机械设计,轴

合集下载

机械设计-轴

机械设计-轴

第十三章 轴 轴设计的基本要求: 1、轴与轴上零件要有准确的相对位置,轴向、 周向定位可靠;
17
2、轴的加工、装配有良好的工艺性; 3、受力合理,轴结构有利于提高轴的强度和刚 度、减少应力集中;
第十三章 轴
18
一、轴上零件的轴向定位和固定
零件轴向定位的方式常取决于轴向力的大小
h h h
1.轴肩和轴环 要求: r<C<h r<R<h h=(0.07~0.1)d b=1.4h
第十三章 轴
34
四、阶梯轴的结构设计实例分析
F
等强度 1、拟定轴上零件装配方案 轴颈:装轴承处
阶梯轴
尺寸= 轴承内径; 直径与轮毂内径相当;
组成 轴头:装轮毂处
轴身:联接轴颈和轴头部分。
第十三章 轴
35
第十三章 轴
36
装配方案的比较:
第十三章 轴
37
例题:指出图中轴结构设计中的不合理之处,并绘 出改进后的结构图。 1.轴两端均未倒角;
3
Fa Ft tg 1960 tg12o 417N
d 118 3 4 / 130 36.78mm
考虑到联轴器的影响以及联轴器孔径系 列标准,取d=38mm
第十三章 轴 3. 齿轮上作用力的计算
50
T 9.55 106 4 / 130 294 103 Nmm
Ft 2T / d 2 29410 / 300 1960N
2.齿轮右侧未作轴向固定; 3.齿轮处键槽太短; 5.左轴承无法拆卸; 6.齿轮与右轴承装卸不便; 7.轴端挡圈未直接压在轴 端轮毂上。
4.键槽应开在同一条直线上;
第十三章 轴 轴系结构改错
38
四处错误

机械设计中轴知识点

机械设计中轴知识点

机械设计中轴知识点机械设计中的轴是一种常见的工程零件,广泛应用于各种机械设备中。

轴的质量和几何形状直接关系到设备的性能和寿命。

在机械设计中,轴的选择、设计和制造都是非常重要的环节。

本文将介绍机械设计中轴的知识点,包括轴的功能、分类、材料选择、几何形状设计和加工工艺等内容。

1. 轴的功能轴在机械设备中承担着传递动力和转动运动的重要作用。

具体功能包括:(1) 传递动力:轴通过联接装置将动力从一个部件传递到另一个部件,实现机械设备的正常运转。

(2) 支撑承载:轴能够承受来自设备工作时产生的载荷,保证设备的稳定运行。

(3) 定位定向:通过轴的几何形状和配合结构,实现部件的定位和相对位置的固定。

(4) 传递制动力矩:在需要制动的设备中,轴可以通过制动器将能量转化为制动力矩,实现设备的制动效果。

(5) 实现工作间传递物料或介质:轴可以作为传输装置,在机械设备中传递物料或介质。

2. 轴的分类根据轴的用途和工作环境,轴可以按以下方式进行分类:(1) 传输轴:用于传递动力和转动运动,如发动机的曲轴。

(2) 支撑轴:用于承担设备工作时产生的载荷,如机床的主轴。

(3) 导向轴:用于定位和固定部件位置,如滑动轴承支承的导轨。

(4) 螺旋传输轴:用于实现物料或介质的传输,如输送带上的轴。

3. 轴的材料选择轴的材料选择要考虑载荷、工作环境和制造成本等因素。

常见的轴材料包括:(1) 碳素钢:适用于较低载荷和一般工作环境,制造成本低。

(2) 合金钢:具有较高的强度和耐磨性,适用于高载荷和恶劣工作环境。

(3) 不锈钢:具有良好的耐腐蚀性能,适用于潮湿、酸碱性较强的工作环境。

(4) 铜合金:具有良好的导热性和抗磨性,适用于高速转动轴承等高要求场合。

4. 轴的几何形状设计轴的几何形状设计需要考虑以下几个方面:(1) 直径和长度:根据轴的承载和传递动力需求,确定轴的直径和长度。

(2) 定位面:根据设备需要进行定位的部件,设计轴上的定位面,保证装配的精度和稳定性。

机械设计基础轴

机械设计基础轴

机械设计基础轴简介在机械设计中,轴承起着至关重要的作用。

它们连接和支撑各种机械元件,使机械设备能够顺利运转。

轴承的设计必须考虑到载荷、转速、摩擦、轴向和径向间隙等因素。

本文将介绍机械设计中常见的轴及其基本特点。

一、轴的定义轴是机械设计中一种常见的零件,用于支撑和传递旋转运动。

它通常是一个细长的圆柱体,有时还会有变径、变形等特殊形状。

二、轴的分类按照轴的用途和形状可以将轴分为以下几类:固定轴是机械设备中最常见的轴。

它通常是直径均匀的细长圆柱体,用于支撑和传递旋转运动。

固定轴的直径大小取决于所需承载能力和转速。

2. 胀套轴胀套轴是一种特殊的轴,它上面设有一个螺旋槽。

胀套可以通过螺栓或其他方式固定在轴上,并可以根据需要在轴上调整位置。

它通常用于需要调整轴位置的场合。

3. 锥形轴锥形轴是一种具有锥形的轴。

它由一个或多个直径逐渐减小的圆台组成。

锥形轴常用于传递变速传动或需要在轴上调整位置的设备。

推力轴是一种用于承受轴向载荷的轴。

它通常由直径较大的圆柱体和直径较小的圆锥体组成,以承受轴向载荷。

三、轴的材料选择轴的材料选择必须考虑到载荷、转速、工作环境等因素。

常见的轴材料包括碳素钢、合金钢、不锈钢、铝合金、钛合金等。

不同材料的优点和缺点可以根据具体要求来选择。

碳素钢具有良好的强度和刚性,适用于大部分机械设备。

合金钢具有更高的强度和硬度,适用于承受更大载荷和高速运转的设备。

不锈钢具有良好的耐腐蚀性能,适用于在潮湿或腐蚀性环境中使用的设备。

铝合金具有轻质和良好的导热性能,适用于要求轻质和散热性能的设备。

钛合金具有高强度和耐腐蚀性能,适用于高强度和要求耐腐蚀性能的设备。

四、轴的设计考虑因素在设计轴时,需要考虑以下因素:1. 轴的强度轴的强度必须满足所需承载能力。

强度计算可以利用弹性力学原理进行。

2. 轴的刚度轴的刚度对于传递旋转运动和减小转动误差非常重要。

刚度计算可以利用有限元分析等方法进行。

3. 轴的表面粗糙度轴的表面粗糙度对于摩擦和磨损有重要影响。

轴设计的主要内容和轴的设计步骤

轴设计的主要内容和轴的设计步骤

轴设计的主要内容和轴的设计步骤轴设计是机械设计中十分重要的一部分,它直接关系到机械系统的性能和寿命。

轴的设计需要考虑多方面因素,包括载荷、转速、材料强度和刚度等。

在进行轴设计时,一般可以遵循以下步骤:步骤一:确定轴的基本参数在开始设计之前,需要明确轴的功能和使用要求,并确定关键参数,包括轴的类型、长度、直径等。

此外,还要考虑系统的使用条件,如载荷、转速、工作环境等。

步骤二:选择材料材料的选择是轴设计非常重要的一部分。

要选择合适的材料,需要考虑载荷、转速、工作温度等因素。

通常,常用的轴材料有碳钢、合金钢、不锈钢和铝合金等。

步骤三:计算载荷根据轴所承受的载荷,可以进行静力学和强度学的计算。

静力学计算主要包括转矩、弯矩和扭矩等,而强度学计算则包括轴的强度和刚度等。

步骤四:计算尺寸在计算尺寸时,需要根据载荷和材料的强度来确定轴的直径。

直径的选择要满足强度和刚度要求,并考虑到材料的废料和经济性。

步骤五:计算转速转速是轴设计中的重要参数之一。

要保证系统的正常运行,需要根据转速和轴材料的强度来选择合适的直径和材料。

步骤六:进行验算设计完成后,还需进行验算,包括强度验算、刚度验算等。

强度验算主要是对轴的强度进行验证,以确保它能够承受所需的载荷。

而刚度验算主要是对轴的刚度进行验证,以满足系统运动的要求。

步骤七:进行优化根据验算结果,进行必要的优化。

可以通过增加轴的直径、改变材料或者增加支撑点等来改善轴的性能。

步骤八:绘制图纸设计完成后,需要绘制详细的轴图纸。

图纸上应包含轴的主要尺寸、材料、工艺要求等。

步骤九:选择工艺在轴设计完成后,还需要选择合适的工艺进行制造。

常用的轴制造工艺包括铸造、锻造、机械加工等。

轴设计的主要内容包括确定轴的基本参数、选择合适的材料、计算载荷、计算尺寸、计算转速、进行验算、进行优化、绘制图纸以及选择合适的制造工艺。

通过这些步骤,可以设计出满足系统要求的轴,确保机械系统的正常运行。

机械设计-轴的类型

机械设计-轴的类型

机械设计-轴的类型轴是机械设计中常见的几何元素之一,它是机械传动系统的重要组成部分,在许多工业领域得到广泛应用。

根据不同的工作应用,轴可以分为多种类型。

本文将介绍几种常见的轴类型及其特点。

1. 普通轴普通轴是最常用的轴类型。

其截面通常是圆形,具有均匀分布的负载能力,适用于各种中小型传动系统。

普通轴可根据应用要求配备各种轴承和联轴器,保证机械传动系统的顺畅运转。

2. 键轴键轴,顾名思义,是在轴身上装有键槽的轴型。

键槽可以用来固定轴承或是连接其它部件,通常被用于高负载的机械传动系统中。

键轴的优点在于能够承受大量的转矩,且易于装配和拆卸。

3. 花键轴花键轴又称齿轴。

它与键轴相似,但花键的形状是斜齿状的。

花键轴通常用于需要承受较大扭矩的高功率传动系统中,它的斜齿形能提供更强的连接力和垂直方向上的剪切扭矩。

4. 球轴球轴是一种将球组成的元件嵌入轴体内的锥形轴。

它主要用于具有紧凑空间限制的应用程序。

由于球轴在高扭矩应用中表现出非常大的抗曲率能力,因此常常被用作齿轮箱的输出轴。

5. 螺旋轴螺旋轴是将螺旋线作为轴体的一种轴型。

相比于传统的圆形轴,螺旋轴的构造更强;这使得它在使用时能够减少振动和噪音,同时提供更大的扭矩传递能力。

螺旋轴通常用于高速和高扭矩应用程序中。

6. 中空轴中空轴是具有中空孔的轴型。

在一些应用中,允许轴与管道或丝杆相连接,以便传输气体、液体或其他物质。

中空轴通常用于旋转机器、涡轮机及涡轮喷气发动机等高技术应用领域。

总之,不同类型的轴具有各自独特的特点和应用范围。

了解不同类型的轴有助于确保设计的机械传动系统能够正常运行和提高效率。

机械设计第15章轴

机械设计第15章轴

轴的尺寸和公差对于安装和使用的准确性 至关重要。
轴与轴套之间的配合对于减小磨损和提高 工作效率非常重要。
轴的强度计算
1
受弯强度
根据轴的几何形状和材料弯曲的强度
扭转强度
2
工程计算。
根据扭矩和轴直径计算轴的扭转强度。
3
受压强度
计算轴在受到压缩力时的强度。
轴的选材原则
1 强度
根据所需强度和负荷条件选择材料。
机械设计第15章轴
轴是机械设计中重要的组件之一,它承受着传递功率和运动的重要任务。本 章将介绍轴的定义、作用以及相关的设计要素和计算方法。
轴的定义和作用Leabharlann 1 定义2 作用轴是一种旋转零件,通常为圆柱形,在机 械中用于传递力和运动。
轴将两个或多个旋转零件连接在一起,传 递动力和承载负载。
轴的分类
按用途分类
3 耐蚀性
在有腐蚀性环境中选择耐蚀性材料。
2 硬度
根据工作环境选择合适的材料硬度以提高 耐磨性。
4 成本
综合考虑材料成本及可用性选择合适的材 料。
轴的制造工艺
1 车削
2 热处理
利用车床和刀具将轴的外形和尺寸加工至 工程要求。
通过热处理工艺改变材料的组织和性能。
3 表面处理
4 装配和检验
对轴进行镀铬、镀锌等表面处理以提高其 耐腐蚀性和装饰性。
传动轴、支撑轴、定位轴等。
按制造材料分类
钢制轴、铜制轴、铝制轴、复合材料轴等。
按工作环境分类
常温轴、高温轴、低温轴、湿环境轴等。
按形状分类
圆轴、方轴、花键轴等。
轴的设计要素
1 刚度
2 强度
轴的刚度对于传递正常工作负荷至关重要。

机械设计基础 第十二章轴


3.
球墨铸铁、合金铸铁 (高强度铸铁)
价廉、吸振性好、耐磨性好,对应力集中的敏感性较低,铸造 成形,但性脆,可靠性低,品质难控制。 常用于制造外形复杂的轴,如曲轴、凸轮轴。
轴的常用材料及其主要力学特性见
轴的结构设计
12
设计任务:使轴的各部分具有合理的形状和尺寸。
设计要求: 1.轴应便于制造,轴上零件要易于装拆;(制造安装) 2.轴和轴上零件要有准确的工作位置;(定位) 3.各零件要牢固而可靠地相对固定;(固定) 4.改善应力状况,减小应力集中。
第十二章
轴的设计
1
第一节 第二节 第三节
概述 轴的设计举例 轴的强度、刚度计算
2
本章重点:
① 轴的类型,轴的常用材料; ② 轴的结构; ③ 轴上零件的轴向定位和固定方法; 轴上零件的周向定位和固定方法;
④ 按扭转强度计算轴的直径。
轴的功用:主要用于支承传动零件 (齿轮、带轮等) 并
传递运动和动力。
越程槽和退刀槽
17
(3)为去掉毛刺,利于装配,轴端应制出45°倒角。
45°倒角 45°倒角
( 4)当采用过盈配合联结时,配合轴段的零件装入端,常加工 成半锥角为30°的导向锥面。若还附加键联结,则键槽的长度 应延长到锥面处,便于轮毂上键槽与键对中。
18
(5)如果需从轴的一端装入两个过盈配合的零件,则轴上两配 合轴段的直径不应相等,否则第一个零件压入后,会把第二个零件 配合的表面拉毛,影响配合。
一般情况下,直轴 做成实心轴,需要 减重时做成空心轴
6
轴的功用和类型
分类: 按承受载荷分有: 类 型 按轴的形状分有:
7
转轴---传递扭矩又承受弯矩
传动轴---只传递扭矩 心轴---只承受弯矩 直轴 曲轴 光轴 阶梯轴

机械设计基础课件第十四章 轴

第十四章
• • • • • • 轴的功用和类型 轴的材料 轴的结构设计 轴的强度计算 轴的刚度计算 轴的临界转速的概念

第一节 轴的功用和类型
一、轴的功用
● 支撑回转零件,如齿轮、带轮; 传递运动和转矩 ●
二、轴的类型
● 心轴 — 只承受弯矩 按受载 ● 传动轴 — 只承受转矩 ● 转轴 — 既受弯矩、又受转矩 ● 直 轴(光轴、阶梯轴) ●曲 轴
第三节 轴的结构设计
倒角
砂轮越程槽
第三节 轴的结构设计
轴环
第三节 轴的结构设计
• 三、轴上零件的轴向定位和固定 • 定位 - 使轴上零件处于正确的工作位置;
• 固定 - 使轴上零件牢固地保持这一位置。 阶梯轴上截 • 目的 - 防止轴上零件工作时发生轴向蹿动。 面变化处 • 常用的轴向定位和固定方法:
第三节 轴的结构设计
为保证轴上零件紧靠在定位面(轴肩),轴 肩的圆角须大于C1或R。
第三节 轴的结构设计
• 四、改善轴的受力状况,减小应力集中 • 合理布置轴上零件可以改善轴的受力状况。
第三节 轴的结构设计
• 减小应力集中 • 零件截面发生突 然变化的地方, 都会产生应力集 中。合金钢对应 力集中比较敏感, 尤需加以注意。
第四节 轴的强度计算
第四节 轴的强度计算
第四节 轴的强度计算
第四节 轴的强度计算
第四节 轴的强度计算
• 若计算的截面有一个键槽,则将计算出的轴的直 径 d加大4%左右,若两个键槽,则增大8%,然 后圆整成标准直径。 • 对于一般用途的轴,按上述方法设计计算即可。 对于重要的轴,还需进一步的强度校核(如安全 系数法) • 安全系数的校核计算包括疲劳强度和静力强度两 项内容。 • 疲劳强度的校核即计入应力集中、表面状态和绝 对尺寸影响以后的精确校核。 • 静强度校核的目的在于校核轴对塑性变形的抵抗 能力。

机械设计轴的设计计算

机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。

2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。

3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。

4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。

5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。

6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。

以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。

机械设计基础第14章轴

Q
输出
T
T1
设计:潘存云
合理
T2
T1+T2
T1
设计:潘存云
T1+T2
Tmax = T1
不合理 Tmax= T1+T2
2.减小应力集中 合金钢对应力集中比较敏感,应加以注意. 应力集中出现在截面突然发生变化的. 措施: 1. 用圆角过渡;
2. 尽量避免在轴上开横孔,切口或凹槽; 3. 重要结构可增加卸载槽B,过渡肩环,凹切圆角以 增大圆角半径,减小局部应力.
α----折合系数 Me---当量弯矩
折合系数取值:α=
0.3 ----转矩不变; 0.6 ----脉动变化; 1 ----频繁正反转.
mm
设计公式: d 3
材 料 碳素钢
Me 0.1[ 1b ]
表14-3 σb
400 500 600 700
800
轴的许用弯曲应力 [σ+1b] [σ0b]
130 170 200 230
C×45,C=0.2,0.5,0.8,1,1.5,2
4)磨削加工的轴段,应留有砂轮越程槽
5)切制螺纹的轴段,应留有退刀槽
6)同一轴上不同轴段的键槽布置在同一母线上 —— 以减少装夹工件的时间
7)轴上直径相近的圆角,倒角,键槽宽度,砂轮越 程槽宽度和退刀槽宽度等应尽可能采用相同的尺 寸 —— 以减少刀具种类和提高生产率
840 N m
6) 求F力产生的弯矩图
927 N m
a
设计:潘存云
P231
M 2 F FMK 4500 0.206 aV
d
a-a 截面F力产生的弯矩为:
M2 M aF F1F L / aV 4803 0.193 / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 长度的确定原则
1) 轴头的长度应比轮毂的宽度小2~3mm ,以保证固定可靠。 2) 轴颈的长度一般等于轴承的宽度。
六、提高轴强度的常用措施
1)改进轴的结构以减小应力集中 (见图11-13)
2)改善轴的表面质量以提高轴的疲劳强度 3)改进轴上零件的结构以减小轴的载荷(见图11-14) 4)合理布置轴上零件以减小轴的载荷(见图11-15)
图11-14 零件的结构对轴受载的影响
图11-15 零件的布置对轴受载的影响
返回
图11-16
图11-16 轴承支点的位置
返回
本章插图1
本章插图2
本章插图3
重要的轴用合金钢。
合金钢代替碳钢并不能提高轴的刚度。
§11-2轴的结构设计1
§11-2 轴的结构设计
轴的结构设计:即确定轴的合理形状和全部结构尺寸。 轴的结构设计应该保证:
◆轴和装在轴上的零件要有准确的工作位置; ◆ ◆
便于轴上零件的装拆和调整; 轴应具有良好的制造工艺性等。
轴的结构示例
一、轴的各部名称及其功能
§11-3 轴的强度计算
二、轴的强度计算
1.转矩法
轴的强度计算2
这种方法用于只受转矩或主要受转矩作用轴的强度计算。通常按这种 方法估算转轴的直径。 扭转强度条件为:
P 9550 10 T n [ ] T T 3 WT 0.2d
3
实心轴的直径为:
d 3
9550 103 P P C3 0.2[ T ] n n
静应力
弯曲应力为对 称循环应力
扭切应力 脉动循环变应力
对称循环变应力
a ≈0.3
a ≈0.6
a =1
3.安全系数法
1)轴的疲劳强度校核
根据轴上危险截面的循环应力,计算疲劳强度安全系数:
S
安全条件:
S K K a m a m S S S S 2 2 S S
S
2 S
S s
许用安全系数[Ss]的选取见表11-4。
§11-4轴的刚度计算1
§11-4 轴的刚度计算
对刚度有要求的轴,需进行刚度计算。例如:电动机的转子轴、内燃 机的凸轮轴等。
一、扭转刚度计算
扭转刚度条件: 扭角
[ ]
57.3Tl GI p
式中:[φ ]-为轴的许用扭角,见表11-6。 光轴
§11-5 轴的振动及临界转速
§11-5 轴的振动及临界转速
◆ 轴是一弹性体,旋转时,会产生弯曲振动、扭转振动及纵向振动。
◆ 当轴的振动频率与轴的自振频率相同时,就会发生共振。 ◆ 共振时轴的转速称为临界转速。 ◆ 临界转速有多个,其中一阶临界转速(其转速最低)下的共振最激烈。 一般通用机械中的轴很少发生共振。高速轴易共振,多为弯曲共振。
第十一章 轴
§11-1 概 述 §11-2 轴的结构设计
§11-3 轴的强度计算
§11-4 轴的刚度计算 §11-5 轴的振动与临界转速
§11-1概述1
§11-1 概 述
一、轴的用途及分类
轴的功用:1)支承回转件; 2)传递运动和动力。 按所受载荷的不同,分为: 心 轴─只承受弯矩的轴,如火车车轮轴。 转动心轴 固定心轴
不同轴段的键槽应设计在同一母线上。
四、轴上零件的定位和固定
定位是指安装时保证轴上零件有准确的轴向位置。 定位方法:轴肩和套筒
示例
定位轴肩的高度 h、轴肩圆角半径 r 和轮毂孔圆角半径 R 之间应满足:
r < R (或倒角C)<h
见图11-10
轴的结构设计3
轴的结构设计
轴上零件的固定 轴肩 套筒 轴向固 定方法: 轴端挡圈 (见图11-11) 圆螺母 弹性挡圈等
示例
传动轴─只承受扭矩的轴,如汽车的传动轴。
转 轴─同时承受弯矩和扭矩的轴,如减速器的轴。
按轴线形状的不同,轴可分:
直轴
曲轴
光轴 阶梯轴
实心轴 空心轴: 有特殊要求时,如航空发动机的主轴。
钢丝软轴: 可以随意弯曲,把回转运动灵活地传到任意空间位置。
示例
概述3
轴的概述
二、轴设计的主要内容
结构设计:根据轴上零件的安装、固定及轴的制造工艺 等方面的要求,合理地确定轴的结构和尺寸。 轴的设计包括: 承载能力计算: 校核轴的强度、刚度和振动稳定性等。 轴的设计过程:

式中:T、l-分别为轴的转矩(N.mm)和受扭长度(mm)。
G-为轴材料的切变模量,钢:G=8.1×104 MPa。
Ip-为轴的截面极惯性矩(mm4),实心圆轴:Ip=πd 4/32;
阶梯轴
n Ti li 57 . 3 G i 1 I pi
轴的刚度计算2
轴的刚度计算 二、弯曲刚度校核计算
( α 的值见 P251)
强度条件:
M 2 (aT ) 2 M e e ≤ 1w W W
式中:[σ-1w]-对称循环应力下轴的许用弯曲应力(可查表11-1选取); W-轴的抗弯截面系数(mm3)。
轴强度的计算
轴的强度计算5
当量弯矩: M e M 2 (aT ) 2
§11-3轴的强度计算1
§11-3 轴的强度计算
结构设计结束之后,对轴进行适当简化,并进行受力分析,计算出轴 所受的载荷,即可对轴进行校核计算。
一、轴的力学计算简图
简化时需做下列工作: 1)将轴简化为一简支梁。 2)确定轴上支反力的位置。
(见图11-16)
3)确定轴上零件所受力的 大小、方向和作用点。 (见图11-17) 4)确定作用在轴上的转矩位置。
弯曲刚度条件:
挠度 偏转角 y ≤ [y] θ ≤ [θ ]

F
y
[y]和[θ ]-分别为轴的许用挠度及许用偏转角,见表11-6 。
对于光轴,可直接用材料力学中的公式计算其挠度或偏转角。 对于阶梯轴,可用当量轴径法转化为当量光轴计算其挠度和偏转角。
当量轴径:
de
d i li li
式中:di、li-第 i 个轴段的轴径和长度。
选材料 估算轴的直径 轴的结构设计 轴的承载能力计算
noBiblioteka 验算合格? yes 结 束
概述2
轴的概述
三、轴的材料
钢 碳钢
合金钢
(见表11-1) 毛坯多用圆钢或锻件。
球墨铸铁: 用于外形复杂的轴。价廉、吸振性和耐磨性好, 对应力集中的敏感性较低,但是质较脆。 正火 钢轴常用热处理 调质 淬火等
合金钢比碳钢有更高的强度和更好的淬火性能。一般情况下用碳钢,
二、多圆盘轴的一阶临界转速——见教材P264。
轴的类型插图1
心 轴
传动轴
转 轴
起重机
返回
轴的类型插图2
直 轴
曲 轴
钢丝软轴
返回
轴的结构示例插图
轴的结构示例
返回
图11-10和图11-13
图11-10 定位轴肩的尺寸
卸载槽
过渡肩环
凹切圆角
返回
图11-13 减小应力集的措施
图11-14和图11-15
根据弯矩图和转矩图(或当量弯矩图)确定可能的危险截面。可按 第三强度理论计算危险截面的弯扭合成强度。
当量应力:
M 2 (T ) 2 M 2 T 2 e 4 ( ) 4( ) W WT W
2 2
(WT= πd 3/16;
W= πd 3/32)
用应力校正系数 a 考虑扭切应力与弯曲应力循环特性不同的影响。
K N 1
K N 1
式中各参数的选取见P252。
轴的强度计算6
轴强度的计算
2)轴的静强度校核 对于瞬时过载很大的轴,应进行静强度校核。
s S s max
s S s max
峰值载荷产生的扭切应力
峰值载荷产生的弯曲应力
强度条件为:
SS
S S S S S
2 S
式中:C-计算常数,见表11-3。
T -许用扭应力,见表11-3。
有1个键槽,轴径加大4%; 有2个键槽,轴径加大7%;
考虑到键槽的影响,应适当加大轴径:
轴强度的计算
轴的强度计算3
2.当量弯矩法
这种方法适用于转轴的计算。计算步骤如下: 1) 轴的弯矩与扭矩分析
轴强度的计算
轴的强度计算4
2) 校核轴的强度
一、单圆盘轴的一阶临界转速 nc1
c1
g (rad/s); y0
nc1 964 1 (r/min) y0
轴的振动及临界转速
轴的振动及临界转速2
刚性轴:工作转速 n 低于 nc1 的轴, 要求: n < 0.75nc1 挠性轴:工作转速 n 超过 nc1 的轴, 要求:1.4 nc1< n < 0.7nc2 满足上述条件的轴就称具有了弯曲振动的稳定性。
周向固定方法: 键、花键、销、紧定螺钉以及过盈配合等。
五、各轴段直径和长度的确定 1. 直径的确定原则
1)估算的轴径作为轴上最细处的直径。
轴的结构设计
轴的结构设计4
2)与标准件配合的轴径应根据标准件的尺寸设计。 3) 定位轴肩的高度(半径差) h≈(0.07 ~ 0.1)d+1~2mm 。 4) 滚动轴承的定位轴肩,应小于轴承内圈的厚度。 5)为便于零件的装拆而设计的非定位轴肩高度(半径差)h ≈ 1~2mm。
1)轴头: 轴上安装轮毂的轴段。
2)轴颈: 轴上安装轴承的轴段。 3)轴肩:
定位轴肩: 用于确定轴上零件位置的轴肩。 非定位轴肩: 为便于安装零件而设计的轴肩。
二、拟定轴上零件的装配方案
轴上零件的装配方案不同,则轴的结构形状也不相同。
轴的结构设计 三、轴的结构工艺性
相关文档
最新文档