贝塞尔函数讲解
贝塞尔函数的有关公式

贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数解读

贝塞尔方程
当n不为整数时,例如
n v ,上式的通解可表示为如下两种形式:
y AJ v (x) BJ v (x)
其中和,A、yB为分任别A意称J实为v数(;阶x)和 B阶Y第v一(类x)Bessel函数;
称为 阶第二类Bessel函数。
Jv (x) J v (x)
v v
Yv (x)
1
0
x
J n (
x)J n (
x)d
x
Jn( )Jn () Jn()Jn ( ) 2 2
而
1
0
x
J n 2 (
x)d
x
1 2
J
本征函数系
J
n
(
(n) m R
)r
(m 1, 2,) 的正交性。
R
0
r
J
n
(
(n m
R
)
r
)
J
n
(
(n) k
R
r
)d
r
0 R
,
2
2
J
2 n1
(
m
(
n
)
)
R2 2
J
2 n1
(
m
(
n)
)
,
mk mk.
J
n
(
(n m
R
)
r
)
m1 在【0,R】上,带权重r正交。
贝塞尔函数的正交性
若λ和μ是两个不同的常数 , 可以证明
1.先求的
数值解,再用(1)式求
(v k 1)
2.非整数阶Bessel函数也可以通过递推关系得出。
Jv (x)
当n为正整数或零时, 表达式为
Bessel函数介绍

贝塞尔函数(Bessel functions)是数学上的一类的总称。
一样贝塞尔函数是以下(一样称为贝塞尔方程)的标准解函数y(x):这种方程的解是无法用系统地表示的。
贝塞尔函数的具体形式随上述方程中任意实数α转变而转变(相应地,α被称为其对应贝塞尔函数的阶数)。
实际应用中最多见的情形为α是n,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍适应针对α和−α概念两种不同的贝塞尔函数(如此做能带来益处,比如排除函数在α=0 点的不滑腻性)。
历史贝塞尔函数的几个正整数阶特例早在中叶就由在研究悬链振动时提出了,那时引发了数学界的爱好。
的叔叔,、等数学大师对贝塞尔函数的研究作出过重要奉献。
,数学家在研究提出的三体系统的运动问题时,第一次系统地提出了贝塞尔函数的整体理论框架,后人以他的名字来命名了这种函数。
现实背景和应用范围贝塞尔方程是在或下利用求解和时取得的(在圆柱域问题中取得的是整阶形式α = n;在球形域问题中取得的是半奇数阶形式α = n+½),因此贝塞尔函数在和各类涉及有势场的问题中占有超级重要的地位,最典型的问题有:在圆柱形中的传播问题;圆柱体中的问题;圆形(或环形)的分析问题;在其他一些领域,贝塞尔函数也相当有效。
譬如在中的()或()的概念中,都要用到贝塞尔函数。
概念贝塞尔方程是一个二阶常微分方程,必然存在两个的解。
针对各类具体情形,人们提出了表示这些解的不同形式。
下面别离介绍这些不同类型的贝塞尔函数。
第一类贝塞尔函数图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线(在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。
)第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须知足在x= 0 时有限。
如此选取和处置Jα的缘故见本主题下面的;另一种概念方式是通过它在x = 0 点的展开(或更一样地通过展开,这适用于α为非整数):上式中Γ(z)为(它可视为函数向非整型的推行)。
贝塞尔函数详细介绍(全面)

y x 1J m (x) x J m (x)
y 1x 2 Jm (x) x 1Jm (x) x 1Jm (x) x 2 Jm(x)
x 2 Jm(x) 2x 1Jm (x) 1 x 2 Jm (x)
x 2 Jm(x) 2x 1Jm (x) 1x 2 Jm (x)
xnYn1(x)
d
dx
xnYn (x)
x
Y n n1
(
x)
Yn1 ( x)
Yn1 ( x)
2n x
Yn
(x)
Yn1(x) Yn1(x) 2Yn(x)
例1 求下列微积分
(1)
d dx
J0
(
x)
J 0
(x)
J1(x)
(2)
J0(x)
1 x
J0(x)
J1(x)
1 x
J1(x)
1 2
J
0
(x)
1 2 x
x 1Jm (x) x Jm (x)
2
2
m2 x2
x
J
m
(x)
x 2 Jm(x) x 1Jm (x) x2 2 m2 x 2 Jm (x)
x 2 x2 2 Jm(x) xJm (x) x2 2 m2 Jm (x)
x2 t 2Jm(t) tJm (t) t 2 m2 Jm (t)
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n
7贝塞尔函数

贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。
中文名贝塞尔函数外文名Bessel Function意义一类特殊函数的总称方程的解无法用初等函数系统地表示命名F.W.贝塞尔的姓氏分类数学目录1 基本概念2 基本内容3 分类4 应用范围基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
贝塞尔函数详细介绍(全面)

(−1) m x 2 n + 2 m −1 = x n J ( x) = x n ∑ n + 2 m−1 n −1 2 m!⋅Γ(n + m) m =0
∞
d x n J n ( x ) = x n J n −1 ( x ) dx d −n x J n ( x) = − x − n J n +1 ( x) dx
y = AJ n ( x) + BYn ( x)
A、B为任意常数, n为任意实数
数学物理方程与特殊函数
第5章贝塞尔函数
三 贝塞尔函数的性质
(−1) m x J n ( x) = ∑ ⋅ m = 0 m! Γ ( n + m + 1) 2
∞ n+2m
J α ( x) cos απ − J −α ( x) Yn ( x) = lim α →n sin απ
= −3J1 ( x) + 2 J1 ( x) + J1 ( x) − J 3 ( x) = − J 3 ( x)
数学物理方程与特殊函数
第5章贝塞尔函数
(4)
d n x J n ( x) = x n J n −1 ( x) dx = − xJ1 ( x ) + ∫ x −1 J1 ( x )dx 2 = − xJ1 ( x) + 2 ∫ J1 ( x)dx d −n x J n ( x) = − x − n J n +1 ( x) = − xJ1 ( x ) − 2 ∫ dJ 0 ( x) = − xJ1 ( x) − 2 J 0 ( x ) + C dx ′ (5) ∫ x 3 J 0 ( x )dx = ∫ x 2 dxJ1 ( x ) = x 3 J 1 ( x ) − 2 ∫ x 2 J1 ( x)dx J n −1 ( x) − J n +1 ( x) = 2 J n ( x) 2n J n −1 ( x) + J n +1 ( x) = J n ( x) 3 2 3 2 = x J 1 ( x ) − 2 ∫ dx J 2 ( x ) = x J 1 ( x ) − 2 x J 2 ( x ) + C x
贝塞尔函数

贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
贝塞尔函数和初等函数是在物理和工程中最常用的函数。
贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。
这样做能带来好处,比如消除了函数在=0点的不光滑性。
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。
因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。
最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。
贝塞尔函数详细介绍(全面)

n阶贝塞尔方程
数学物理方程与特殊函数
第5章贝塞尔函数
二 贝塞尔方程的求解
n阶贝塞尔方程 n任意实数或复数
x2 y xy x2 n2 y 0
假设 n 0
令:y xc (a0 a1x a2 x 2 ak x k ) ak xck k 0 (c k)(c k 1) (c k) (x2 n2 ) ak xck 0 k 0
Jn (x)
2 cos x 1 n x 4 2
Yn (x)
2
x
sin
x
1
4
n
2
x , Jn (x) 0,Yn (x) 0
数学物理方程与特殊函数
第5章贝塞尔函数
性质8 正交性
R
0 rJn
(n) m R
r
J
n
(n) k R
r dr
R2
2
J
2 n1
(m(n)
3
(1)m 2m1
52m 1
(
1
)
x 2
1 2
2m
2
(1)m 22m1
x
1 2
2m
m0 2m 1 ! 2
(1)m 2 x2m1
m0 2m 1! x
2
x
(1)m x2m1
m0 2m 1 !
2 sin x
x
J 1 (x) 2
2 cosx
x
J n1 (x) (1)n 2
2
x
n
(c 2 n2 )a0 xc (c 1)2 n2 a1xc1 (c k )2 n 2 ) ak ak2 xck 0
k 0
(c2 n2 )a0 0
(c 1)2 n2 a1 0 (c k)2 n2 ) ak ak2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2V
r
2
1 r
V r
1 r2
2V
2
V
0
V rR 0
(5.5)
(5.7) (5.8)
再次分离变量
V (r, ) F(r)G( )
F ''
1 r
F'
r2
F
0
G '' G 0
(5.9) (5.10)
由于温度函数u(x,y,t)是单值的,所以v(x,y)也是单值,因此
G(应) 是以2 为周期的函数。因此, ,方程n2(5.10)的解为:
-0.2 -0.4
2
4
6
8
10
5.1.2.虚宗量贝塞耳方程
n 阶虚宗量贝塞耳方程
x2
d 2R dx 2
x
dR dx
(x2
n2 )R
0
ix
2
d 2R
d 2
dR
d
( 2
n2)R
0
J n ( )
(1)k
k 0
in2k k !(n k
( x )n2k 1) 2
in
in2k
( x )n2k
k0 k !(n k 1) 2
1
a0 2n n 1
可以得到方程另一个特解
y2
x
Jn
x
1m
m0
2n2m
xn2m
m! n
m
1
J-n(x)称为-n阶第一类贝塞尔函数
(5.19)
Jn(x) 和J-n(x)线性无关,故贝塞尔方程(5.12)的通解可表 示为:
y x AJn x BJn x
(5.20)
令 A cot n , B csc n,则 (5.20)可写成
5.3 贝塞尔函数展开为级数
由于圆盘上温度的定解问题可表示:
r2F '' rF ' r2 n2 F r 0
F R 0, F 0
(5.32)
贝塞尔方程(5.32)的通解可表示为:
y x CJn x DYn x
(5.33)
由于 Yn 0为 无穷大,由边界条件可以得到D=0,再利用另一个
由于温度是不是稳定分布,而是瞬时分布,即可表示这
a2
uxx uyy
ut
u 0 x2 y2 R2
u t0 x, y
解: 采用分离变量
分离变量
u(x, y, z,t) V (x, y)T (t)
化简引入常量
Vxx Vyy V 0
T
''
a2T
0
Helmholtz方程
为了求Helmholtz方程 (5.5),可在极坐标中进行求解
F R 0 F 0
令 x , 记r F(r)=y(x),则(5.11)转化为:
x2 y'' xy' x2 n2 y 0 贝塞尔方程 (5.12)
(5.12)为二阶变系数常 微分方程,其解称贝塞尔函数或柱函数
x2 y'' xy' x2 n2 y 0 贝塞尔方程
求解贝塞尔方程(5.12),假设如下幂级数解:
第五章 贝塞尔函数
5.1 贝塞尔方程
在利用分离变量法求解其它偏微分方程的定解问题时,会导 出其它形式的常微分方程的边值问题,从而得到各种各样的坐标 函数---特殊函数。如贝塞尔函数、勒让德多项式等
在2.3节分析了圆域内的二维拉谱拉斯方程的定解,温度是稳定分
布,与时间没有关系。
2u 0 u x2 y2 R2 f
G(
)
1 2
a0
G2 ( ) an cos n bn sin n
将 代n入2 (5.9)式得到
F ''
1 r
F'
n2 r2
F
0
n阶贝塞尔方程
(5.11)
由于圆盘上的温度是有限的,如圆心。因此,F 0 ,结合边界条
件,(5.11)式可定义为求解以下定解问题。
r2F '' rF ' r2 n2 F 0
Jn
x
1m
m0
2n2m
xn2m
m! n
m
Jn
x
m0
1
m
xn2m 2n2m m! n
m 1
Jn x 1n Jn x
Yn
x
lim
an
Ja
x
cos a sin a
Ja
x
(5.23) (5.21)
可见,不论n是不明为整数,贝塞尔方程(5.12)的通解都可以 表示为:
yx CJn x DYn x
条件可以得到:
Jn R 0
(5.34)
由于(5.34)式可知:当 取不同值时,Jn(x)有零值,即贝塞尔函
数的零点。
1. Jn(x)有无穷多个零点,关于原点对称分布。 2. Jn(x)的零点和Jn+1(x)的零点是彼此相间分布,且Jn(x)的零 点更靠近坐标原点。 3. 当x趋于无穷大时,Jn(x)两个零点之间的距离接近于π。
二、正交关系
贝塞耳方程是施图姆-刘维尔本征值方程:
d [
dx
d 2R
d 2
]
m2
R
m n
R
0
在区间(0,R)上带权r正交:
R 0
rJn
mn
R
r
Jn
kn
R
r
dr
0
m k
三 贝塞耳函数的模
定义积分:
R 0
rJ
2 n
mn
R
r
dr
0
的平方根,为贝塞尔函数
J
n
Rm的n r模 :
R 0
(5.42)
性质:1. 在级数f(r)的连续点(5.42)收敛于f(r); 2. 在级数f(r)的间断点r0收敛于该点的左右极限平均值。
系数Cm可以由下式确定:
Cm
R
r
0
f
r Jn
m n
R
r dr
R2 2
J2 n 1
m n
傅立叶-贝塞耳系数
(5.43)
a2m
1m
22m m!n
1
1n
2
n m a0
引入 函数并利用其递推式:nn n 1 ,则一般项的系
数变为:
a2m
1m
1
22m m! n
m
1
a0
将所求的系数代回(5.13)式得到第一个特解
y1
x
Jn
x
1m
m0
2n2m
xn2m
m!n
m
1
(5.18)
Jn(x)称为n阶第一类贝塞尔函数
取s2=-n时:
Jn
x
1m
m0
xn2m
2n2m m! n
m
1
由(5.18)式可以得到第一类贝塞尔函数递推式:
Jn x 1n Jn x
d dx
xn
Jn
x
xn
J n1
x
d dx
x
n
J
n
x
ห้องสมุดไป่ตู้
x
n
J
n1
x
(5.18)
J n 1
x
J n 1
x
2n x
Jn
x
Jn1 x Jn1 x 2Jn' x
第二类贝塞尔函数
y x ak xsk a0 0 k 0
将(5.13)代回贝塞尔方程(5.12),整理得到:
s2 n2
a0
xs
s
12
n2
a1 x s 1
s
k 2
n2
ak
ak 2
xsk 0
k 2
(5.12) (5.13)
故有:
s2 n2 a0 0
s
12
n2
a1
0
s
k 2
n
2
在极坐标系中:
2u 1 u 1 2u
r
2
r
r
r2
2
0
u rr0 f
分离变量
u(r, ) R(r)( )
0 r r0
化简引入常量
1
1
R '' R ' R '' 0
r
r2
r2R '' rR ' R 0
''
0
欧拉方程
5.1.1 贝塞尔方程的导出
假设半径为R的圆形薄盘,上下面绝热,圆盘边界上的温度始 终保持为零度,且初始温度已知,求圆盘内温度的分布规律。
第二个线性 无关特解
Yn
x
Jn
x cos n
sin n
Jn
x
(5.21)
Yn(x)称为n阶第二类贝塞尔函数,诺伊曼函数 贝塞尔方程(5.12)的通解可表示为:
yx CJn x DYn x
(5.22)
情形2:n为整数,则s1-s2=2n也为整数。与前面相同处理,当n>= 时,方程的一个解为:
情形3:n为半奇数后面讨论。
1 0.5
0 -0.5
0
Jn(x)
5
10
15
20
5 0 -5 -10 -15 -20 -25 -30 -35
0
Yn(x)
5
10
15
20
5
4
3
Kn(x)
2
1
0
0
2
4
6
8
10
3000