ACD的“匀称中线”.则CM=AD=2AM=4,AM=2,∴tan,又在Rt△CBH中,∠CHB=90°,CH=,BH=4﹣,∴tan B=,即∠AMC≠∠B,这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.25.【解答】解:(1)y=2ax2﹣ax﹣3(a+1)=a(2x2﹣x﹣3)﹣3,令2x2﹣x﹣3=0,解得:x=或﹣1,故第三象限内的一个定点C为(﹣1,﹣3);(2)函数的对称轴为:x=﹣=,设函数对称轴与x轴交点为M,则其坐标为:(,0),则CM==,则AB=2CM=,则点A、B的坐标分别为:(﹣3,0)、(,0);将点A的坐标代入函数表达式得:18a+3a﹣3a﹣3=0,解得:a=,函数的表达式为:y=(x+3)(x﹣)=x2﹣x﹣;(3)过点E作EF⊥PH,设:∠ACB=α,则∠ACB=∠HPE=∠DEF=α,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=x﹣,设点P(h,h2﹣h﹣),则点D(h,h﹣),故tan∠ACB=tanα=,则sinα=,y D﹣y E=DE sinα=PD sinα•sinα,S=S△ABE﹣S△ABD=×AB×(y D﹣y E)=××(h﹣﹣h2+h+=﹣h2+h﹣,∵﹣<0,∴S有最大值,当h=时,S的最大值为:,此时点P(,﹣).。
2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2019-2020学年河南省洛阳市九年级上学期期末考试数学试卷一、选择题(每小题3分,共30分).
1.(3分)下列图形是中心对称图形的是()
A.B.C.D.
2.(3分)一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1B.2C.1和2D.﹣1和2
3.(3分)下列事件中,是随机事件的是()
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
4.(3分)二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是()x……﹣3﹣2﹣101……
y……﹣17﹣17﹣15﹣11﹣5……
A.x=﹣3B.x=﹣2.5C.x=﹣2D.x=0
5.(3分)在同平面直角坐标系中,函数y=x﹣1与函数y=1
x的图象大致是()
A.B.
C.D.
6.(3分)某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()
A.10%B.20%C.25%D.40%
第1 页共23 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学试卷答案
1—10:A,B,B,A,D,B,D,C,C,A, 11—15:3,4
1
,5,(4,4),1, 16.解:原式=1111)1(+-+÷+-x x x x x (2分)=x
x x x x 1
1)1(+⋅
+-(4分)=x -1(6分)
17.解:(1)作图(3分)
(2)∵AB =AC ,∠ABC =70° ∴∠BAC =40°
∵AB =AC ,AD 为BC 边上的中线 ∴∠CAD =
2
1
∠BAC =20° ∵BE 为AC 边上的高 ∴∠BEA =90° ∴∠AFE =90°-∠CAD =70° ∴∠DFB =70°(6分)
18.解:设圆锥侧面展开扇形图的圆心角为n °
则180
12
2122⋅=
⋅ππn (5分) ∴n =180 ∴圆锥的侧面积为:)(72122
12
2cm ππ=⋅(7分) 直接利用公式πr l 计算不扣分
19.解:0.5米(7分) 20.解:(1)14(2分)
(2)被调查学生的总数为:
200%
10%2530
=-(人)
∴16岁学生人数为:200×(1-10%-25%-40%-20%)=10(人)(6分)
(3)
4
1
(8分) 21.(1)证明:∵AE 切⊙O 于点A ,
∴∠BAD = 90°
∵AB 为⊙O 的直径,
∴∠BCA =90°
∴∠EAC =∠B (1分)
∵OB =OC ∴∠OCB =∠B
∴∠EAC =∠OCB
∵∠OCB =∠ECD ∴∠EAC =∠ECD
又∵∠E 为公共角 ∴△EDC ∽△ECA (4分) (2)解:∵Rt △AOE 中,∠OAE =90°,∴tanE =
EA OA ==4
3
∴设OA = 3x ,EA = 4x ∴OE = 5x (5分) ∵OC =OA =3x ∴EC =2x (6分) ∵△EDC ∽△ECA ∴
EA
EC
EC ED = ∴ED = x (7分) ∵ED = 2 ∴OA =6 ∴⊙O 的半径是6 (8分)
22.解:(1)设2007年初砍伐面积为x 公顷,则2008年、2009年初砍伐面积分别为0.9x
公顷,0.81x 公顷。
(1分)
O
D
A
B C
E
20000-x-0.9x-0.81x=9160(3分) x=4000(公顷)
所以,2007年年初砍伐的森林面积是40000公顷。
(4分)
(2)2007年底收益=16000a+21
×4000a=18000a(元)(5分) 2009年底收益=9160a+2
1
×(20000-9160)a=14580a(元) (6分)
设平均每年减少的百分数为y,
a y a 14580)1(180002
=- (8分) )(9.1,1.021舍去==y y (10分)
所以,2009年底总收益比2007年总收益平均每年减少的百分数是10%。
答:
23.(1)由题意得,AD =DH,AE =EH,又DE ∥BC, 则∠ADE =∠ABC =∠ACB =∠AED,
∴AD =AE,可得四边形AEHD 是菱形; (3分) (2) 四边形AEHD 是矩形, (4分) ∵DE 是BG 的中垂线, DE ∥BC ∠GBC =180°-90°=90°, (5分) 则∠FGB =∠GBC =90°, 同理∠BCF =∠GFC =90°,
则四边形AEHD 是矩形; (6分) (3) 四边形AEHD 是正方形, (7分) 理由是: △BGD 和△AED 相似,且GD =BD, 则△AED 也是一个等腰三角形, ∠ADE =∠DBG ,(8分) 又∠ADE =∠ABC, ∠GBD =∠ABC =
1
2
×90= 45°; (9分) 由∠AED =∠ACB 为锐角得 则∠AED =∠ADE = 45°,即AD = AE, (10分) 由AD = DH ,AE = EH,得四边形AEHD 是菱形; 由∠A = 180°-45°×2 = 90°,得菱形AEHD 是正方形 (11分)
24. 解:(1)作CH x ⊥轴,H 为垂足, 1CH =,半径2CB =(1分)
60BCH ∠=,120ACB ∴∠=(2分)
(2)
1CH =,半径2CB =
HB ∴=
(1A ,(4分)
H
G
F
E
C
B
A D
(1B +(5分)
(3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13),(6分) 设抛物线解析式2
(1)3y a x =-+(7分)
把点(1B +代入上式,解得1a =-(8分) 222y x x ∴=-++(9分)
(4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形(10分) PC OD ∴∥且PC OD =.
PC y ∥轴,∴点D 在y 轴上.(11分) 又
2PC =,2OD ∴=,即(02)D ,.
又(02)D ,满足2
22y x x =-++,
∴点D 在抛物线上
所以存在(02)D ,使线段OP 与CD 互相平分.
(12分)。