航模DIY 群基础知识(翼型)
航模基础知识点整理

航模基础知识点整理一、两个概念1、模型飞机:是飞机,可以飞行,就是我们平时所说的航模。
2、飞机模型:是模型,不能飞行,常用来做装饰品使用。
二、飞机的分类飞机的分类方法有很多,各种不同的分类方法结果也各不相同。
常用的方法有:1、按机翼的位置分为:上单翼、中单翼、下单翼等2、按起落架的位置分为:前三点、后三点等3、按电机的位置分为:前拉机、腰推机、尾推机、背推机等4、按动力分为:电动、油动、无动力等三、飞机的组成1、机翼:为飞机提供升力,飞机飞行时的横向安定。
2、尾翼:分为水平尾翼和垂直尾翼。
分别负责飞机的俯仰安定和方向安定。
3、副翼:在机翼后缘的外侧,两侧各一个,转动方向相反,控制飞机的左右滚转。
4、升降舵:在水平尾翼的后缘,两侧各一个,转动方向相同,控制飞机的上下俯仰。
5、方向舵:在垂直尾翼的后缘,控制飞机的左右偏转。
四、机翼与翼型1、翼型:是设计出来产生升力的机翼剖面形状。
除了机翼,螺旋桨和尾翼也有翼型。
2、常见的翼型种类:平凸翼型、双凸翼型(当上下凸起对称时称为对称翼型)五、电子设备1、电机:为飞机提供动力,分为有刷和无刷两种。
航模多采用外转子无刷电机。
常用型号:2212 1400KV注:2212为电机的尺寸,1400KV表示该电机在某一电压U下每分钟能转1400U转(例:该电机在12v电压下每分钟可转1400×12=16800转)2、电调:又称电子调速器,用来给接收机供电和控制电机的转速。
常用型号:40A注:40A表示其可承受的最大电流为40A。
3、舵机:是一个根据遥控信号来决定舵面偏转角度的器件。
4、电池:为飞机提供能量。
常用型号:3S1500mah11.1V25C注:3s表示三片电芯串联 11.1V为其使用时的最低电压1500mah为电池容量 25C为其放电倍率电池使用电压范围11.1-12.6v,>12.6V称为过冲,<11.1V称为过放。
5、遥控器和接收机(1)遥控器分类:美国手(左手油)、日本手(右手油)、其他手(2)工作频率:常用的为 2.4GHz 其他还有FM频率(36MHz\72MHz等)(3)接收机连线方式:一副翼、二升降、三油门、四方向6、测电器(BB响):用来测量电池的电压,使用时将电池插头铁片向上,将测电器最左侧针插入其中。
航模的基本原理和基本知识

航模的基本原理和基本知识航模是一种模拟真实飞行的模型飞机,其基本原理和基本知识包含以下几个方面:一、模型飞行原理:1.大气动力学原理:航模飞行时受到气流的作用,包括升力、阻力、重力和推力等力的相互作用。
模型飞机需要通过翼面产生升力来维持飞行高度,并通过推力提供动力。
2.控制原理:航模飞机通过控制表面(如方向舵、升降舵、副翼等)的运动来改变其姿态和方向。
操纵杆和舵机通过电子信号传输,实现对控制表面的精确控制。
3.飞行稳定原理:航模飞行过程中需要保持一定的稳定性。
包括静稳定和动态稳定两个方面。
定翼航模通过设置翼面的远心点位置来实现静态稳定性,而控制面的设计和操纵杆的操作则保证动态稳定。
二、模型飞机的组成部分及功能:1.机身:模型飞机的主要结构,包括机翼、机身和尾翼。
机身主要用于容纳电子设备和动力系统。
2.机翼:模型飞机的升力产生部分,具有翼型、翼展和翼面积等特征,通过改变翼面的攻角来产生升力。
3.尾翼:包括升降舵、方向舵和副翼。
升降舵用于控制模型飞机的上升和下降,方向舵用于控制模型飞机的左右转向,副翼用于控制模型飞机的横滚运动。
5.舵机:用于控制模型飞机的控制表面,将电子信号转换为机械运动。
6.遥控系统:遥控器和接收机组成的遥控系统用于控制模型飞机的姿态和方向。
三、航模飞行的基本知识:1.飞行理论:了解飞行原理、飞行姿态和飞行控制等相关理论知识,包括升力、阻力、重力、推力、迎角、侧滑等概念。
2.翼型知识:了解不同翼型的特征和表现,掌握常见的对称翼型、半对称翼型和弯曲翼型。
3.翼展和翼面积:翼展影响飞机的横向稳定性和机动性能,翼面积影响飞机的升力产生能力。
4.飞行控制知识:包括副翼、升降舵和方向舵的操作原理、机动动作和配平技巧等。
5.飞行安全知识:了解飞行场地的选择、飞行规则以及飞行器的安全性维护等方面的知识。
6.电子设备知识:了解遥控器、接收机、舵机、电机和电池等电子设备的基本原理和使用方法。
总结:航模的基本原理是依靠大气动力学原理和控制原理来模拟真实的飞行。
劲鹰无人机航模基础知识简介

劲鹰无人机航模基础知识简介1、飞机各部分的名称和作用模型飞机通常与载人的飞机一样,主要是由机翼、尾翼、机身、起落架和发动机这五个部分组成。
(1)机翼:是模型飞机在飞行时产生升力、克服飞机的重力,保证飞机离地、上升和在空中飞行时的横侧安定。
(2)尾翼:包含水平尾翼和垂直尾翼两部分。
水平尾翼是保持模型飞机飞行时的俯仰安定,垂直尾翼是保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵可用来控制模型飞机的升降,垂直尾翼上的方向舵可用来控制模型飞机的飞行方向。
(3)机身:将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
(4)起落架:提供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫做前三点式;前部两面三个起落架,后面一个起落架叫后做三点式。
(5)动力装置:它是模型飞机产生飞行动力的装置。
模型飞机一般常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
典型的常规飞机一般都具有以上五个部分,但在特殊形式的飞机上也有例外,例如在滑翔机上就没有动力装置;在“飞翼”式飞机上没有水平尾翼和机身等。
2、一般飞机的操纵面和它们的作用(1)副翼:一般在机翼两端的后部,驾驶员通过操纵杆操纵副翼,可以使飞机左、右倾斜。
(2)升降舵:一般在水平尾翼的后部,驾驶员通过操纵杆,使升降舵上翘和下弯,可以使飞机抬头和低头。
(3)方向舵:一般在垂直尾翼的后部,驾驶员通过脚踏板,使方向舵左右偏转,可以使飞机向左转或右转。
3、空气和空气动力由于目前的模型飞机都是在大气中靠空气动力飞行的,因此在进行航模活动时要对空气和空气的流动规律做些初步了解。
(1)空气空气是无色透明的气体,在标准大气压气温为15℃的情况下,每立方米干燥空气的重量为1293克。
当物体和空气发生相对运动时,如我们迎风站在广场上被风吹,或是我们在无风时骑自行车前进,都会感到有风从前面吹来。
在这两种情况下,我们与空气发生了相对运动,空气向后推我们的力就叫“空气动力”。
航模基础知识

模 型 飞 机 如 何 才 能 飞 行
升力 ( ?)
牵引力 重力
阻力
伯努利定律的简单表述:
流体的速度越大,压力越小, 流体的速度越小,压力越大。
模 型 飞 机 神 奇 的 机 翼
机翼剖面示意图
空气流速快,压力小。
空气流速慢,压力大。
两个相邻的空气质点同时由机翼的前端往后端走,一个 流经机翼的上缘,另一个流经机翼的下缘,流经机翼上缘的 质点会比流经机翼的下缘质点先到达后端。
航空模型及其空气动力学知识讲座
模型飞机的结构
机身
机翼 模型飞机
主翼、副翼
尾翼 鸭翼
水平尾翼
起落装置 动力系统
控制系统
垂直尾翼
(燃料、电池、橡皮筋等)
(线控、遥控等)
模型飞机的空气动力布局
● ● ● ● ● ●
常规空气动力布局 鸭式空气动力布局 飞翼空气动力布局 ☆ 串翼空气动力布局 连翼空气动力布局 圆翼空气动力布局
机体稳定
上反角 影响飞机稳定性的因素很多,但主翼是否有一定的上反角对飞机的 稳定性影响相当大。
模 型 飞 机 的 其 它 气 动 知 识
● ● ●
诱导阻力 机翼阻力
失速与扰流
模型飞机放飞前的微调
b
a
c a:正常 b:右偏 – 方向舵向左弯
c:左偏 – 方向舵向右弯
模型飞机放飞前的微调
b
a a:正常 c b:头轻 – 升降舵向下弯
模型飞机的控制
俯仰轴
偏航轴 滚转轴
方向舵 副 翼 升降舵
模型飞机制作与调试成败的关键
● ● ● ●
机翼的形态 (翼型) 方向舵与升降舵 机体的平衡 机体的稳定
机翼形态
航模DIY-群基础知识(翼型)

机翼机翼是模型飞机产生升力的主要部件。
模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。
决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。
这样一来,要想增大升力只能从增大升力系数着想了。
在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。
决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。
好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。
一、翼型翼型就是机翼的截面形状。
现代模型飞机所用的翼型一般可分为六类:平凸型、对称型、凹凸型、双凸型、S型和特种型,如图3-1所示。
这六种翼型各有各的特点,每种翼型一般能符合某几种模型飞机的要求。
翼型各部分的名称如图3-2所示。
其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。
中弧线是翼型上弧线与下弧线之间的距离中点的连线。
如果中弧线是一根直线与翼弦重合,那就表示这个翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。
普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。
要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。
翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。
这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。
大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。
机翼及翼型的基本知识翼型绕流图画ppt课件

中弧线上最高点的y向坐标f来表示,通常取相对值,其弦
向位置用xf来表示 ff c
xf xf c
翼型的弯度反映了上下翼面外凸程度差别的大。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
引言
按其几何形状,翼型分为两大类:一类是圆头尖 尾的,用于低速、亚音速和跨音速飞行的飞机机 翼,以及低超音速飞行的超音速飞机机翼;另一 类是尖头尖尾的,用于较高超音速飞行的超音速 飞机机翼和导弹的弹翼。
本章中,围绕低速翼型 的气动特性,主要介绍, 翼型的几何参数和翼型 的绕流图画和实用翼型 的一般气动特性等内容。
前缘
最大厚度
最大中弧高 上表面
中弧线
后缘
前缘半 径
Байду номын сангаас
翼弦
下表面 弦长
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
翼面的无量纲坐标
➢ 坐标原点位于前缘,x轴沿弦线向后,y轴向上,翼型上下
引言
机翼一般都有对称面。平行于机翼的对称面截得 的机翼截面,称为翼剖面,通常也称为翼型。
翼型的几何形状是机翼的基本几何特性之一。翼 型的气动特性,直接影响到机翼及整个飞行器的 气动特性,在空气 动力学理论和飞行 器中具有重要的地位。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一位数字2—— f 2%
航模入门知识

•翼载荷——单位面积所承受的飞机重量。
•总升力面积——机翼的
总面积以及尾翼面积,在水 平上的正投影面积之和。
飞行原理
升 力 的 产 生
飞行原理
姿 态 的 控 制
电子篇
模型飞机主要 会用到的电子 设备有遥控器, 接收机,电调, 电机,舵机, 电池,充电器 等。
电子设备
电机
电子设备
常用技术术语
常用技术术语
翼展――机翼(尾翼)左右翼尖间的直线距离。 机身全长――模型飞机最前端到最末端的直线距离。
重心――模型飞机各部分重力的合力作用点称为重心 尾心臂――由重心到水平尾翼前缘四分之一弦长处的 距离。
常用技术术语
常用技术术语
•翼型――机翼或尾翼的横剖面形状。 •前缘――翼型的最前端。 •后缘――翼型的最后端。 •翼弦――前后缘之间的连线。 •平均气动翼弦长——翼面积与翼展的比值
主翼––是模型飞机在飞行时产生升力的装置
副翼—是主翼的组成部份,主要保持模型飞机飞机飞行时的 横侧安定。
尾翼––包括水平尾翼和垂直尾翼两部分。水平尾翼可保持 模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时 的方向安定。水平尾翼上的升降舵能控制模型飞机的升降, 垂直尾翼上的方向舵可控制模型飞机的飞行方向。
综述
模型飞机
机身 机翼 起落装置
主翼、副翼、襟翼
水平尾翼
尾翼
垂直尾翼
动力系统 (油动、电动、橡皮筋等) 控制系统 (线控、遥控等)
机械篇
飞机总体结构
飞机总体结构
1、机身 主要功能是将模型的各部分联结成一个整
体的主干部分叫机身。同时机身内可以装载必要 的控制机件,设备和燃料等。
飞机总体结构
[航模知识]飞机机翼各部分图解!
![[航模知识]飞机机翼各部分图解!](https://img.taocdn.com/s3/m/22c3268450e79b89680203d8ce2f0066f5336483.png)
[航模知识]飞机机翼各部分图解!机翼各翼面的位置图机翼各翼面的位置图上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。
机翼上各操纵面是左右对称分布,部分由于图片受限未标出。
机翼说明机翼的基本概念机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。
是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。
另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。
相关名词解释111翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型。
2前缘:翼型最前面的一点。
3后缘:翼型最后面的一点。
4翼弦:前缘与后缘的连线。
5弦长:前后缘的距离称为弦长,如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长6迎角(Angle of attack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。
7翼展:飞机机翼左右翼尖间的直线距离。
8展弦比:机翼的翼展与弦长之比值。
用以表现机翼相对的展张程度。
上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。
从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。
同理,向下垂时的角度就叫下反角。
9上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。
机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。
上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。
中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机翼机翼是模型飞机产生升力的主要部件。
模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。
决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。
这样一来,要想增大升力只能从增大升力系数着想了。
在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。
决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。
好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。
一、翼型翼型就是机翼的截面形状。
现代模型飞机所用的翼型一般可分为六类:平凸型、对称型、凹凸型、双凸型、S型和特种型,如图3-1所示。
这六种翼型各有各的特点,每种翼型一般能符合某几种模型飞机的要求。
翼型各部分的名称如图3-2所示。
其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。
中弧线是翼型上弧线与下弧线之间的距离中点的连线。
如果中弧线是一根直线与翼弦重合,那就表示这个翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。
普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。
要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。
翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是 1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。
这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。
大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。
例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。
下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。
(一)翼型的画法适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。
幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。
某翼型坐标见表3-1。
所谓翼型坐标表是从翼型上下弧线选出一定的点,把这些点的坐标用弦长百分数表示所列成的表。
坐标的原点是前缘,计算百分数的基准长度是弦长,横坐标是翼弦;表3-1就是这样的表格,表格第一行(X)表示到前缘的距离,第二行(Y u)对应于第一行距离的翼型上弧线上的一点到翼弦的距离;第三行(Y d)是下弧线上一点到翼弦的距离,把所有这些点都在图上标出以后,用圆滑的线将各点连接起来便可以得到正确的翼型形状。
画翼型前,要首先决定翼弦的长度。
将弦长乘上表中的数字再除100就可以得出所需要的实际长度。
(1) 首光在纸上面一直线代表翼弦。
在线上量出翼弦的长度,例如15厘米,如图3-3l(a)所示。
(2) 在翼弦上接表3-1中第一行量出距离。
如第一行的30表示离前缘的距离是(30/100)⨯15即4.5厘米。
在翼弦上离前缘4.5厘米的地方轻轻地点上一点,依此类惟。
通过所有这些点画出垂直翼弦的线,如图3-3(b) 所示。
(3) 按表3-1中第二、第三行的数值将上弧与下弧的距离算出来。
例如,在离前缘4.5厘米的地方表中数字是11.65,上弧到翼弦的实际距离是11.65⨯15/100=1.76厘米。
表中第三行是-0.38,即下弧到翼弦距离是-0.38⨯15/100=-0.057厘米(负值表示这一点在翼弦下方)。
根据计算出来的数值便可以在刚才画好的垂直线上(离前缘 4.5厘米的那一根)点出两点:一点在翼弦上面离翼弦l.76厘米,另一点在翼弦下面,离翼弦0.057厘米,用同样的方法将各不同距离的上下弧各点都标出来,如图3-31(c)所示。
(4)将点出来的各点连成圆滑的曲线便可以得到翼型的形状,如图3-3(d)所示。
如果我们点出来的点不能连成连续圆滑的曲线时表示有错误:或者距离没有算好;或量最得不准确,正负号没有注意。
画出后的翼型最好与书中同一种翼型的形状对照一下,这样往往可以及时改正错误。
有其应掌握如何使用AutoCAD来画出翼型(详见“航空模型”),并在使用激光切割机时,对翼型实际加工厚的翼型进行修正。
(二)翼型的名称和牌号翼型的种类很多,形状各异,所以每种翼型都有一定名称或牌号。
以前的翼型多数是用发明者或研究机关的名称来命名,如:茹科夫斯基翼型、哥廷根翼型等。
模型飞机用的翼型也往往用发明者的名字表示,加汉斯汉申翼型、古布菲翼型等。
航模爱好者常用翼型的来源不外乎两个方面:(1) 一些国家的航空研究机构经过风洞试验的翼型。
这些翼型资料往往还附有特性曲线。
(2) 航模爱好者自己设计和改进的翼型。
这类翼型一般都是经过模型飞机的实际飞行并证明性能较好的,当然也有一些是经过风洞试验的翼型。
航模爱好者自己设计的翼型常常用集体的名称或设计者的名字再加上它的序号来表示。
例如:BH-l0,其中“BH ”是“北航”(原北京航空学院)汉语拼音的缩写字母,数字“10”是所试验的第10种翼型。
在航模爱好者设计的翼型中,要着重介绍的是“B ”系翼型(或称“Б”系翼型)。
它是匈牙利著名的航模爱好者班尼狄克设计的翼型,采用4~5位数字来表示翼型的几何特性。
例如,在翼型B-12307-b 或(Б-12307-b)和B-6556-d 中:第一、第二位数字表示翼型的最大相对厚度,前一种翼型的12表示厚度为12%弦长,后一种翼型的6,表示是6%弦长。
中间两位数字表示翼型中弧线最高点距前缘的距离、30和55各表示等于30%和50%弦长。
最后一位数字表示中弧线最大弯度。
7和6各表示等于7%和6%弦长。
在B 系翼型数字后面往往附有一个小写的拉丁字母,用来表示中弧线的类型,它的含义是:a 一中弧线是圆弧曲线;b -中弧线是椭圆曲线;c -中弧线由椭圆曲线和双曲线组合而成;d -中弧线为任意曲线;e -翼型上、下弧线在尾部重合为一条线;f -翼型后缘部分很厚,最后突然变尖:;用这种翼型的机翼,后缘的强度和刚度一定要注意加强。
因为在翼型厚废和中弧线弯度相同的条件下,可设计出很多翼型、因此,在后面这个小写字母的后面还可加上分母数字。
例如B-835-b ,B-8356-b/2及B-8356-b/3等,它们用来表示设计的先后次序。
航空研究机构试验的翼型有些也可以用在模型飞机上。
这些经某些国家航空研究机构试验而得的翼型,都采用研究单位名称的缩写字为“姓”,并用表示试验系列或编号的数码或字母作为“名”。
例加Clark-Y (克拉克-Y)(美国);哥廷根499或Go-499 (德固);MV A-321 (德国);ЦАГИ-731 (前苏联)。
这里要着重介绍美国国家航空航天局的前身NACA 研究的一系列翼型。
他们研究过的翼型很多,也采用数字表示翼型的几何特性,在模型飞机上常用的NACA 翼型分两个系列,即4位数字翼型和5位数字翼型。
现以4位数字翼型NACA -6409、NACA-23012为例,将有关数字的含义说明如下:第一位数字表示中弧线最大弧高,6就是6%翼弦长度; 第二位数字表示中弧线最大弧高的位置,4表示往40%翼弦长度 (从前缘向后量);第三、第四位数字表示翼型最大厚度,09即9%翼弦长度,这类翼型最大厚度都在30%的地方,4位数班尼狄克翼型代号的几何特性含义B-12307-b B-6556-d 第一、二位数字表示翼型的最大相对厚度为12%弦长。
第一、二位数字表示翼型的最大相对厚度为6%弦长。
中间二位数字表示翼型中弧线最高点距前缘的距离为30%弦长。
中间二位数字表示翼型中弧线最高点距前缘的距离为55%弦长。
最后一位字母表示中弧线的类型,b为椭圆曲线。
最后一位数字表示中弧线最大弯度是7%的弦长。
最后一位字母表示中弧线的类型,d为任意曲线。
最后一位数字表示中弧线最大弯度是7%的弦长。
NACA 翼型代号的几何特性含义NACA-6409第3、4位数字表示翼型的最大相对厚度为9%弦长。
第2位数字表示翼型中弧线最高点距前缘的距离为40%弦长。
第1位数字表示翼型中弧线最大弧高为6%弦长。
字翼型都这样,所以不再标出来。
根据这个规律可以知道,NACA一6412翼型与NACA-6409翼型基本上相同(中弧线完全相同),只是前者的最大相对厚度不是9%,而是12%。
如果第一、第二两位数字是0,表示这类翼型是对称翼型。
如NACA-0009表示是最大相对厚度9%的对称翼型。
NACA翼型不但在真飞机上使用很广,在模型飞机上也常常采用。
如NACA-6409、NACA一6412、NACA一0018、NAC4一23012等都是常用的模型翼型。
除此之外,在模型飞机上还采用了一些对现有翼型加以改进而得的“新”翼型。
例如1/2NACA(6406+6409) 或写作NACA-6407.5,这是将两个中弧线相同但厚度不同的翼型相加,取其最大相对厚度平均值而得到的“新翼型”。
MV A-301-75,即保持MV A-301翼型中弧线不变而把厚度改薄到原来的75%。
克拉克-Y-6%,是将最大相对厚度为11.7%的克拉克-Y翼型减薄到6%的“新翼型”。
实际上这些翼型的中弧线也改变了。
(三)翼型性能的表示法翼型的性能就是指翼型在各种不同迎角时所产生的升力系数、阻力系数和压力中心的位置。
表示这三种数据的方法很多,有的用表格的形式,有的用曲线的形式,其中以后者最普遍,使用也最方便。
l. 升阻特性表示翼型性能的曲线有很多种。
最常见的是所谓升力系数曲线、阻力系数曲线和极曲线(亦称李林达曲线)。
升力系数曲线在第二章巳提过,这种曲线的横坐标表示迎角α,纵坐标表示升力系数C L,如图3-4所示。
从曲线上可以直接查到不同迎角时的升力系数,机翼的零升力迎角(用αo表示,通常是负值),临界迎角αc r和最大升力系数C Lmax。
阻力系数曲线与升力系数曲线相似。
横坐标是迎角α,纵坐标是翼型的阻力系数C D。
这个曲线表示在不同迎角时翼型产生阻力系数的大小。
还有一种翼型的性能曲线称为极曲线。
极曲线与以上两种曲线不同,这种曲线的横坐标表示翼型的阻力系数,纵坐标表示升力系数,在曲线上标出迎角的大小,如图3-5所示。
利用这种曲线可以很迅速地同时查到一定迎角下的升力系数和阻力系数。
譬如从图上可查到这种翼型在迎角6︒时的升力系数是0.80,阻力系数是0.078(相当于雷诺数84000的曲线)。