高中数学余弦定理公开课精品教案教学设计

高中数学余弦定理公开课精品教案教学设计
高中数学余弦定理公开课精品教案教学设计

余弦定理教学设计

一、教学内容解析

1.本章主要是通过任意三角形边角关系的探究,发现并掌握三角形中边长和角度之间的数量关系,即正弦定理和余弦定理,运用它们解决一些测量和与几何量有关的问题,本章教学的重点是运用两个定理解斜三角形.

2.本节内容是人教A版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时.余弦定理是揭示任意三角形边角之间关系的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机地结合起来,为解决与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据.

3.教科书中首先通过探究的方式,指出了“已知三角形的两边和它们的夹角,根据三角形全等的判定定理,这个三角形是大小、形状完全确定的三角形”,这样就可以从量化的角度看待此问题,直截了当提出问题:“已知三角形的两边和它们的夹角,如何计算出三角形的另一边和另两个角呢?”教科书上主要用向量的方法推导出余弦定理,同时提出坐标法等方法也可以证明余弦定理.为了体现由三边确定三角形,通过公式的变形指出了可以通过三角形的三边计算出三角形的三个内角,体现了量化思想.最后通过两个例题使学生掌握余弦定理及其推论的应用,同时让学生学会求三角形内角时如何选择正弦定理和余弦定理.

二、教学目标设置

1.通过对三角形边角关系的探索,理解余弦定理的证明方法,抽象出余弦定理的三个等式,进而掌握余弦定理;能从余弦定理中抽象出勾股定理,从而辨析勾股定理与余弦定理的内在联系.

通过作辅助线,构造出直角三角形,把一般三角形的边角关系转化至直角三角形中,

利用勾股定理求解边长.将陌生问题转化为熟悉问题,即数学中的转化思想.

由于向量的模及夹角对应线段的长度和夹角,所以把三角形的三边赋予向量的意义,进而把余弦定理的证明问题转化为向量问题,让学生感悟到数学不同章节知识的联系,进一步认识到向量的工具性.

通过建立坐标系,把平面几何问题中的长度问题转化为两点间的距离来解决,进一步感悟坐标法的作用.

对比余弦定理和勾股定理,让学生认识到勾股定理仅适用于直角三角形,而余弦定理适用于任意三角形,勾股定理为余弦定理的特殊情况,余弦定理为勾股定理的推广,即特殊与一般的辩证关系.

2.能够利用余弦定理及其推论解三角形.通过对余弦定理三个式子结构的分析,加强学生对三个公式的理解与记忆.三个等式中,每一个等式中含有四个量,已知其中的三个量求剩下的一个量,体现出方程思想.进而提出已知两边及其夹角求第三边和已知三边求某一内角两个基本题型,也是余弦定理的两个基本应用.通过让学生思考解决例题,培养学生的数学运算能力.通过对例题的多种方法的讲解,让学生学会求三角形内角时对正弦定理和余弦定理的选择,培养学生的逻辑推理能力.

3.让学生领悟向量法、坐标法、量化思想、转化与化归思想、方程思想等数学思想方法,以及特殊与一般的辩证关系,把数学思想方法渗透在课堂教学中,注重培养学生的数学核心素养.

三、学情分析

在学习本节课之前,学生已经在初中阶段学习过全等三角形,勾股定理,进入高中阶段又学习了三角函数,平面向量,解析几何初步等有关知识,在本册教科书中刚学习了正弦定理,已初步掌握了正弦定理的证明,并能够运用正弦定理解决一些解三角形问题.

有了以上这些知识与方法的铺垫,在此基础上,教师提出“已知三角形两边及它们的夹角,如何求第三边”这一数学问题,对于学生而言,一方面,运用前面所学的正弦定理较难解决这一问题;另一方面,本节课的授课对象是洛阳市第一高级中学(省级示范性高中)高二年级实验班A段学生,他们基础知识扎实,思路开阔,思维敏捷,面对求边长这一问题,能够很快联想到可以结合勾股定理、平面向量、坐标化等已有知识与方法,多角度展开思考,小组合作探究,寻找解

决方法.利用几何法证明过程中,部分同学会受到学案中已给图形的限制,而忽略对A为钝角、直角时两种情形的分析,欠缺定理证明的严谨性.此时需要老师适时引导,师生互动,完善过程.

在定理初步应用环节中,对学生来讲,套用公式进行求解,涉及到由正弦值求角进行分情况讨论都能顺利完成,但是在合理选用定理公式上带有一定盲目性,如何保证计算简便、避免讨论等方面的能力还有所欠缺,需要老师就例题的几种解法进行详细的对比、辨析,以促进学生能力达成.

四、教学策略分析

1.个人独立思考与小组合作探究相结合.培养团队意识,体验知识生成.2.学生展示成果,获取成功喜悦.

不同的同学会用到不同的方法,鼓励学生展示自己小组的成果,增强学习的自信,同时学会分享.通过展台展示学生的解题过程,便于及时发现学生的错误,及时纠正,规范解答步骤和过程,提高教学效率.很好地突出了余弦定理证明这一重点.

3.学生演板.

既可凸显学生个人解法的单一性,又可展现学生解法的多样性.通过教师对解题过程的讲解及对多种解法的对比,引导学生得出解题感悟,从而突破“如何合理选用正弦定理与余弦定理求三角形内角”这一难点.

4.适时点拨,问题引导.

学生展示成果时,师生互动,及时鼓励,问题引导,完善漏洞.

5.使用PPT辅助教学,提高课堂效率.

PPT内容清晰、形象,容易理解,提高学习效率.同时也很好地激发了学生的学习兴趣,有助于集中学生的注意力.呈现出的信息容量大,使课堂变得更加紧凑充实.

五、教学过程设计

复习正弦定理

设计意图:通过复习正弦定理的形式及其作用,使学生认识到正弦定理为

解三角形的一种工具,能定量研究三角形的边角关系.

师生活动:

老师:上一节课,我们学习了正弦定理,正弦定理揭示了三角形中边角之间的内在联系,首先我们对上节课所学习的内容进行复习回顾.正弦定理的内容是什么?利用正弦定理能解决解三角形的哪些类型?

提问学生,学生回答.

1.正弦定理:C

c B b A a sin sin sin ==. 2.运用正弦定理解决的两类解三角形问题:

(1)已知三角形任意两角和一边解三角形;

(2)已知三角形两边和其中一边的对角解三角形.

问题1:如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.怎样在这样的已知三角形的两边及其夹角的条件下求出另外一边,进而解出三角形呢?

设计意图:通过提出新的解三角形问题,引发学生的思考.让学生明确已知两边及其夹角时,该三角形的大小和形状完全确定,进而第三边的长唯一确定.通过“边a 的长就是线段BC 的长,也可以看成点B 和点C 两点间的距离,联系已经学过的知识”提示语来启发学生寻找思维出发点.

师生活动:

老师:那么解三角形问题,除了这两种类型,我们是否还会遇见其他情形呢?请看这样一个问题:在△ABC 中,已知b ,c 及A ,能否利用已知条件求出边a

呢?

老师:边b ,c 及A 已知,那么该三角形确定吗?

学生:根据三角形全等的判定方法,边角边,该

三角形是唯一确定的.

老师:边b ,c 和它们的夹角已知,那么该三角形的大小和形状是完全确定的.当然,边BC 的长是唯一确定的,边a 的长就是线段BC 的长,也可以看成点B 与点C 两点间的距离.请同学们联系已经学过的知识,进行分组合作探究,寻求解决方法.

高中数学新课程创新教学设计案例等比数列

高中数学新课程创新教学设计案例等比数列 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

47 等比数列 教学内容分析 这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标 1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用. 2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力. 3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析 这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计 一、问题情景 在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列: 1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型. 细胞分裂个数可以组成下面的数列: 1,2,4,8,… 2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是 1,20,202,203,…

(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是 本利和=本金×(1+利率)存期 例如,现在存入银行10000元钱,年利率是%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位): 表47-1 时间年初本金(元)年末本利和(元) 第1年10000 10000× 第2年10000×10000× 第3年10000×10000× 第4年10000×10000× 第5年10000×10000× 各年末的本利和(单位:元)组成了下面的数列: 10000×10198,10000×101982,10000×101983,10000×101984,10000×101985. 问题:回忆等差数列的研究方法,我们对这些数列应作如何研究 二、建立模型 结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列 叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即 [问题] 1. q可以为0吗有没有既是等差,又是等比的数列 2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗如果能得出,试用以上例子加以检验. 对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式. 3. 你如何论证上述公式的正确性.

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

27.3垂径定理教案

27.3(1) 垂径定理 崇明县三乐学校秦健 一、教学内容分析 学情分析:学生已经知道,在同圆或等圆中,圆心角、圆心角所对的弧和弦及其弦心距这四组量之间有密切的联系。(即“四等定理”)本节利用圆的轴对称性,进一步得到圆的直径与弦及弦所对的弧之间也存在着密切的关联.因为圆是轴对称图形,且任意一条直径所在直线都是它的对称轴,所以课本对于这些量之间关系的讨论,从垂直于弦的直径的性质开始展开,并加以推理证明; 教材分析:垂径定理及其推论揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;在垂径定理得出的过程中,体验了从感性到理性、从具体到抽象思维过程,有助于培养思维的严谨性. 二、教学目标 1、经历垂径定理的探索和证明过程,掌握垂径定理; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、能初步运用垂径定理及推论解决有关数学问题. 三、教学重点及难点 重点:掌握垂径定理的内容并初步学会运用. 难点:垂径定理的探索和证明. 四、教学过程 (一)情景引入 1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)说明:通过实际问题引入新课激发学生学习兴趣

52D C B A O 1、观察与思考: 圆是怎样的对称图形?对称轴与对称中心分别是什么? (二)学习新课 1、思考 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,且AB ⊥CD ,垂足为 M ,则图中有哪些相等的线段和弧?(半圆除外)为什么? (学生观察,猜想,并得出以下结论) ①CO=DO (同圆的半径相等) ②AM=BM,弧AD=弧BD ,弧AC=弧BC (如何证明?) (学生讨论,并得出推导过程,教师板书) 联结OA 、OB ,则OA=OB. ∵ AB ⊥CD, ∴ AM=BM (等腰三角形三线合一), ∠AOD=∠BOD, ∴ 弧AD=弧BD (同圆中,相等的圆心角所对的弧相等). ∵ ∠AOC=∠BOC, ∴ 弧AC=弧BC. 2、定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧. 结合图形写成符号语言: ∵直径CD ⊥弦AB ,垂足为M ∴ AM=BM ∴ 弧AD=弧BD (同圆中,相等的 圆心角所对的弧相等). 弧AC=弧BC. 3、抢答题:如图:已知⊙O 的半径OC 垂直于弦AB,垂足为点D , AD 长2厘米,弧AB 长5厘米,则AB= 弧 AC= . 4、例题分析 例1、 已知:如图,以点O 为圆心的两个圆中, 大圆的弦AB 交小圆于点C 、D 两点,

高中数学教学设计模版及案例

联系已学知识,可以解决这个问题。 对应问题1. 第三边c 是确定的,如何利用条件求之? 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点?能够解决什么问题? 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。 课堂练习 在?ABC 中,若222a b c bc =++,求角A (答案:A=120°) 教学情境四 课堂小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 (3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。 习题设计 1. 在?ABC 中,a=3,b=4,?=∠60C ,求c 边的长。 2. 在?ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。 3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。 4. △ABC 中,若()222tan a c b B +-=,求角B 的大小。 5. ?ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小) (本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动) 编写要求: 1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。 2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

《垂径定理》一课两讲的评课

增城市实验中学九年级数学备课组 2012年9月21日在增城二中进行了《垂径定理》两节全市公开课,两位老师的上课模式都是以生本教育理念为基础,充分发挥学生的主体作用,采用自主探究、合作交流的学习方式,让学生积极参与到学习中,构成积极、欢乐、高效的课堂。 我们的课堂教学应该是有效的教学,有效备课,备好学生,两为老师的备课是非常充分的,从教师的教案来看,老师对教材的难点重点把握很到位,练习能结合学生的学习特点和掌握情况进行评讲。在教学过程中,两位老师的课堂是有效的上课,教师让学生体验到教育给他带来的无穷快乐,两位老师在课堂上给学生充足的空间,让孩子们自主交流、展示成果、互相质疑,在合作、交流、质疑中主动学习,获取知识和解决问题的能力,经过自己的实践获得知识,他们特别有成就感,自信心增强,在这种氛围中学习,学生们很放松,他们得到了释放,在课堂上很放的开,对学习更加有兴趣了。 用生本教育模式上课,对我们教师的要求更高,在生本高效课堂中,更要突出教师的主导地位,也就是说教师主要起引导作用。如何引导学生参与课堂,成了我们要思考的问题。我们要适当的引领,对于展示的好的地方要给予鼓励,对于展示不到位的要及时给予提示,尽量使得环节完整。在学生展示的过程中还要及时点拨,尤其是重难点知识。点拨尽量做到语言精简、方法恰当、并列举恰当的实例进行补充。这样便于我们的学生在以后的展示过程中抓住重难点。对于学生的语言表达能力、知识归纳的能力的提高会有很大的帮助。这些都是我们在今后的教学中要注意的地方。

小楼中学九年级备课组 听了增城二中赖金佑老师上完一节成功的生本课后,再对比自己备组设置的教案与上课方式给予我们备组很大的启发。赖老师上课方式与教学内容的设置都充分体现她的严谨教学风格。首先从教学内容的设置上看,他设置的教学内容非常严谨,井井有条。特别是习题的设置,层次分明,层层递进,题型各异,而且每道题目都是围绕中考的类型设置。让学生不但熟练掌握本节的内容,而且熟悉中考的题型。整节的内容含量恰当。从教法上看,赖老师的生本教育理念,注重引导学生自己去发现问题,在重点内容的讲解上细致又严谨,时间把握得非常恰当。赖老师能给学生建立一个民主平等的平台,营造一种自觉学习、合作探究的氛围,从而使学生的个性得到张扬,生命得以激扬,综合能力得到提升。

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

垂径定理公开课优秀教案Word版

24.1.2 垂直于弦的直径

垂直于弦的直径 教学设计 初中数学 白水县城关一中 刘春芳 垂直于弦的直径 教学设计 教学目标:1.使学生理解圆的轴对称性;2.掌握垂径定理 3.学会运用垂径定理解决有关的证明、计算问题。 过程与方法:通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。 情感、态度与价值观:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。 教学重点:垂径定理及应用 教学难点:垂径定理的理解及其应用

学情分析:学生在生活中经常遇到圆方面的图形,对本节课会比较有兴趣,并且学过轴对称图形相关知识。同时九年级的同学仍然是比较好奇、好动、好表现的。但在合作交流、探索新知等方面发展的极不均衡。在学习的主动性、积极性等方面也有较大的差异。 教学用具:圆形纸片,多媒体 教学过程: 一、创设情景:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,赵洲桥主桥拱的半径是多少?怎样求?学完本节课后就可以解决这个问题了 二、引入新课---揭示课题: 1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论: (1)圆是轴对称图形 (2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴 (3)圆的对称轴有无数条 (4)圆也是中心对称图形.(出示教具演示)。 2、再请同学们在自己作的圆中作图:(1)任意作一条弦AB;(2)作直径CD垂直弦AB 垂足为M。(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD 垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢? 三、讲解新课---探求新知 (1)实验--观察--猜想:让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于M.那么AM=BM,弧AC=弧BC,弧AD=弧BD. (2)证明:引导学生用“叠合法”证明此定理 (3)对定理的结构进行分析 (4)结合图形用几何语言表述 (5)垂径定理的变式

24.1.2垂直于弦的直径 教学设计

公开课教案

讲解新课: 1 、证明猜想 ⑴提问: 什么是猜想的题设? 什么是猜想的结论? ⑵要求学生根据“猜想”的题设和结论说出已知和求证. ⑶用大屏幕打出证明过程. 结合证明过程提问: (1)证明利用了圆的什么性质? (2)证明CE=DE还有其它方法吗? 教师小结:通过证明,我们知道猜想是正确的,因此我们可以把 它叫做“垂径定理”. 2、垂径定理 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 ﹤2﹥﹤1﹥﹤3﹥﹤4﹥﹤5﹥ 两条弧.(优弧、劣弧) 为运用方便,将原定理叙述为:⑴过圆心;⑵垂直于弦;⑶平分 弦⑷平分弦所对的优弧;⑸平分弦所对的劣弧. 练习1 ⑴若AB为⊙O的直径, CD⊥AB于E , ⑵在下列图形中,你能否利用垂径定理找到相等的线段或的圆弧. 3、例题讲解 例1已知:如图,在⊙O中,弦AB的长为8㎝,圆心O到AB的距离 为3㎝. 求:⊙O的半径.(学生回答,教师板书过程) 学生积极思考作答。 积极观察、思考,得 出新的证明方法。 引导学生剖析定理的 条件,结论,有利于 学生的深刻理解和全 面把握。 巩固定理的条件和结 论。

教 学 过 程 学 生 活 动 解:连结OA,作OE ⊥AB,垂足为 E. ∵OE ⊥AB, ∴AE=EB. ∵AB=8 ㎝ ,∴AE=4㎝. 又∵OE=3 ㎝ , 在Rt △AOE 中, ()cm AE OE OA 5432222=+=+= ∴⊙O的半径为5㎝. 教师强调:从例1可以看出“弦心距”是一条很重要的辅助线,弦心距的作用就是平分弦,平分弦所对的弧,它和直径一样. 练习2 ⑴半径为5 ㎝的⊙O中,弦AB=6 ㎝,那么圆心O 到弦AB 的距离是 ; ⑵⊙O的直径为10㎝,圆心O 到弦AB 的距离为3 ㎝,那么弦AB 的长是 ; ⑶半径为2㎝的圆中,过半径的中点且垂直于这条半径的弦长是 . 例2①已知:在以O 为圆心 的两个同心圆中,大圆的 直径AB 交小圆于C 、D 两点. 求证:AC=BD. 例2②已知:在以O 为圆心的 两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证:AC=BD. 课堂小结 ⑴垂径定理相当于说一条直线如果具备:⑴过圆心;⑵垂直于弦;则它有以下的性质:⑶平分弦⑷平分弦所对的优弧;⑸平分弦所对的劣弧. ⑵在圆中解决有关于弦的问题时,经常是过圆心作弦的垂线段(弦心距),连结半径等辅助线,为应用垂径定理创造条件. 作业: ① 证明垂径定理(用等腰三角形三线合一性质证明) 书中P88 3 P89 4 ② 目标P90. 学生口述证明过程,教师板书。 引导学生总结出圆的一条重要辅助线。 巩固定理内容。 通过例题的变式,分层教学,使学生达到不同的目标。

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动.

[问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角 2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角 3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角 4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角 显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备. 二、建立模型 1. 正角、负角、零角的概念 在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角. 2. 象限角 当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限. 3. 终边相同的角 在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即 390°=30°+360°,(k=1); -330°=30°-360°,(k=-1). 设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和. 三、解释应用 [例题] 1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

二项式定理公开课教案

二项式定理公开课教案 1、重点:二项式定理的发现、理解和初步应用。 2、难点:二项式定理的发现。 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* ∈N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*∈+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a ++=+; 32232333)()()(b ab b a a b a b a b a +++=++=+; 43223434464)()()(b ab b a b a a b a b a b a ++++=++=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +++++=++=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 问题1:请你找出以上数据上下行之间的规律。 预期回答:下一行中间的各个数分别等于上一行对应位置的相邻两数之和。 问题2:以5 )(b a +的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

预期回答:①展开式每一项的次数按某一字母降幂排列、另一字母升幂排列,且两个字母的和等于乘方指数;②展开式的项数比乘方指数多1项;③展开式中第二项的系数等于乘方指数。 初步归纳出下式: ()()()()()n n n n n n b b a b a b a a b a +++++=+--- 33221)( (※) (设计意图:以上呈现给学生的由系数排成的“三角形”,起到了“先行组织者”的作用,虽然,教师将此“三角形”模型以定论的形式呈现给学生,但是,它毕竟不是最后的结果,而是一种寻找系数规律的有效工具,便于学生将新的学习材料同自己原有的认知结构联系起来,并纳入到原有认知结构中而出现意义。这样的学习是有意义的而不是机械的,是主动建构的而不是被动死记的心理过程。)练习:展开7 )(b a + 教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作,称为杨辉三角形,这项发明比欧洲人帕斯卡三角早400多年。你们今天做了与杨辉同样的探索,以鼓励学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。第二步:继续设疑 如何展开100) (b a +以及)()(*∈+N n b a n 呢? (设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷 的方法的欲望。) 继续新授 师:为了寻找规律,我们将))()()(()(4b a b a b a b a b a ++++=+中第一个括号中的字母分别记成11,b a ;第二个括号中的字母分别记成22,b a ;依次类推。请再次用多项式乘法运算法则计算:))()()(()(443322114b a b a b a b a b a ++++=+

高中数学教学设计模版及案例

教学情境一:(问题引入)在ABC中,已知两边a,b和夹角C,作出三角形。 联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点能够解决什么问题 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:(由学生推出) 222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系 (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

高中数学教学设计案例分析参考

高中数学教学设计案例分析参考 高中数学《圆锥曲线定义的运用》教学案例的反思 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低

学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。 (A)椭圆(B)双曲线(C)线段(D)不存在

高中数学《二项式定理》公开课教案设计

二项式定理公开课教案 (第一教时) 一、教学目标 1、理解杨辉三角形。其行为样例是:(1)能用不完全归纳法写出杨辉三角形;(2)能根据杨辉三角形对)6()(≤+n b a n 的二项式进行展开。 2、掌握二项式定理。其行为样例是:(1)能根据组合思想及不完全归纳法猜出二项展 开式的系数),,,2,1,0(*∈=N n n r C r n Λ以及二项展开式的通项r r n r n r b a C T -+=1;(2)能正确区分二项式系数和某一项的系数;(3)能应用定理对任意给定的一个二项式进行展开、并求出它特定的项或系数。 二、教学重点与难点 1、重点:二项式定理的发现、理解和初步应用。 2、难点:二项式定理的发现。 (教具:多媒体课件) 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* ∈N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*∈+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。 (设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。) 2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a ++=+; 32232333)()()(b ab b a a b a b a b a +++=++=+; 43223434464)()()(b ab b a b a a b a b a b a ++++=++=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +++++=++=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1

叠加原理教案

授课班级10计算机专业计算机授课教师王居授课时间编号课时 2 授课目标能力目标 能利用叠加原理求解复杂电路。 知识目标 1:掌握叠加原理的内容,解题步骤,注意点。 2:能熟练用叠加原理求解复杂电路。 3:掌握几种典型的题目。 情感目标 增强独立完成任务的能力 教学重点能利用叠加原理求解复杂电路。 1:掌握叠加原理的内容,解题步骤,注意点。2:能熟练用叠加原理求解复杂电路。 3:掌握几种典型的题目。 教学难点叠加原理的典型题型。 学情分析学生对部分知识以前理解较好。 课后阅读了解并掌握叠加原理的应用 课外作业 与操作 教学后记学生对叠加原理很容易的吸收纳入,并对它产生兴趣。

复习提问 1、支路电流法的定义? 提问回答 2、利用支路电流法解题时应注意哪些? 叠加定理 一、叠加定理的内容 当线性电路中有几个电源共同作用时,各支路的电 流(或电压)等于各个电源分别单独作用时在该支路产生的 电流(或电压)的代数和(叠加)。 在使用叠加定理分析计算电路应注意以下几点: (1) 叠加定理只能用于计算线性电路(即电路中的元件 均为线性元件)的支路电流或电压(不能直接进行功率的叠 加计算); (2) 电压源不作用时应视为短路,电流源不作用时应 视为开路; (3)叠加时要注意电流或电压的参考方向,正确选取各 分量的正负号。 (4) 二、应用举例 【例3-3】如图3-8(a)所示电路,已知E1 = 17 V,E2 = 17 V,R1 = 2 Ω,R2 = 1 Ω,R3 = 5 Ω,试应用叠加定理求 各支路电流I1、I2、I3 。

图3-8 例题3-3 解:(1) 当电源E 1单独作用时,将E 2视为短路,设 R 23 = R 2∥R 3 = 0.83 Ω 则 A 1A 5A 683 .217 1322 313 23 223111=+==+===+='I R R R 'I 'I R R R 'I R R E 'I (2) 当电源E 2单独作用时,将E 1视为短路,设 R 13 =R 1∥R 3 = 1.43 Ω 则 A 2A 5A 743 .217 23 11 323 13 113222=+==+===+=''I R R R ''I ''I R R R ''I R R E ''I (3) 当电源E 1、E 2共同作用时(叠加),若各电流分量与原电路电流参考方向相同时,在电流分量前面选取“+”号,反之,则选取“-”号: I 1 = I 1′- I 1″ = 1 A , I 2 = - I 2′ + I 2″ = 1 A , I 3 = I 3′ + I 3″ = 3 A 【例3-4】《相约》

高中数学复习课(一)统计案例教学案新人教A选修1-2

复习课(一) 统计案例 回归分析 (1)变量间的相关关系是高考解答题命题的一个,主要考查变量间相关关系的判断,求解回归方程并进行预报估计,题型多为解答题,有时也有小题出现. (2)掌握回归分析的步骤的是解答此类问题的关键,另外要掌握将两种非线性回归模型转化为线性回归分析求解问题. [考点精要] 1.一个重要方程 对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归直线方程为y ^=b ^x +a ^. 其中b ^= ∑i =1 n x i -x y i -y ∑i =1 n x i -x 2 ,a ^=y -b ^ x . 2.重要参数 相关指数R 2 是用来刻画回归模型的回归效果的,其值越大,残差平方和越小,模型的拟合效果越好. 3.两种重要图形 (1)散点图: 散点图是进行线性回归分析的主要手段,其作用如下: 一是判断两个变量是否具有线性相关关系,如果样本点呈条状分布,则可以断定两个变量有较好的线性相关关系; 二是判断样本中是否存在异常. (2)残差图: 残差图可以用来判断模型的拟合效果,其作用如下: 一是判断模型的精度,残差点所分布的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高. 二是确认样本点在采集中是否有人为的错误. [典例] (全国卷Ⅲ)如图是我国2008年到2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:∑i =1 7 y i =9.32,∑i =1 7 t i y i =40.17, ∑i =1 7 y i -y 2 =0.55,7≈2.646. 参考公式:相关系数r = ∑i =1 n t i -t y i -y ∑i =1 n t i -t 2 ∑i =1 n y i -y 2 , 回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^ = ∑i =1 n t i -t y i -y ∑i =1 n t i -t 2 ,a ^=y -b ^ t . [解] (1)由折线图中数据和附注中参考数据得 t =4,∑i =1 7 (t i -t )2 =28, ∑i =1 7 y i -y 2 =0.55, ∑i =1 7 (t i -t )(y i -y )=∑i =1 7 t i y i -t ∑i =1 7 y i =40.17-4×9.32=2.89, r ≈ 2.89 2×2.646×0.55 ≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系. (2)由y =9.32 7 ≈1.331及(1)得

相关文档
最新文档