第四章 贝塞尔函数
贝塞尔函数的有关公式

贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数PPT演示课件

1
r 2 sin 2
2u
2
k 2u
0
设u(r, ,) R(r)( )(),代入原方程
''() m2() 0
1
s in
d
d
s in
d ( 2 d
m2
sin 2 ) 0
d r 2 dR (k 2r 2 2 )R 0
要使等式两边成立,则x各次幂的系数为零
(1) (c2 v2 ) C0 0 (k 0)
(c2 v2 ) 0
c v
(2) [(c 1)2 v2 ]C1 0 (k 1)
(3) [(c k)2 v2 ]Ck Ck2 0 (k 2)
将c=v代入(2),得C1=0
k 2u
0
u(,, z) R()()Z(z)
''() m2() 0
Z''(z) 2Z(z) 0
2
d 2R
d 2
dR
d
(k 2
2 ) 2
m2
R
0
x (k 2 2) y(x) R()
贝塞尔方程
x2
0
0
0
0
(1) etdt et 1 0 0
(2) 1 (1) 1
(3) 2 (2) 2!
(4) 3(3) 3! (n 1) n!
求证: 1 2
(x) ett x1dt
令t=u2
(1)m
2(2mv) m ! (m 1 v)
第四章 贝塞尔函数讲解

深圳大学电子科学与技术学院
定义:
(x) ett x1dt (x 0)
0
基本性质: (x 1) x(x)
证明:
(x 1) ett x11dt t xd (et ) t xet x ett x1dt x(x)
令t=u2
0
1
ett
1
2dt
eu2
三维热传导方程: t
a
2
2
x2
2
y 2
2
z 2
a22
分离变量: (r,t) u(r)T (t)
对u(r),
得到: 2u k 2u (0 亥姆霍兹方程)
球坐标下:
z
r
x
深圳大学电子科学与技术学院
x r sin cos
x
d dx
贝塞尔函数表0~2rad

贝塞尔函数表0~2rad摘要:一、贝塞尔函数简介1.贝塞尔函数的定义2.贝塞尔函数在数学和工程领域的应用二、贝塞尔函数表0~2rad1.贝塞尔函数表的构成2.贝塞尔函数值的变化规律3.贝塞尔函数的性质和特点三、贝塞尔函数表在实际问题中的应用1.贝塞尔函数表在数学问题中的应用2.贝塞尔函数表在工程问题中的应用正文:贝塞尔函数是一类在数学和工程领域有着广泛应用的函数。
它们以瑞士数学家卡尔·沃尔夫冈·贝塞尔的名字命名,并因其独特的性质和特点而受到学者们的关注。
贝塞尔函数可以表示为:BesselFunction(x, n, λ) = (1 / (2 * π * √(x^2 + n^2 * λ^2))) * ∫(exp(-(x^2 + n^2 * λ^2) / 2) * (x^2 - n^2 * λ^2) ^ (n - 1/2)) dλ其中,x表示函数的变量,n表示函数的阶数,λ表示函数的参数。
贝塞尔函数表0~2rad是一份详细列出贝塞尔函数值的表格,其中包含了不同阶数和参数下的贝塞尔函数值。
这个表格可以帮助学者们快速查找和计算贝塞尔函数值,为他们的研究和工程应用提供便利。
贝塞尔函数表0~2rad的构成主要包括两部分:一是表格的标题和表头,包括函数名、阶数、参数和函数值;二是表格的主体,详细列出了不同阶数和参数下的贝塞尔函数值。
这个表格是通过对贝塞尔函数进行数值积分计算得到的,因此具有较高的精度和可靠性。
贝塞尔函数值的变化规律可以通过观察贝塞尔函数表0~2rad得出。
一般来说,随着参数λ的增大,贝塞尔函数值会先增大后减小,呈现出一个波浪形的变化趋势。
而随着阶数n的增大,贝塞尔函数值会呈现出一个指数增长的趋势。
这些变化规律对于理解和掌握贝塞尔函数的性质和特点具有重要意义。
贝塞尔函数表0~2rad在实际问题中的应用非常广泛。
在数学领域,贝塞尔函数表可以帮助学者们快速计算贝塞尔函数值,为他们的理论研究和数值模拟提供数据支持。
贝塞尔函数

xn1Jn1 ax C
7. 证明y Jn (ax)满足 x2 y '' xy ' (a2x2 n2 ) y 0
Jn (t )满足以下Bessel方程
t 2Jn(t ) tJn (t ) (t 2 n2 )Jn(t ) 0
令 t ax, 即可
a2 x2Jn(ax) axJn (ax) (a2 x2 n2 )Jn(ax) 0
在求特征值问题时推导出常微分方程:
ห้องสมุดไป่ตู้
r2F "r r F 'r r2 n2 F r 0
令x r
记
y(
x)
F
r
x2
d2y dx 2
x
dy dx
x2 n2
yx 0
n 阶贝塞尔方程:
方程的一个特解(n 阶第一类贝塞尔函数)
Jn
x
1m
m0
1 2n2m
m!
n
1 m
1
xn2m
1
lim
m
1m
4(m 1) n m 1
2n2m m!n m!
可以判定这个级数在整个数轴上收敛.
正
J n
x
m0
2n2m
1m m! n
m
1
xn2m
4.
d dx
J
0
ax
a
d
d (ax)
J
0
ax
aJ1
ax
5.
d dx
[ xJ1
ax
]
d
d (ax)
[axJ1
ax
]
axJ
0
ax
6. (1) xJ2 xdx ?
第4章-贝塞尔函数

级数解的导数为: y '
k 0
(
k )ck
x k1
y"
k 0
(
k
)(
k
1)ck
x k 2
20
y x cn xn n0
( c0 0, 为常数)
代入方程(2),
y 1 y (1 2 ) y 0 (2)
x
x2
( v 为任意实数)
得到
(n )(n 1)cn xn2 (n )cn xn2 cn xn
利用级数的比值判别法(或达朗贝尔判别法)
可以判定这个级数在除 x=0 点外的整个实数轴 上收敛,因此,级数式是贝塞尔方程的解.
28
下面我们分两种情况,找出方程贝塞尔的两个线性无 关的解,得到方程贝塞尔的通解:
(1) 1 及 2 不是整数, 将 1 代入式
y(x) (1)n
1
( x)2n
n0
n!(n 1) 2
18
由定理2知, 在 x=0点的邻域 x 0 内至少存在
一个下面形式的级数解
y x cn xn n0
( c0 0, 为常数)
将此式代入方程
y
1 x
y
2
(1 x2
)y
0
(2)
( v 为任意实数)
19
y
1 x
y
(1
x
2 2
)y
0
(2)
( v 为任意实数)
y x cn xn n0
( c0 0, 为常数)
31
我们可用
J
(x)
(1) n
n0
1
n!(n
( x )2n 1) 2
统一表示第一类贝塞尔函数(也称为第一类柱函数)。
贝塞尔函数的推导

贝塞尔函数的推导一、什么是贝塞尔函数贝塞尔函数是一类特殊的数学函数,以法国数学家皮埃尔-西蒙·拉普拉斯的朋友雅各布-路易·贝塞尔(Jacob Ludwig Carl Bessel)之名命名。
贝塞尔函数在物理学、工程学、计算机图形学等领域都有广泛应用。
贝塞尔函数可以由贝塞尔微分方程推导而来,表达式中包含了贝塞尔函数的阶数和自变量。
贝塞尔函数包括贝塞尔第一类函数(记作Jn(x))和贝塞尔第二类函数(记作Yn(x)),它们是贝塞尔微分方程的两个线性无关解。
二、贝塞尔函数的推导贝塞尔函数的推导是从贝塞尔微分方程出发,通过一系列变换和求解得到的结果。
下面将详细介绍贝塞尔函数的推导过程。
2.1 贝塞尔微分方程贝塞尔微分方程是一个二阶常微分方程,表示为:x^2y’’ + xy’ + (x^2 - n^2)y = 0其中,y’’表示y对x的二阶导数,y’表示y对x的一阶导数,n为贝塞尔函数的阶数。
2.2 贝塞尔函数的级数解通过将贝塞尔微分方程进行级数展开,得到贝塞尔函数的级数解。
假设贝塞尔函数的级数解表示为:y(x) = Σ An*x^(n+r)代入贝塞尔微分方程,得到:Σ (n+r)(n+r-1)An x^(n+r) + Σ (n+r)An*x^(n+r) + Σ (x^2 - n2)An x(n+r) = 0整理得到:Σ [(n+r)*(n+r-1) + (n+r) + (x^2 - n^2)] * An*x^(n+r) = 0由于An与x无关,所以方程中每一项系数都必须为零,即:(n+r)*(n+r-1) + (n+r) + (x^2 - n^2) = 0化简得到:(n+r)^2 - n^2 = 0解得:r = ±n所以,贝塞尔函数的级数解可以表示为:y(x) = Σ A*x^(n+r)其中,r为贝塞尔函数的阶数。
2.3 贝塞尔函数的通解贝塞尔函数的通解是将级数解带入初始条件得到的。
贝塞尔函数

贝塞尔函数基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!
C0 (1 v)(2 v)(3 v)L
(m 1 v)(m v)
2v
1 (1
v)
(1)m
22m m
!
1 (1 v)(2 v)(3 v)L
(m 1 v)(m v)
2(2mv) m
!
(1)m (1 v)(1 v)(2 v)(3 v)L
(m 1 v)(m v)
(1)m
2(2mv) m ! (m 1 v)
C0 (c2 v2 ) xc C1[(c 1)2 v2 ]xc1 {Ck [(c k )2 v2 ] Ck2}xck 0 k 2
要使等式两边成立,则x各次幂的系数为零
深圳大学电子科学与技术学院
(1) (c2 v2 ) C0 0 (k 0)
(c2 v2 ) 0
(2) [(c 1)2 v2 ]C1 0 (k 1)
v阶贝塞尔方程的通解: y AJv (x) BYv (x) 如果v不是整数,其通解还可表示为
y AJ v (x) BJ v (x)
深圳大学电子科学与技术学院
贝塞尔函数的图象
第二类贝塞尔函数的图象 贝塞尔、牛曼函数的图象
深圳大学电子科学与技术学院
深圳大学电子科学与技术学院
深圳大学电子科学与技术学院
J
v
(
x)
m0
m
!
(1)m (m 1
v)
x 2
2mv
v阶第一类 贝塞尔函数
深圳大学电子科学与技术学院
令
y1
Jv
(x)
um
m0
(x)
m0
m
(1)m !(m 1
v)
x 2
2mv
对于任意x(-,+),
lim
um1 ( x)
x
2
lim
1
0
m um (x) 2 m (m 1)(m 1 v)
深圳大学电子科学与技术学院
第四章:贝塞尔函数
深圳大学电子科学与技术学院
本章提要:
• 几个微分方程的引入 • 伽马函数的基本知识 • 贝塞尔方程的求解 • 贝塞尔函数的基本性质 • 贝塞尔函数应用举例
深圳大学电子科学与技术学院
参考了孙秀泉教授的课件
深圳大学电子科学与技术学院
贝塞尔函数是贝塞尔方程的解。除初等函数外, 在物理和工程中贝塞尔函数是最常用的函数,它们 以19世纪德国天文学家 F.W.Bessel 的姓氏命名,他 在1824年第一次描述过它们。
d dx
(1
x2
)
dy dx
y
0
勒让德方程
二、伽马函数的基本知识
深圳大学电子科学与技术学院
定义:
(x) ett x1dt (x 0)
0
基本性质: (x 1) x(x)
证明: (x 1) ett x11dt t xd (et ) t xet x ett x1dt x(x) 0
贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了 实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用 于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还 编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研 究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决 物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也 做出一定贡献,提出贝塞尔地球椭球体等观点。贝塞尔重新订正了《布拉德 莱星表》,并加上了岁差和章动以及光行差的改正 ; 还编制了包括比九等星 更亮的75000多颗恒星的基本星表,后来由他的继承人阿格兰德扩充成著名的 《波恩巡天星表》。
2
d 2R
d 2
dR
d
(k 2
2 ) 2
m2
R
0
x (k 2 2) y(x) R()
贝塞尔方程
x2
d2y dx2
x
dy dx
x2
m2
y0
另一途径:
d dx
k(x)
d d
y x
q
(
x)
y
(x)
y
0
,
(a x b)
深圳大学电子科学与技术学院
Sturm-Liouville( 施 图姆-刘维尔)型方程
因此级数y1的收敛区间为 (-,+) 在x=0时,
Jv (0) 1 (v 0) Jv (0) 0 (v 0)
深圳大学电子科学与技术学院
再考虑c=-v情况,得到
y2
Jv (x)
m0
(1)m m !(m 1
v)
x 2
2mv
贝塞尔方程的通解为:
y AJ v (x) BJ v (x)
其中v为实数(不是整数),A、B为待定系数
对于变系数方程y+p(x)y+q(x)y=0,如果xp(x)、x2q(x)
都能在x=0附近展开成幂级数,则在这个邻域内方程有
广义幂级数解 y Ck xck k 0
(C0 0)
Ck是展开系数, c是待定常数
深圳大学电子科学与技术学院
y(x) xc (C0 C1x C2 x2 Ck xk ) Ck xck k 0
C0 22 (1 v)
深圳大学电子科学与技术学院
C4
C42 4(4 2v)
C2 4(4 2v)
C0 242!(1 v)(2
v)
C6
C62 6(6 2v)
C4 6(6 2v)
263!(1
C0 v)(2
v)(3 v)
C2m
(1)m
C0 22m m!(1 v)(2 v)(3
v)
k=0
d r 2 dR 2R 0
dr dr
球贝塞尔方程
k=0
欧拉方程
深圳大学电子科学与技术学院
1
s in
d
d
s in
d ( 2 d
s
m2
in 2
)
0
x cos y(x) ( )
连带勒让德方程:
d dx
(1
x2)
dy dx
( 2
m2 1 x2
)y
0
m=0
勒让德方程:
(2n)! 22n n!
n
1 2
1
(2n 1)! 22n1 n!
三、贝塞尔方程的求解
深圳大学电子科学与技术学院
x2
d2y dx2
x
dy dx
(x2
2)y
0
(x 0)
阶贝塞尔方程
变系数的二阶线性常微分方程,其解称为贝塞尔函数
y'' 1 x
y'
x2 2
x2
y
0
不能在x=0附近展开成幂级数,因为x=0是它的 正则奇点
y(x) Ck (c k)xck1 k 0
y(x) Ck (c k 1) (c k)xck2 k 0
代入贝塞尔方程
x2
d2y dx2
x
dy dx
(x2
v2)y
0
x2 Ck (c k 1) (c k)xck2 x Ck (c k)xck1 (x2 v2 ) Ck xck 0
Jv (x)和Jv (x)称为第一类贝塞尔函数
深圳大学电子科学与技术学院
当 v 为正整数或零时, (m 1 n) (m n)!,故有
J
n
(
x)
m0
m
(1)m !(m n)
!
x 2
2mn
(n 0,1,2, )
(1)m
Jn (x) m0 m ! (m 1 n)
x
2mn
2
(n 0,1, 2,L )
d dx
(1
x
2
)
dy dx
2
y
0
柱坐标下:
z
r
x
深圳大学电子科学与技术学院
x cos
y
sin
y
z z
2u k 2u 0
1
(
u )
1
2
2u
2
2u z2
k 2u
0
u(,, z) R()()Z(z)
深圳大学电子科学与技术学院
''() m2() 0
Z''(z) 2Z(z) 0
s in
u
1
r 2 sin 2
2u
2
k 2u
0
深圳大学电子科学与技术学院
设u(r, ,) R(r)( )(),代入原方程
''() m2() 0
1
s in
d
d
s in
d ( 2 d
m2
sin 2 ) 0
d r 2 dR (k 2r 2 2 )R 0
dr dr
取:k(x) 1、q (x) 0、 (x) 1
d2y dx2
y
0
亥姆霍兹方程
取:k(x) x、q (x) m2 、 (x) x
x
d dx
x
dy dx
m2 x
y xy
0
参数形式的 贝塞尔方程
=1
d dx
x
dy dx
m2 x
y xy
0
贝塞尔方程
取: k(x) 1 x2、q 0、 1
(m
v)
一个特解为
y
Ck xck
k 0
C0
m0
(1)m 22m m!(1 v)(2 v)(3 v)
(m v)
x2mv
C0为任意常数,通常取
C0
2v
1 (1
v)