结构力学第三章资料

合集下载

结构力学第三章静定结构受力分析

结构力学第三章静定结构受力分析

MA

0, FP

l 2
YB
l

0,YB

FP 2
()
Fy

0,YA
YB

0,YA

YB


Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA

0, ql
l 2

XC
l

0,
XC

1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30

结构力学第三章

结构力学第三章

极 值
有尖角
(尖角突出方 向同Fy指向)
有突变
(突变值 为MO)
为 零
注:
• (1)在铰结处一侧截面上如无集中力偶 作用,M=0。 • 在铰结处一侧截面上如有集中力偶作用, 则该截面弯矩=此外力偶值。
• (2)自由端处如无集中力偶作用,则该 端弯矩为零。 • 自由端处如有集中力偶作用,则该端弯 矩=此外力偶值。
FQBA
B
FQBE
D E FP3=1kN
FxA =3kN FyA =3kN
A
MA=15kN· m
(2)、作弯矩图:
• • • • • • • • 求各杆杆端弯矩: 5 1 CB段: MCB=0 MBC=1kN· (左侧受拉) 1.25 m BE段: MEB=0 MBE= - 4kN· m(上侧受拉) BA段: MBA=5kN· (左侧受拉) m MAB=15kN· m(左侧受拉) 15
一系列简支梁的M图
21.25kN· m
静定多跨梁与相应的多个简支梁弯矩图的比较 后,可以看到:在多跨静定梁中弯矩分布要均匀一 些。这是由于多跨静定梁中设置了带伸臂梁的基本 部分。这样,一方面减小了附属部分的跨度,另一 方面,在基本部分的支座处产生了负弯矩,它使跨 中正弯矩减小。 一般来说,多跨静定梁较相应的多个简支梁, 材料用量可以少一些,但构造要复杂一些。
FP2=4kN
q=0.4kN/m
FP3=1kN
FxA=3kN 先求各杆杆端弯 矩,再用分段叠加法 MA=15kN· m FyA =3kN 作弯矩图。
作隔离体图,如左图:
FP1=1kN FP2=4kN
FP1=1kN
C
MBC
B FQBC
FP2=4kN

结构力学第三章静定结构组合结构及拱

结构力学第三章静定结构组合结构及拱
0 FNJ 右 FQJ 右 sin FH cos (7.5) (0.447) 10 0.894
3.35 8.94 12.29kN (压)
二、三较拱的压力线
如果三铰拱某截面D以左(或以右)所有外力的 合力FRD已经确定,则该截面的弯矩、剪力、轴 力可按下式计算:
15kN K右
Fº =-2.5kN QK右
0 0 (FH 10kN , FQK左 12.5kN , FQK右 2.5kN )
(sin 0.447, cos 0.894)
0 FQK 左 FQK 左 cos FH sin 12.5 0.894 10 0.447
67.5kN
50
A F C G E
B
30
D
M图
kN.m
求AC杆和BC杆剪力
F
FQAC
y
0, FQAC 7.5kN
22.5kN 7.5 32.5 10kN/m FNAD
FAy
+ _
15
+
7.15 67.5kN 35 FQ图 kN
作业
3-20
§3-6 三铰拱受力分析
拱 (arch)
FN DE 135kN ,
FNDF FN EG =-67.5kN
FAy
D
FCx 135kN , FCy 15kN
FNDA
FNDF
D
FN DA FN EB= kN 151
FNDE
2m
F
50kN.m
求AC杆和BC杆弯矩
22.5kN 5kN.m
20kN.m 10kN/m
30kN.m
MD FRD

结构力学第三章应掌握的知识点

结构力学第三章应掌握的知识点

第三章应掌握的知识
建立位移计算公式的关键是什么?如果已知非 建立位移计算公式的关键是什么? 线性的力-位移(弯矩-曲率,剪力-剪切角, 线性的力-位移(弯矩-曲率,剪力-剪切角, 轴力-伸缩)关系, 轴力-伸缩)关系,如何剪力荷载作用下的位 移计算一般公式? 移计算一般公式? 试说明位移计算一般公式的适用条件、各项的 试说明位移计算一般公式的适用条件、 物理意义。 物理意义。 试说明荷载下位移计算一般公式的适用条件、 试说明荷载下位移计算一般公式的适用条件、 各项的物理意义。 各项的物理意义。 图乘法的适用条件是什么? 图乘法的适用条件是什么?对变截面梁或拱能 否用图乘法?图乘法公式中正负号如何确定? 否用图乘法?图乘法公式中正负号如何确定? 图乘法求位移时应注意避免哪些易犯的错误? 图乘法求位移时应注意避免哪些易犯的错误? 增加各杆刚度是否一定能减小荷载作用引起的 结构位移? 结构位移?
第三章应掌握的知识
如何证明功的互等定理? 如何证明功的互等定理? 何谓位移互等定理? 何谓位移互等定理?有人说δij= δji仅是数 值相等,量纲和单位是不等的,对吗?为什么? 值相等,量纲和单位是不等的,对吗?为什么? 反力互等定理是否适用于静定结构? 反力互等定理是否适用于静定结构?这时会得 到什么结果? 到什么结果? 位移-反力互等定理是否适用于互等定理是否仅仅是数值相 量纲和单位并不相等? 等,量纲和单位并不相等?
第三章应掌握的知识
变形体虚位移原理证明的基本思路是什么? 变形体虚位移原理证明的基本思路是什么? 变形体虚功原理与刚体虚功原理有何区别和联 系? 变形体虚功原理证明中何时用到平衡条件? 变形体虚功原理证明中何时用到平衡条件?何 时用到变形协调条件? 时用到变形协调条件? 结构可能产生哪些类型的广义位移? 结构可能产生哪些类型的广义位移?与其相对 应可能有哪些类型的广义力? 应可能有哪些类型的广义力? 为什么线弹性实共有1/2,而虚功没有1/2? 为什么线弹性实共有1/2,而虚功没有1/2? 试写出平面应力状态的虚位移原理虚功方程。 试写出平面应力状态的虚位移原理虚功方程。 单位荷载法求位移时,平衡的力状态是什么? 单位荷载法求位移时,平衡的力状态是什么? 协调的位移状态是什么? 协调的位移状态是什么? 为什么说单位广义力是一个单位1的量? 为什么说单位广义力是一个单位1的量?

结构力学第3章

结构力学第3章
D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图

叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12

9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B

结构力学第三章

结构力学第三章
第三章 静定结构的内力计算
§3-1 静定结构的一般概念 §3-2 静定平面刚架 §3-3 三铰拱 §3-4 静定桁架 §3-5 静定组合结构 §3-6 静定结构的特性
§3-1 静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
FxA
FxB
Fx
M
0 C
f
(2)支座反力
设拱轴线方程 y f已(x知) 。
任意截面K的内力为:
MK 0
MK
FyAx FP1(x a1) FxA y
M
0 K
FxA y
F 0 FQK FyA cos FP1 cos FxA sin FQ0K cos FxA sin
F 0 FNK FyA sin FP1 sin FxA cos (FQ0K sin FxA cos)
二、静定平面桁架的内力计算
静定平面桁架的内力计算方法:结点法、截面法及两法的联合应用。 1.结点法:
切取结点为隔离体用 Fx 0、求F解y 未0知的轴力。
例 求图示桁架内力
解:(1)支座反力
FyB 24 12 2kN()、FyA 8 2 6kN()、FxA 0
(2)内力(设各杆轴力以拉为正):
1.支座反力:
FyA
Fy0A
10(16 16
4)
7.5kN
FyB
Fy0B
10 4 16
2.5kN
F A
F B
Fx
M
0 C
f
7.58 10(8 4) 4
5kN
2、内力:集中荷载 F左P 右分段列内力方程。

结构力学 第三章 静定梁和静定平面钢架

结构力学 第三章 静定梁和静定平面钢架

2、截面法 若要求某一横截面上的内力,假想用一平面沿杆轴垂直方向将该 截面截开,使结构成两部分;在截开后暴露的截面上用力(内力)代 替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成为外力,因此,
由任一部分的静力平衡条件,均可列出含有截面内力的静力平衡方程。 解该方程即将内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),即:轴力FN 、 剪力FQ和弯矩Μ 。
dFN/dx=-qx
dFQ/dx=-qy dM/dx=Q
d2M/dx2=-qy
增量关系: DFN=-FPx
DFQ=-FPy
DM=m
1)微分关系及几何意义: dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qy (1)在无荷载区段,FQ图为水平直线;
当FQ≠0时,Μ图为斜直线;
右右为正。
FQ=截面一侧所有外力在杆轴垂直方向上投影的代数和。左上为正, 右下为正。
Μ =截面一侧所有外力对截面形心力矩代数和。弯矩的竖标画在杆
件受拉一侧。
例3-1-1 求图(a)所示简支梁在图示荷载下截面的内力。
解:1)支座反力 ∑ΜA=0 FBy×4﹣10×4×2﹣100× (4/5)×2=0 Fby=60kN (↑) ∑ΜB=0 FAy=60kN (↑) ∑Fx= 0 FAx+100×(3/5)=0 FAx=-60kN (← ) 由 ∑Fy= 0 校核,满 足。
(下侧受拉)
区段叠加法求E、D截面弯矩; ΜE=20×42/8+120/2=100kNm ΜD=40×4/4+120/2=100kNm
(下侧受拉) (下侧受拉)
内力应考虑
说明:集中力或集中力偶作用点,注意对有突变的 分两侧截面分别计算。

结构力学-第三章

结构力学-第三章
M FN FQ M+dM
dx dx
FN+d FN FQ+dFQ
内力图-表示结构上各截面内力值的图形 横坐标--截面位置;纵坐标--内力的值
1.结构力学的截面内力分量及其正负号规定
FN FN
轴力—截面上应力沿杆轴切线方向的 合力,使杆产生伸长变形为正,画轴力图 要注明正负号;
剪力—截面上应力沿杆轴法线方向的
C
25 5 20 25 50 20
F
55
G
85 40 10
H
50
40k N A 25 2m B 2m C 2m 5 50 20 50 40k N D 1m
80k N· m E 2m 2m 1m 55 40 40 20 F
20k N/m G 4m 85 40 10 2m H
M 图(k N· m)
20k N/m
A
2
2
YA
C
YB
XC
YC
B
XB
2)取右部分为隔离体 Fp l M C 0, X B l YB 2 0, X B 4 () Fp Fy 0, YC YB 0, YC YB 2 () Fp Fx 0, X B X C 0, X C 4 ()
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。 q F
A B C D E F G H
q F
E C A B D F G H
F A F A B C D E B C D E
q F q F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.无荷载分布段(q=0),Q图 Pl 为水平线,M图为斜直线. M图
自由端无外力偶
则无弯矩.
Q图
例3-2: 作内力图
铰支端无外力偶 则该截面无弯矩.
M图 Q图
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线.
2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同.
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
ql2
q
l
q
l
1 ql2 16 ql2
6.分段叠加法作弯矩图
q
1 ql2
A
16
B
C
l/2
l/2
1 ql
8
q
1 ql2 16
q 1 ql2 16
l/2
q 1 ql2 16
l/2
q
1 ql2 16
练习: 分段叠加法作弯矩图
q A
B l
1 ql2 4
C
q
ql
l
l
1 ql 2 l
单跨梁
1.单跨梁支反力 2.截面法求指定截面内力 3.作内力图的基本方法 4.弯矩,剪力,荷载集度之间的微分关系 5.叠加法作弯矩图 6.分段叠加法作弯矩图
第3章
7、斜梁的内力计算
计算斜梁或斜杆的方法仍然是截面法。与水平杆相比,不同点在于斜 梁或斜杆的轴线是倾斜的。计算其轴力和剪力时,应将各力分别向截面的 法向、切向投影。
1 ql
2
2
2
4.弯矩,剪力,荷载集度之间的微分关系
q A
M(x) M dM
B
qdx
x
l
N ( x)
N dN
微分关系: dQ(x) / dx q(x)
Q(x)
Q dQ
截面弯矩dx等于该截面一
dM (x) / dx Q(x) 侧的所有外力对该截面
的力矩之和
d 2M (x) / dx2 q(x)
第3章 静定梁和静定刚架的受力分析
● 本章教学基本要求:灵活运用隔离体平衡法(截面 法)计算指定截面的内力;熟练掌握静定梁和静定平 面刚架内力图的作法;了解空间刚架内力图绘制的方 法。 ● 本章教学内容的重点:绘制静定梁和静定平面刚架 的内力图,这是本课程最重要的基本功之一。
● 本章教学内容的难点:用隔离体平衡法计算任一指 定截面的内力;用区段叠加法绘弯矩图;根据弯矩图 和所受荷载绘出剪力图和轴力图。
ql2/3
ql2sinα/3 C
HAsinα α
ql2cosα/3
NC
D
MC
QC
HA VAsinα
VA VAcosα
第3章
(4)绘制斜梁内力图如下:
§ 3.2 多跨静定梁
基本部分--能独立
1.多跨静定梁的组成 承载的部分。
附属部分--不能独 立承载的部分。
基、附关系层叠图
三种组成形式
A
B
C
D
E
§3-1 单跨静定梁受力分析 1.单跨梁支反力
例.求图示粱支反力
AP X
M
L/2 L/2
解: FX 0 X 0 FY 0 Y P() M A 0 M PL / 2( )
Y
2.截面法求指定截面内力
内力符号规定:
K
弯矩 以使下侧受拉为正
剪力 绕作用截面顺时针转为正
轴力 拉力为正
例:求跨中截面内力
q
B
(1)求支座反力:
解:
C
A
α
D VB
HA
l/3 l/3
l/3
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
VAΒιβλιοθήκη 校核:Yqj 6qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
图有尖点,且指向与荷载相同. 4.集中力偶作用处, M图有突变,且突变量等于力偶
值; Q图无变化.
M图
Q图
例3-4: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
q A
FAx
C
l
FAy
解: FAx 0, FAy ql / 2(),
FBy ql / 2()
B
Fx 0, NC 0
FBy
Fy
0, Q C
0
M c 0, M C ql2 / 8
(下侧受拉)
3.作内力图的基本方法 内力方程式:
M M (x) 弯矩方程式
例3-1:作图示粱内力图
q A
ql2 / 2
Q=0的截面为抛 物线的顶点.
ql2 / 2
M图
ql
Q图
例3-3: 作内力图
ql2 / 2
M图 Q图
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,
且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M
Q Q(x) 剪力方程式 N N(x) 轴力方程式 B 解: FAx 0, FAy ql / 2(),
FAx
l
FAy
M Q
1 ql 2
FBy ql / 2()
FBy Fx 0, N (x) 0
1 ql2 8
Fy
0, Q( x)
1 2
qx
qx
M 0, M (x) 1 qlx qx x
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
层次图
(主) A
(次) B
(再次) C
(最次) E D
A
BC
DE
F
A
BC
DE
层次图
(次)
(次)
(主)
(主)
(主)
(次)
(主)
(主)
BC
DE
BC
A
静定结构受力分析
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,按组成的相反
顺序进行逐步分析即可 本章内容:
静定梁; 静定刚架; 学习中应注意的问题: 多思考,勤动手。本章是后面学习的基础,十分 重要,要熟练掌握!
● 本章内容简介:
3.1 单跨静定梁 3.2 多跨静定梁 3.3 静定平面刚架 *3.4 静定空间刚架
图有尖点,且指向与荷载相同.
M图 Q图
ql2 / 2
M图
A支座的反力 大小为多少, 方向怎样?
Q图
M图
Q图
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,
且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M
相关文档
最新文档