九年级中考数学《圆证明题》专题复习试卷及解析
2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。
九年级中考数学《圆证明题》专题复习试卷及解析

九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析1、如图,点 A,B 在⊙ O上,直线 AC是⊙ O的切线, OC⊥OB,连结 AB交 OC于点 D.求证: AC=CD.2、如图, AD是⊙ O的切线,切点为 A,AB是⊙ O的弦.过点 B 作 BC∥AD,交⊙ O于点 C,连结AC,过点 C作 CD∥AB,交 AD于点 D.连结 AO并延伸交 BC于点 M,交过点 C的直线于点P,且∠BCP=∠ ACD.(1)判断直线 PC与⊙ O的地点关系,并说明原因;(2)若 AB=9,BC=6.求 PC的长.3、如图,在△ ABC中,∠ ACB=90°,点 D 是 AB上一点,以 BD为直径的⊙ O和 AB相切于点 P.(1)求证: BP均分∠ ABC;(2)若 PC=1,AP=3,求 BC的长.14、已知:如图, AC是⊙ O的直径, BC是⊙ O的弦,点 P 是⊙ O外一点,∠ PBA=∠ C.(1)求证: PB是⊙ O的切线.(2)若 OP∥BC,且 OP=8,∠ C=60°,求⊙ O的半径.5、如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 M,MN⊥AC于点 N.求证: MN是⊙ O的切线.6、如图, AB是⊙ O的直径,点 C 在 AB的延伸线上, CD与⊙ O相切于点 D,CE⊥AD,交 AD的延伸线于点 E.(1)求证:∠ BDC=∠A;(2)若 CE=4,DE=2,求⊙ O的直径.7、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC,连结 AC,过点 D 作DE⊥AC,垂足为 E.( 1)求证: DC=BD( 2)求证: DE为⊙ O的切线.8、如图, AB是⊙ O的直径, C为⊙ O上一点,经过点 C 的直线与 AB的延伸线交于点 D,连结AC,BC,∠BCD=∠CAB.E 是⊙ O上一点,弧 CB=弧 CE,连结 AE并延伸与 DC的延伸线交于点 F.( 1)求证: DC是⊙ O的切线;( 2)若⊙ O的半径为 3,sin D=,求线段AF的长.9、如图,已知 MN是⊙ O的直径,直线 PQ与⊙ O相切于 P 点, NP均分∠MNQ.( 1)求证: NQ⊥PQ;( 2)若⊙ O的半径 R=2,NP=,求NQ的长.10、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC;连结 AC,过点 D作DE⊥AC,垂足为 E.(1)求证: DC=BD(2)求证: DE为⊙ O的切线11、如图,以 Rt△ABC的 AC边为直径作⊙ O交斜边 AB于点 E,连结 EO并延伸交 BC的延伸线于点 D,点 F 为 BC的中点,连结 EF和 AD.(1)求证: EF是⊙ O的切线;(2)若⊙ O的半径为 2,∠ EAC=60°,求 AD的长.12、如图, AB是⊙ O的直径,点 E 是上的一点,∠ DBC=∠ BED.⑴求证: BC是⊙ O的切线;⑵已知 AD=3, CD=2,求 BC的长.13、如图,已知 AB是⊙ O的直径,点 C、D在⊙ O上,点 E 在⊙ O外,∠ EAC=∠D=60°.(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC=4时,求劣弧 AC的长.14、已知△ ABC,以 AB为直径的⊙ O分别交 AC于 D, BC于 E,连结 ED,若 ED=EC.(1)求证: AB=AC;(2)若 AB=4,BC=2 ,求 CD的长.15、如图,以△ ABC的边 AB上一点 O为圆心的圆经过 B、C两点,且与边 AB订交于点 E,D是弧 BE的中点, CD交 AB于 F,AC=AF.( 1)求证: AC是⊙ O的切线;( 2)若 EF=5,DF= ,求⊙ O的半径.参照答案1、∵直线 AC与⊙ O相切,∴ OA⊥ AC,∴∠ OAC=90°,即∠ OAB+∠CAB=90°,∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°,而∠ODB=∠ADC,∴∠ADC+∠B=90°,∴OA=OB,∴∠ OAB=∠B,∴∠ ADC=∠CAB,∴ AC=CD.2、( 1)解: PC与圆 O相切,原因为:过C点作直径CE,连结EB,如图,∵CE为直径,∴∠ EBC=90°,即∠ E+∠BCE=90°,∵ AB∥DC,∴∠ ACD=∠BAC,∵∠ BAC=∠E,∠ BCP=∠ACD.∴∠ E=∠ BCP,∴∠ BCP+∠BCE=90°,即∠ PCE=90°,∴ CE⊥ PC,∴ PC与圆 O相切;( 2)解:∵ AD是⊙ O的切线,切点为 A,∴ OA⊥AD,∵BC∥AD,∴ AM⊥BC,∴ BM=CM= BC=3,∴ AC=AB=9,在 Rt△ AMC中,AM= =6,设⊙ O的半径为 r ,则 OC=r,OM=AM﹣r=6 ﹣r ,2 2 2 2 2 2在 Rt△ OCM中, OM+CM=OC,即 3 +(6 ﹣ r ) =r,解得 r= ,∴ CE=2r= ,OM=6 ﹣= ,∴ BE=2OM= ,∵∠ E=∠ MCP,∴ Rt △PCM∽Rt△ CEB,∴=,即=,∴ PC= 3、( 1)证明:连结 OP,∵OP=OB,∴∠ OPB=∠OBP,∴∠ PBC=∠ OBP,∴ BP均分∠ ABC(2)作 PH⊥AB于 H.∵ PB均分∠ ABC,PC⊥BC, PH⊥AB,∴ PC=PH=1,在 Rt△ APH中, AH==2,∵∠ A=∠A,∠ AHP=∠ C=90°,∴△ APH∽△ ABC,∴=,∴=,∴ AB=3,∴ BH=AB﹣AH=,在 Rt△ PBC和 Rt△PBH中,,∴ Rt△PBC≌Rt△PBH,∴ BC=BH=.4、( 1)证明:连结 OB,∵ AC是⊙ O直径,∴∠ ABC=90°,∵OC=OB,∴∠ OBC=∠C,∵∠ PBA=∠C,∴∠ PBA=∠OBC,即∠ PBA+∠ OBA=∠ OBC+∠ ABO=∠ABC=90°,∴ OB⊥PB,∵ OB为半径,∴ PB是⊙ O的切线;(2)解:∵ OC=OB,∠ C=60°,∴△ OBC为等边三角形,∴ BC=OB,∵ OP∥BC,∴∠ CBO=∠ POB,∴∠ C=∠POB,在△ ABC和△ PBO中∵,∴△ ABC≌△ PBO(ASA),∴ AC=OP=8,即⊙ O的半径为4.5、证明:连结 OM,∵ AB=AC,∴∠ B=∠ C,∵ OB=OM,∴∠ B=∠OMB,∴∠ OMB=∠C,∴OM∥AC,∵ MN⊥AC,∴ OM⊥MN.∵点 M在⊙ O上,∴ MN是⊙ O的切线.6、( 1)证明:连结 OD,∵CD是⊙ O切线,∴∠ ODC=90°,即∠ ODB+∠ BDC=90°,∵AB为⊙ O的直径,∴∠ ADB=90°,即∠ ODB+∠ADO=90°,∴∠ BDC=∠ADO,∵OA=OD,∴∠ ADO=∠A,∴∠ BDC=∠A;(2)∵ CE⊥ AE,∴∠ E=∠ADB=90°,∴DB∥EC,∴∠ DCE=∠ BDC,∴∠ DCE=∠A,∵ CE=4, DE=2∴在 Rt △ACE中,可得 AE=8∴ AD=6在在 Rt △ADB中可得BD=3∴依据勾股定理可得7、证明:( 1)连结 AD,∵ AB是⊙ O的直径,∴∠ ADB=90°,又∵ AB=AC,∴ DC=BD;(2)连结半径 OD,∵ OA=OB, CD=BD,∴ OD∥AC,∴∠ ODE=∠CED,又∵ DE⊥ AC,∴∠ CED=90°,∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.8、( 1)证明:连结 OC,BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,即∠ 1+∠3=90°.∵OA=OC,∴∠ 1=∠ 2.∵∠ DCB=∠BAC=∠1.∴∠ DCB+∠ 3=90°.∴ OC⊥ DF.∴ DF 是⊙ O的切线;( 2)解:在 Rt△ OCD中, OC=3,sin D=.∴ OD=5,AD=8.∵=,∴∠ 2=∠4.∴∠ 1=∠4.∴ OC∥AF.∴△ DOC∽△ DAF.∴.∴ AF=.9、( 1)证明:连结 OP,如图,∴直线PQ与⊙ O相切,∴ OP⊥PQ,∵OP=ON,∴∠ ONP=∠ OPN,∵ NP均分∠ MNQ,∴∠ ONP=∠ QNP,∴∠ OPN=∠QNP,∴OP∥ NQ,∴ NQ⊥PQ;( 2)解:连结 PM,如图,∵ MN是⊙ O的直径,∴∠ MPN=90°,∵NQ⊥PQ,∴∠ PQN=90°,而∠ MNP=∠ QNP,∴ Rt △NMP∽Rt△ NPQ,∴=,即=,∴ NQ=3.10、( 1)证明:( 1)连结 AD;∵ AB是⊙ O的直径,∴∠ ADB=90°.又∵ AB=AC∴ DC=BD(2)连结半径 OD;∵ OA=OB, CD=BD,∴ OD∥AC.∴∠ 0DE=∠CED.又∵ DE⊥ AC,∴∠ CED=90°.∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.11、( 1)证明:连结 CE,如下图:∵AC为⊙ O的直径,∴∠ AEC=90°.∴∠ BEC=90°.∵点F 为 BC的中点,∴ EF=BF=CF.∴∠ FEC=∠FCE.∵OE=OC,∴∠ OEC=∠OCE.∵∠ FCE+∠ OCE=∠ ACB=90°,∴∠ FEC+∠OEC=∠OEF=90°.∴ EF是⊙ O的切线.( 2)解:∵ OA=OE,∠EAC=60°,∴△ AOE是等边三角形.∴∠ AOE=60°.∴∠COD=∠AOE=60°.∵⊙ O的半径为 2,∴ OA=OC=2在 Rt △OCD中,∵∠ OCD=90°,∠ COD=60°,∴∠ ODC=30°.∴ OD=2OC=4,∴ CD=.在Rt△ ACD中,∵∠ ACD=90°,AC=4,CD=.∴AD==.12、1)AB是⊙ O的直径,得∠ ADB=90°,进而得出∠ BAD=∠DBC,即∠ ABC=90°,即可证明BC是⊙ O的切线;( 2)可证明△ ABC∽△ BDC,则=,即可得出BC=;13、解:( 1)∵∠ ABC与∠ D 都是弧 AC所对的圆周角,∴∠ ABC=∠D=60°;( 2)∵ AB是⊙ O的直径,∴∠ ACB=90°.∴∠ BAC=30°,∴∠ BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE,∴ AE是⊙ O的切线;( 3)如图,连结 OC,∵∠ ABC=60°,∴∠ AOC=120°,∴劣弧 AC的长为.14、( 1)证明:∵ ED=EC,∴∠ EDC=∠ C,∵∠ EDC=∠B,∴∠ B=∠C,∴ AB=AC;(2)解:连结 AE,∵ AB为直径,∴ AE⊥BC,由( 1)知 AB=AC,∴ BE=CE= BC=,九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析∵△ CDE∽△ CBA,∴,∴ CE?CB=CD?CA,AC=AB=4,∴?2 =4CD,∴ CD= .15、( 1)证明:连结 OD、 OC,如图,∵ D 是弧 BE的中点,∴ OD⊥BE,∴∠ D+∠3=90°,∵∠ 3=∠ 2,∴∠ D+∠2=90°,∵ AF=AC,OD=OC,∴∠ 1=∠2,∠ D=∠ 4,∴∠ 1+∠ 4=90°,∴ OC⊥AC,∴ AC是⊙ O的切线;( 2)解:设⊙ O的半径为 r ,则 OF=OE﹣ EF=r﹣5,22222 2在 Rt△ ODF中,∵ OD+OF=DF,∴ r +( r ﹣ 5) =(),整理得 r 2﹣5r ﹣ 6=0,解得 r 1 =6,r 2=﹣1,∴,⊙ O的半径为 6.10。
中考数学专题复习《圆的证明与计算》检测题(含答案)

专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
2023 年九年级数学中考专题训练——圆的计算和证明(附答案)

1.如图,在ABC中,AB AC=,以AB为直径作O,交BC于点D,交AC于点E,过点B作O 的切线交OD的延长线于点F.(1)求证:A BOF∠=∠;(2)若4AB=,1DF=,求AE的长.2.如图,AB是O的直径,点C在O上,ABC∠的平分线与AC相交于点D,与O过点A的切线相交于点E.(1)猜想EAD的形状,并证明你的猜想;(2)若8AB=,6AD=,求BD的长.3.如图所示,Rt△ABC中∠ACB=90°,斜边AB与⊙O相切于D,直线AC过点O并于⊙O相交于E、F两点,BC与DF交于点G,DH⊥AC于H.(1)求证:∠B=2∠F;(2)若HE=4,cos B=35,求DF的长.4.如图,O的直径23AB=点C为O上一点,CF为O的切线,OE AB⊥于点O,分别交AC,CF于D,E两点.(1)求证:ED EC=;(2)若30∠=︒,求图中两处(点C左侧与点C右侧)阴影部分的面积之和.A5.已知PA,PB分别与O相切于点A,B,C为O上一点,连接AC,BC.∠的大小;(1)如图①,若70∠=︒,求ACBAPB∠的大小.(2)如图②,AE为O的直径交BC于点D,若四边形PACB是平行四边形,求EAC6.如图,AB是O的直径,点C在AB的延长线上,BDC A⊥,交AD的延长线于∠=∠,CE AD点E.(1)求证:CD与O相切:(2)若4CE=,2DE=,求AD的长,7.如图,四边形ABCD为平行四边形,边AD是O的直径,O交AB于F点,DE为O的切线交BC于E,且BE BF=,BD和O交于G点.(1)求证:四边形ABCD为菱形.(2)若O半径52r=,5BG=BF长.8.如图,O为ABC的外接圆,AB为直径,ABC∠的角平分线BD交O于点D,过点D作O 的切线DE,交BC的延长线于点E.(1)求证:DE BC⊥;(2)若1CE=,3DE=O的半径.9.如图,AB是O的直径,CA与O相切于点A,且AB AC=.连接OC,过点A作AD OC⊥于点E,交O于点D,连接DB.(1)求证:ACE BAD△△≌;(2)连接BC交O于点F.若6AD=,求BF的长.10.在Rt ABC中,90C∠=︒,以AC为直径的O与AB相交点D、E是BC的中点.(1)判断ED与O的位置关系,并说明理由;(2)若O的半径为3,DEC A∠=∠,求DC的长.11.如图,在ABC中,以ABC的边AB为直径作O,交AC于点D,DE是O的切线,且DE BC⊥,垂足为点E.(1)求证AB BC=;(2)若3DE=,610AC=O的半径.12.如图,⊙O是△ABC的外接圆,O在AC上,过点C作⊙O的切线,与AB延长线交于点D,过点O作OE BC,交⊙O于点E,连接CE交AB于点F.(1)求证:CE平分∠ACB;(2)连接OD,若CF=CD=6,求OD的长.13.如图,△ABC中,AB=AC,以AB为直径⊙O的交BC于点D,过点D作⊙O的切线DE,交BA 延长线于点E,延长CA交⊙O于点F,交DE于点G,连接DF.(1)求证:点E为线段CF垂直平分线上一点;,BE=8,求AF的长.(2)若sin∠E=3514.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点D是AC的中点,连接OD,交AC于点E ,作BF ∥CD ,交DO 的延长线于点F .(1)求证:四边形BCDF 是平行四边形.(2)若AC =8,连接BD ,tan∠DBF =34,求直径AB 的长及四边形ABCD 的周长.15.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交AC 于点F ,交BC 于点D ,过点D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若⊙O 的直径为5,25sin B =EF 的长. 16.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE ∽△CPB ;(2)当43AB =34CF CP =时,求扇形COB 的面积. 17.如图,AB 为O 的直径,ACB ∠的角平分线交O 于点D ,交AB 于点E ,CAB ∠的角平分线交CD 于点F .(1)求证:ADB 为等腰直角三角形;(2)求证:2DF DE DC =⋅.18.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =,求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.19.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P .(1)求证:AP AB =; (2)若4OB =,3AB =,求线段BP 的长.20.如图,ABC ∆为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求DF 的长;(3)若点G 为AB 的中点,连接DG ,若点O 在DG 上,求:BF FC 的值.参考答案:1.(1)见解析 (2)83AE =【分析】(1)首先根据等边对等角可证得C ODB ∠=∠,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得AEB OBF ∠=∠,即可证得ABE OFB △∽△,再根据相似三角形的性质即可求得.(1)证明:AB AC =C ABC ∴∠=∠ OB OD =ODB OBD ∴∠=∠C ODB ∴∠=∠AC OD ∴∥A BOF ∴∠=∠(2)解:如图:连接BEAB 是O 的直径,AB =490AEB ∴∠=︒,122OB OD AB === BF 是O 的切线90OBF ∴∠=︒AEB OBF ∴∠=∠又A BOF ∠=∠ABE OFB ∴△∽△AE AB OB OF∴=又213OF OD DF =+=+=423AE ∴=,解得83AE = 【点评】本题考查了等腰三角形的性质,平行线的判定与性质,圆周角定理,切线的性质,相似三角形的判定与性质,作出辅助线,证得ABE OFB △∽△是解决本题的关键.2.(1)等腰三角形,证明见解析; (2)145.【分析】(1)利用角平分线和∠C =∠BAE =90°,得出∠E =∠4,从而得到AD =AE 可得三角形的形状;(2)先证明△BCD ∽△BAE ,利用相似比得到得出即34AE DC AB BC ==,若设CD =3x ,则BC =4x ,BD =5x ,再利用勾股定理得到(4x )2+(6+3x )2=82,然后解方程求出x 后计算5x 即可.(1)猜想:△EAD 是等腰三角形,证明:∵BE 平分∠ABC ,∴∠1=∠2,∵AB 为直径,∴∠C =90°,∴∠2+∠3=90°,∵AE 为切线,∴AE ⊥AB ,∴∠E +∠1=90°,∴∠E =∠3,而∠4=∠3,∴∠E =∠4,∴AE =AD ,∴△EAD 是等腰三角形;(2)∵∠2=∠1,∴Rt △BCD ∽Rt △BAE ,∴CD :AE =BC :AB , 即34AE DC AB BC ==, 设CD =3x ,BC =4x ,则BD =5x ,在Rt △ABC 中,AC =AD +CD =3x +6,∵(4x )2+(6+3x )2=82,解得x 1=1425,x 2=-1(舍去), ∴BD =5x =145. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;也考查了利用勾股定理和相似比进行几何计算.3.(1)见解析; (2)85【分析】(1)连接OD ,由题意可得:90ODA =∠°,再根据∠ACB =90°,可得B AOD ∠=∠,由圆周角定理可得2AOD F ∠=∠,即可求解;(2)由(1)可得B AOD ∠=∠,则3cos 5OH AOD OD ∠==,设OD OE r ==,求得半径r ,由勾股定理求得DH ,再由勾股定理即可求得DF .(1)解:连接OD ,如下图:∵AB 与⊙O 相切于D ,∴OD AB ⊥,即90ODA =∠°,∴90A AOD ∠+∠=︒,又∵∠ACB =90°,∴A B ∠∠=︒+90,∴B AOD ∠=∠,由圆周角定理可得:2AOD F ∠=∠,∴2B F ∠=∠;(2)解:∵DH ⊥AC∴90DHO ∠=︒,由(1)得B AOD ∠=∠, ∴3cos cos 5OH B AOD OD =∠==, 设OD OE OF r ===,则4OH r =-, 则435r r -=,解得10r =, 则6OH =,16HF OH OF =+= 由勾股定理可得:228DH OD OH -=, 由勾股定理可得:2285DF DH HF +=【点评】此题考查了圆的综合应用,涉及了切线的性质定理,圆周角定理,三角形内角和的性质,解直角三角形,勾股定理,解题的关键是灵活运用相关性质进行求解.4.(1)见解析 3π-【分析】(1)连接OC ,则OC CF ⊥,故90ACE ACO ∠+∠=︒,又90ADO A ∠+∠=︒,且A ACO ∠=∠,可得ACE ADO EDC ∠=∠=∠,故ED EC =; (2)过点C 作CG AB ⊥于G ,结合三角函数的知识求得CG 与CE 的长,从而利用COE BOC COB COH S S S S S =+--△△阴影扇形扇形求得阴影部分的面积之和.(1)证明:连接OC ,CF 是O 的切线,∴OC CF ⊥,∴90ACO ACE ∠+∠=︒,OE AB ⊥,∴90ADO A ∠+∠=︒,OA OC =,∴A ACO ∠=∠,∴ACE ADO ∠=∠, 又ADO CDE ∠=∠,∴ACE CDE ∠=∠,∴ED EC =.(2)解:过点C 作CG AB ⊥于G ,30A ACO ∠=∠=︒,∴260BOC A ∠=∠=︒, ∴33sin 6032CG OC =︒==, 9030COE BOC ∠=︒-∠=︒,90OCE ∠=︒,∴3tan 3031CE OC =︒==. 1133122COE S OC CE =⨯⨯==△, 260(3)3602COB S ππ=⨯⨯=扇形, 230(3)3604COH S ππ=⨯⨯=扇形, 113333222BOC S OB CG =⨯⨯==△ ∴333324COE BOC COB COH S S S S S πππ-=+--=-=△△阴影扇形扇形 【点评】本题属于圆的综合题,涉及到了圆的切线的性质,扇形面积的计算方法,以及三角函数相关知识,解题的关键是学会常用辅助线的作法.5.(1)55°(2)30°【分析】(1)连接OA 、OB ,根据切线的性质可得∠OAP =∠OBP =90°,再根据四边形内角和等于360度求出AOB ∠,再由圆周角定理即可求出结果;(2)连接AB ,EC ,由切线长定理以及平行四边形的性质可证明四边形PACB 是菱形,进而证明△ABC 是等边三角形,进一步可得结论.(1)如图①,连接OA 、OB ,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠APB =70°,∴∠AOB =360°-90°-90°-70°=110°∴∠ACB =12∠AOB =11102⨯︒=55°; (2)如图②,连接AB ,EC ,∴,BAE BCE ∠=∠∵PA ,PB 分别与O 相切于点A ,B ,∴,PA PB =∵四边形PACB 是平行四边形,∴四边形PACB 是菱形,∴,AC BC =∵PA 是O 的切线,且AE 是O 的直径,∴,AE PA ⊥∵四边形APBC 是平行四边形,∴PA //BC∴,AE BC ⊥即∠90,ADB ︒=∴∠90,BAD ABD ︒+∠=∵AE 是O 的直径,∴∠90,ACE ︒=即∠90,ACD BCE ︒+∠=∵∠,BAD BCE =∠∴∠,ABD ACB =∠∴,AB AC =∴,AB AC BC ==即△ABC 是等边三角形,∴∠60,ABC BAC ACB ︒=∠=∠=∵,AE BC ⊥ ∴116030.22EAC BAC ︒︒∠=∠=⨯= 【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定与性质,平行四边形的性质,菱形的判定与性质等知识,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(1)见解析(2)6【分析】(1) 连接OD ,然后根据圆的性质和已知可以得到90ODC ∠=︒,即可证得CD 与O 相切;(2)由已知可以得到AEC CED ∽,再根据三角形相似的性质和已知条件即可求出AD 的值.(1)证明:连接OD ,∵AB 为O 的直径,∴90ADB ∠=︒,即90ODB ADO ∠+∠=︒,∵OA OD =,∴ADO A ∠=∠,又∵BDC A ∠=∠;∴90ODB BDC ∠+∠=︒,即90ODC ∠=︒∴CD 是O 切线.(2)∵CE AE ⊥,∴90∠=∠=︒E ADB ,∴DB //EC ,∴DCE BDC ∠=∠,∵BDC A ∠=∠,∴A DCE ∠=∠,∵E E ∠=∠,∴AEC CED ∽, ∴CE AE DE CE=, ∴2CE DE AE =⋅,∴162(2)AD =+,∴6AD =.【点评】本题考查圆的综合应用,熟练掌握圆切线的判定方法、三角形相似的判定和性质是解题关键.7.(1)证明过程见解析(2)2【分析】(1)连接DF ,通过证明Rt △DFB ≌Rt △DEB (HL )得到DF =DE ,证明△ADF ≌△CDE (ASA )得到AF =CE ,即可证明四边形ABCD 是菱形;(2)连接AG,根据等腰三角形三线合一的性质得到DG=GB,设BF=x,则AF=5-x,利用勾股定理可得2222-=-,列出方程求解即可得到BF的长.AD AF DB BF(1)证明:连接DF,如图所示∵DE是切线,AD是直径∴∠ADE=90°,∠DF A=90°∵四边形ABCD是平行四边形∴∠DEB=90°,∠CDF=90°∴∠DFB=∠DEB=90°又∵BF=BE,DB=DB∴Rt△DFB≌Rt△DEB(HL)∴DF=DE∵四边形ABCD是平行四边形∴∠A=∠C又∵∠AFD=∠DEC∴△ADF≌△CDE(AAS)∴AF=CE∴AB=CB∴四边形ABCD是菱形(2)解:连接AG,如图所示∵AD是直径∴∠AGD=90°,即AG⊥BD∵四边形ABCD是菱形∴AB=AD∴DG=GB5∴DB5设BF=x,则AF=5-x∵2222AD AF DB BF -=-∴()(2222555x x --=-,解得x =2∴BF 的长为2【点评】本题考查了菱形的判定、平行四边形的性质、直径所对圆周角是直角、全等三角形的判定与性质、勾股定理等知识,正确作出辅助线,掌握这些知识点是解答本题的关键.8.(1)见解析(2)2【分析】(1)根据切线性质得90ODE ∠=︒,再根据圆及角平分线的性质,证得//OD BC ,最后根据平行线的性质,证得结论.(2)连接OD 交AC 于点F ,证明四边形CEDF 是矩形,再设O 的半径r ,在Rt AOF 中运用勾股定理,建立关于r 的方程,求解即可.(1)证明:如图,连接OD ,DE 与O 相切于点D ,DE OD ∴⊥,90ODE ∴∠=︒,OD OB =,ODB OBD ∴∠=∠, BD 平分ABC ∠,OBD DBC , ODB DBC ,//OD BC ∴,18090E ODE ∴∠=︒-∠=︒,DE BC ∴⊥.(2)解:如图,连接OD 交AC 于点F ,AB 是O 的直径,90ACB ∴∠=︒,18090ECF ACB ∴∠=︒-∠=︒,90ECF E EDF ∴∠=∠=∠=︒,∴四边形CEDF 是矩形.90AFO CFD ∴∠=∠=︒,1DF CE ==,FO AC ∴⊥,3AF CF DE ∴===设O 的半径为r ,则OA OD r ==,222OA OF AF =+,1OF r =-,()22213r r ∴=-+, 解得2r =,O ∴的半径为2.【点评】本题考查了与圆有关的综合问题,灵活运用切线性质,勾股定理进行推理求值是解题的关键.9.(1)证明见解析 310【分析】(1)根据切线的性质可得90BAD CAE ∠+∠=︒,根据圆周角定理的推论可得90BAD ABD ∠+∠=︒,即得出CAE ABD ∠=∠.结合题意即可利用“AAS ”证明ACE BAD △△≌;(2)连接AF .由垂径定理可得132AE ED AD ===.再根据全等三角形的性质可得6CE AD ==,3AE ED BD ===,利用勾股定理可求出35AC AB ==.再根据圆周角定理的推论结合等腰三角形“三线合一”的性质即可求出13102BF BC ==.(1)证明:∵CA 与O 相切于点A ,∴90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵AB 为直径,∴90BDA ∠=︒,∴90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.∵AD OC ⊥,∴90AEC ADB ∠=∠=︒.又∵AB AC =,∴()ACE BAD AAS ≌△△;(2)如图,连接AF .∵AD OC ⊥, ∴132AE ED AD ===. ∵ACE BAD △△≌,∴6CE AD ==,3AE ED BD ===∴在Rt AEC 中,22223635AC AE CE AB ++=, ∴2310BC ==∵AB 为直径,∴90AFB ∠=︒.∵AB =AC , ∴13102BF BC ==. 【点评】本题为圆的综合题.考查切线的性质,圆周角定理,三角形全等的判定和性质,等腰直角三角形的性质以及勾股定理.掌握与圆相关的知识点是解题关键.10.(1)相切;理由见解析(2)2π【分析】(1)连接OD,CD,再根据直径所对的圆周角是直角及直角三角形斜边上的中线性质证明OD⊥DE即可;(2)根据DEC A∠=∠证明三角形DEC是等边三角形,即可得到DC的圆心角是120°,再根据弧长公式计算即可.(1)ED与⊙O相切.理由:连接OD,CD.∵AC是直径,∴∠ADC=90°,在Rt△BDC中,E为BC的中点,∴DE=EC,∴∠3=∠2,又∵OD=OC,∴∠1=∠4,∵∠1+∠2=90°,∴∠ODE=∠3+∠4=90°,∴ED与⊙O相切;(2)∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,∵∠DEC=∠A,∴∠2=∠3=∠DEC=60°,∴∠A=60°,∴∠DOC=2∠A=120°,∴弧DC的长=12032 180ππ⨯=.【点评】本题考查圆的性质及弧长公式,熟记直径所对的圆周角是直角、切线的证明、弧长公式是解题的关键.11.(1)见解析;(2)5【分析】(1)连接OD、BD,根据切线的性质得到OD⊥DE,推出OD∥BC,证得∠ODB=∠CBD,由此推出∠OBD=∠CBD,根据AB为O的直径,得到∠ADB=∠CDB=90°,证得△ABD≌△CBD(ASA),即可得到AB=BC;(2)根据AB=BC,BD⊥AC,求出AD=CD=13102AC=CE=9,证得△CDE∽△CBD,求出CB,即可得到O的半径.(1)证明:连接OD、BD,∵DE是O的切线,∴OD⊥DE,∵DE BC⊥,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵AB为O的直径,∴∠ADB=∠CDB=90°,∵BD=BD,∴△ABD≌△CBD(ASA),∴AB=BC;(2)∵AB=BC,BD⊥AC,∴AD=CD=1310 2AC=∵DE=3,∴()222293103 CE CD DE=--,∵∠C=∠C,∠CED=∠CDB=90°,∴△CDE∽△CBD,∴2CD CE CB=⋅,∴(22109310CDCBCE===,∴AB=CB=10,∴O的半径为5.【点评】此题考查了切线的性质定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟记各知识点并综合应用是解题的关键.12.(1)见解析(2)37【分析】(1)根据OC=OE,可得∠OCE=∠E,再由OE BC,可得∠E=∠BCE,从而得到∠OCE=∠BCE,即可求证;(2)根据CD=CF,可得∠BCD=∠BCE=∠OCE,再由CD是⊙O的切线,可得∠BCD=30°,再证得∠A=∠BCD=30°,根据直角三角形的性质,即可求解.【解析】(1)证明:∵OC=OE,∴∠OCE=∠E,∵OE BC,∴∠E=∠BCE,∴∠OCE=∠BCE,∴CE平分∠ACB;(2)解:如图,∵CD=CF,∴∠BCD=∠BCE,∵CE平分∠ACB,∴∠BCD=∠BCE=∠OCE,∵CD是⊙O的切线,∴∠ACD=90°,即∠BCD+∠ACB=90°,∴∠BCD=30°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠A+∠ACB=90°,∴∠A=∠BCD=30°,∵CD=6,∴AD=2CD=12,∴2263AC AD CD-=∴33OC=∴2237OD OC CD=+=【点评】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,勾股定理,熟练掌握切线的性质,圆周角定理,直角三角形的性质,勾股定理是解题的关键.13.(1)见解析(2)AF=185.【分析】(1)根据圆周角定理可得AD⊥BC,再由等腰三角形的性质可得BD=CD,进而得出OD是三角形的中位线,由切线的性质可得OD∥FC,证出三角形DFC是等腰三角形即可;(2)在Rt△ODE中,根据锐角三角函数可求出半径OD,进而得出直径AB,在Rt△ABF 中,由锐角三角函数可求出AF.(1)证明:如图,连接OC,AD,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABC=∠F,∴∠F=∠ACB,∴DF=DC,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴FC⊥DE,∵DF=DC,∴DE是FC的垂直平分线,即点E为线段CF垂直平分线上一点;(2)解:连接BF,在Rt△ODE中,设OD=x,则OE=BE-OB=8-x,∵sin∠E=35=ODOE,∴8xx=35,解得x=3,经检验x=3是原方程的根,∴AB=2OD=6,∵AB是⊙O的直径,∴∠AFB=90°,∴DG∥BF,∴∠E=∠ABF,在Rt△ABF中,AB=6,sin∠ABF=sin∠E=35,∴AF =AB •sin ∠ABF =6×35=185. 【点评】本题考查切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系,掌握切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系是正确解答的前提.14.(1)见解析(2)AB =10,周长16+45【分析】(1)根据AB 是⊙O 的直径,得∠C =90°,根据点D 是AC 的中点,得CA ⊥DF ,即有∠AEO =90°,则有BC DF ∥,即可得证;(2)先利用平行及圆周角定理证得∠DBF =∠BAC ,则根据正切值和勾股定理即可求出CB 、AB ,在Rt △AEO 中,利用勾股定理得OE =3,在Rt △AED 中,利用勾股定理,得AD 5则四边形的周长可得.(1)证明:∵AB 是⊙O 的直径,∴∠C =90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD =DC ,∴CA ⊥DF ,AE =EC ,∴∠AEO =90°,∴BC DF ∥,∵BF CD ∥,∴四边形BCDE 是平行四边形;(2)∵BC DF ∥,∴∠DBF =∠CDB ,又∵根据圆周角定理有∠CDB =∠BAC ,∴∠DBF =∠BAC ,即tan ∠BAC =34, ∵AC =8,∴CB =6,则在Rt △ACB 中,利用勾股定理可得AB =10,即AO =5=OD ,∵AE =EC =12AC ,∴AE=EC=4,在Rt△AEO中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt△AED中,利用勾股定理,得AD5CD5∴四边形ABCD的周长=AB+BC+CD+AD5545【点评】本题考查了平行四边的判定与性质、同弧所对的圆周角相等、同弧所对的弦相等、勾股定理以及解直角三角形的知识,利用正切值以及同弧所对的圆周角相等是解答本题的关键.15.(1)见解析(2)1【分析】(1)连接OD,由AB=AC,OB=OD,则∠B=∠ODB=∠C,则OD∥AC,由DE为切线,即可得到结论成立;(2)如图所示,连接BF,AD,先解直角三角形ACD求出AD的长,从而求出CD的长,然后分别解直角三角形BCF,直角三角形DCE,求出BF,DE,进而求出CF,CE,即可得到EF.(1)解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切线,∴OD⊥DE,∴AC⊥DE;(2)解:如图所示,连接BF,AD,∵AB是圆O的直径,∴∠AFB=∠ADB=90°,∴∠BFC=90°,∵DE⊥AC,∴∠DEC=90°∵AB=AC,∴BC=2CD,∠ABD=∠C,∴25 sin sinADABD CAC∠===∴2525 AD AC==∴225CD AC AD-∴5BC=∴sin2DE CD C=⋅=,sin=4BF BC C=⋅,∴221CE CD DE=-=,222CF BC BF=-=,∴EF=CF-CE=1.【点评】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质与判定,解直角三角形、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度..16.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE323k∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠F AC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠F AC=∠CAB,∴CE=CF=3k,∵△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.17.(1)证明见解析(2)证明见解析【分析】(1)根据AB 为O 的直径,可得90ADB ACB ∠=∠=︒,由ACB ∠的角平分线交O 于点D ,可得45ACD BCD ∠=∠=︒,AD BD =,AD BD =,进而结论得证;(2)由CAB ∠的角平分线交CD 于点F ,得到CAF BAF ∠=∠,结合(1)可得ACD BAD ∠=∠,再由∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,得到DFA DAF ∠=∠,从而说明DA DF =,最后再证明ADE CDA △∽△,利用相似三角形的性质即可得证.(1)证明:∵AB 为O 的直径,∴90ADB ACB ∠=∠=︒,∵ACB ∠的角平分线交O 于点D ,∴45ACD BCD ∠=∠=︒,∴AD BD =,∴AD BD =,∴ADB 为等腰直角三角形;(2)证明:∵CAB ∠的角平分线交CD 于点F ,∴CAF BAF ∠=∠,由(1)可知:45ACD ∠=︒,AD BD =,90ADB ∠=︒∴45BAD ABD ∠=∠=︒,∴ACD BAD ∠=∠,∵∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,∴DFA DAF ∠=∠,∴DA DF =,在ADE 和CDA 中DAE DCA ADE CDA ∠=∠⎧⎨∠=∠⎩, ∴ADE CDA △∽△, ∴AD DE CD AD=, ∴2AD DE DC =⋅,∴2DF DE DC =⋅.【点评】本题考查的是圆和三角形的综合题,考查了直径所对的圆周角为90°,角平分线,圆周角,等腰三角形的判定,相似三角形的判定与性质等知识.对知识的熟练掌握与灵活运用是解题的关键.18.(1)3AC =(2)见解析【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再根据勾股定理进行计算即可;(2)连结BD ,连结OD 与AC 交于F 点.根据切线的性质及平行四边形的性质可证明四边形OBCD 是菱形,即可得到结论.(1)∵AB 是圆O 的直径,∴90ACB ∠=︒∴2223AC AB BC =-=,∴3AC =.(2)连结BD ,连结OD 与AC 交于F 点.∵ED 与圆O 相切于D 点,∴OD ED ⊥,∵四边形ACDE 是平行四边形,∴ED AC ∥, CD EA ∥,∴OD AC ⊥,90OFA ACB ∠=︒=∠,∴OD BC ∥,∵CD EB ∥,OD OB =,∴四边形OBCD 是菱形,∴BD 平分ABC ∠.【点评】本题考查了圆周角定理、切线的性质、勾股定理、平行四边形的性质及菱形的判定和性质,熟练掌握知识点是解题的根据.19.(1)见解析 65【分析】(1)根据等角的余角相等,ABP CPO ∠=∠,进而证得APB ABP ∠=∠,最后结论得证;(2)作OH BC ⊥于H ,在Rt POC △中,求出OP ,PC ,OH ,CH 即可解决问题.(1)证明:∵OC OB =,∴OCB OBC ∠=∠,∵AB 是O 的切线,∴OB AB ⊥,∴90OBA ∠=︒,∴90ABP OBC ∠+∠=︒,∵OC AO ⊥,∴=90AOC ∠︒,∴90OCB CPO ∠+∠=︒,∴ABP CPO ∠=∠,∵APB CPO ∠=∠,∴APB ABP ∠=∠,∴AP AB =.(2)解:作OH BC ⊥于H ,在Rt OAB 中,∵4OB =,3AB =, ∴22345OA +,∵3AP AB ==,∴2PO =.在Rt POC △中,∵4OC OB == ∴2225PC OC OP =+=1122POC S PC OH OC OP ==△, ∴455OC OP OH PC == ∴2285CH OC OH =- ∵OH BC ⊥,∴CH BH =,∴1652BC CH = ∴165655PB BC PC =-=-=. 【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,学会添加适当的辅助线,构造直角三角形解决问题是解本题的关键.20.(1)见解析(2)3DF =22【分析】(1)由题意得BAE DAE ∠=∠,且90ABE ︒∠=,即90BAE AEB ︒∠+∠=,根据AD BC ⊥得90DAE AFD ︒∠+∠=,即可得;(2)根据AEB AFD ∠=∠,AFD BFE ∠=∠得BEF BFE ∠=∠,即BE BF =,根据BAE DAF ∠=∠,90ABE ADF ︒∠=∠=得ΔΔABE ADF ∽,根据10AB =,5BF =得12BE AB =,设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理, 即()()2221052x x =++,即可得;(3)根据点G 为AB 中点,点O 在DG 上得OG 是ABE ∆的中位线,即OG BE ∥,12OG BE =,根据90ABE ︒∠=得OD DF =,AEB ∠和ACB ∠是AB 所对的圆周角得AEB ACB ∠=∠,即ACB AFC ∠=∠,即有AC AF =,设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++,即可得. (1)解:∵直径AE 平分BAD ∠,∴BAE DAE ∠=∠,且90ABE ︒∠=,∴90BAE AEB ︒∠+∠=,∵AD BC ⊥,∴90DAE AFD ︒∠+∠=,∴AEB AFD ∠=∠.(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴BEF BFE ∠=∠,∴BE BF =,∵BAE DAF ∠=∠,90ABE ADF ︒∠=∠=,∴ΔΔABE ADF ∽,∵10AB =,5BF =, ∴51102BE BF DF AB AB AD ====, 设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理,222AB BD AD =+,即()()2221052x x =++,解得:13x =,25x =-,舍去负值,得到3DF =.(3)解:如图所示,∵点G 为AB 中点,点O 在DG 上,∴OG 是ABE ∆的中位线,∴OG BE ∥,12OG BE =, ∵90ABE ︒∠=,∴DG AB ⊥,ABD ∆是等腰直角三角形,AOG AEB AFD ∠=∠=∠,∴OD DF =,∵AEB ∠和ACB ∠是AB 所对的圆周角,∴AEB ACB ∠=∠,∴ACB AFC ∠=∠,即有AC AF =,∵AD CF ⊥,∴DF CD =.设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++, 解得2a b =, ∴::222BF FC a b ==.【点评】本题考查了圆与三角形,解题的关键是掌握垂径定理,相似三角形的判断与性质,中位线,勾股定理.。
专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。
2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题(含答案)

2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题1.如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan⊙CPO= 12,求PO的长.2.如图,⊙ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG//BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,⊙A=⊙D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分⊙ACB,BD=12,求DE的长.3.如图,已知⊙O的直径为AB,AC⊙AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.4.如图,AB是⊙O的直径,点F,C是⊙O上两点,且点C是弧FB̀的中点,连接AC,AF,过点C作CD⊙AF,垂足为点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AC=8,求DC的长.5.如图,⊙O是⊙ABC的外接圆,点O在BC边上,⊙BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB·CP=BD·CD;(3)若tan∠ABC=2,AB=2√5,求线段DP的长.6.如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且⊙CAD=⊙D,给出下列三个信息:①sin⊙CAB=12;②BO=BD;③DC是⊙O的切线.(1)请在信息①或②中选择一个作为条件,剩下的两个信息中选择一个作为结论,组成一个真命题....你选择的条件是,结论是(只要填写序号).(2)证明(1)中你写出的真命题.7.如图,AB是⊙O的直径,点C在⊙O上,点D在AB的延长线上,且⊙BCD =⊙A.(1)求证:CD是⊙O的切线;(2)若AC =2,AB =32CD,求⊙O半径.8.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:ΔDAF≌ΔDCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=√5,求四边形ABCD的面积.9.如图,在矩形ABCD中,点E是BC边上一点,且AD=DE,以AB为半径作⊙A,交AD边于点F,连接EF.(1)求证:DE是⊙A的切线;(2)若AB=2,BE=1,求AD的长;(3)在(2)的条件下,求tan⊙FED.10.等腰三角形ABC,AB=AC,CD⊥AB于点D,AE⊥BC于点E,AE、CD交于点F,⊙O为⊙ADF的外接圆,连接DE.(1)求证:DE是⊙O的切线:(2)若CF=5,DF=3,求⊙O的直径.11.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作⊙O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是⊙O的切线;(2)当BH与⊙O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最大时,请直接写出此时点H到AB的距离.12.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.13.如图,AB是 ⊙O的直径,点C是 ⊙O上一点,AC平分⊙DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分⊙ACB,交AB于点F,交 ⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan⊙ABC=43,求线段BE的长.14.如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.P为线段AB上一个动点(点P不与A,B 两点重合),过点P作x轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(2)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.15.如图,PA为⊙O的切线,A为切点,点B在⊙O上,且PA=PB,连AO并延长交PB的延长线于点C,交⊙O于点D.(1)求证:PB为⊙O的切线;(2)连接OB、DP交于点E.若CD=2,CB=4,求PEDE的值.16.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E 是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,⊙B=50°,AC=4.8,求图中阴影部分的面积.答案解析部分1.【答案】(1)解:不同类型的正确结论有:①PC=PD ,②⊙CPO=⊙DP ,③CD⊙BA ,④⊙CEP=90°,⑤PC 2=PA•PB(2)解:连接OC ∵PC 、PD 分别切⊙O 于点C 、D ∴PC=PD ,⊙CPO=⊙DPA∴CD⊙AB∵CD=12∴DE=CE= 12CD=6. ∵tan⊙CPO= 12, ∴在Rt⊙EPC 中,PE=12∴由勾股定理得CP=6 √5∵PC 切⊙O 于点C∴⊙OCP=90°在Rt⊙OPC 中,∵tan⊙CPO= 12, ∴OC PC =12∴OC=3 √5 ,∴OP= √OC 2+PC 2 =152.【答案】(1)证明:如图1,延长 DB 至 H ,∵DG//BC ,∴∠CBH =∠D ,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴AB⊙BD,∴BD与⊙O相切;(2)解:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴AF=BF,∴⊙AOF=⊙BOF=90°,∴OF⊥AB,∵BD⊥AB,∴OF//BD,∴△EFO∽△EDB,∴OFBD=OE BE,∵AE=OE,∴OEEB=1 3,∴OF12=13,∴OF=4,∴OA=OB=OF=4,∴BE =OE +OB =2+4=6 ,∴DE =√BD 2+BE 2=√122+62=6√5 .3.【答案】(1)证明:如图:首先连接OD .∵AC⊙AB ,∴⊙BAC=90°,即⊙OAE=90°.在⊙AOE 与⊙DOE 中,OA=OD ,ED=EA ,OE=OE ,∴⊙AOE⊙⊙DOE (SSS ),∴⊙OAE=⊙ODE=90°,即OD⊙ED .又∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)解:如图,在⊙OAE 中,⊙OAE=90°,OA=3,AE=4,∴由勾股定理求得OE=5.∵AB 是直径,∴⊙ADB=90°(直径所对的圆周角是直角),即AD⊙BC .又∵OA=OD ,AE=DE ,∴OE 垂直平分AD (到线段两个端点距离相等的点在这条线段的垂直平分线上), ∴OE⊙AD ,∴OE⊙BC ,∴OA AB =OE BC =12(平行线分线段成比例定理). ∴BC=2OE=2×5=10,即BC 的长度是10.4.【答案】(1)解:如图1,连接OC ,∵C 是弧FB ̀的中点, ∴弧FC=弧BC ̀̀,∴⊙FAC=⊙BAC ,∵OA=OC ,∴⊙OCA=⊙BAC ,∴⊙FAC=⊙OCA ,∴AD⊙OC ,∵CD⊙AF ,∴CD⊙OC ,即CD 是⊙O 的切线;(2)解:如图2,连接BC ,∵AB 是⊙O 的直径,∴⊙ACB=90°,∴⊙D=⊙ACB ,又⊙DAC=⊙CAB ,∴⊙DAC⊙⊙CAB ,∴AD AC =AC AB, 解得,AD= AC 2AB=6.4, 在Rt⊙ADC 中,CD= √AC 2−AD 2 =4.8.5.【答案】(1)证明:如图,连接OD ,∵BC 是⊙O 的直径,∴⊙BAC=90°,∵AD 平分⊙BAC ,∴⊙BAC=2⊙BAD ,∵⊙BOD=2⊙BAD ,∴⊙BOD=⊙BAC=90°,∵DP⊙BC ,∴⊙ODP=⊙BOD=90°,∴PD⊙OD ,∵OD 是⊙O 半径,∴PD 是⊙O 的切线;(2)证明:∵PD⊙BC ,∴⊙ACB=⊙P ,∵⊙ACB=⊙ADB ,∴⊙ADB=⊙P ,∵⊙ABD+⊙ACD=180°,⊙ACD+⊙DCP=180°,∴⊙DCP=⊙ABD ,∴⊙ABD⊙⊙DCP ,∴AB CD =BD CP∴AB•CP=BD•CD.(3)解:在 RtΔABC 中,∵tan∠ABC =2 , AB =2√5 ,∴AC =2AB =4√5 ,∴BC =√AB 2+AC 2=10 ,∴OD =5 ,过点 C 作 CG ⊥DP ,垂足为 G ,则四边形 ODGC 为正方形,∴DG =CG =OD =5 ,∵BC ∥PD ,∴∠CPG =∠ACB ,∴tan∠CPG =tan∠ACB ,∴CG GP =AB AC,即 5GP =2√54√5 , 解得, GP =10 ,∴DP =DG +GP =15 .6.【答案】(1)①;②(或①,③;或②,①;或②,③;答案不唯一) (2)解:条件:①,结论:②;连接BC ,∵AB是⊙O的直径,∴⊙ACB=90°,∵sin⊙CAB= 1 2,∴BC= 12AB=BO,⊙D=⊙CAB=30°,∴⊙ABC=60°,∴⊙BCD=⊙ABC-⊙D=30°=⊙D,∴BD=BC,∴BD=BO;条件:①,结论:③;连接CO,∵sin⊙CAB= 1 2,∴⊙D=⊙CAB=30°,∵OA=OC,∴⊙OCA=⊙CAB=30°,在⊙DCA中,⊙DCO =180°-⊙D-⊙CAB-⊙OCA =180°-30°-30°-30°=90°,∴OC⊙DC,∴DC是⊙O的切线;条件:②,结论:①;连接BO、CO,∵AB是⊙O的直径∴⊙ACB=90°∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA∠D=∠CAD DO=AB,∴⊙DCO⊙⊙ACB,∴BC=CO= 12AB,∴sin⊙CAB= 1 2;条件:②,结论:③;连接BO、CO,∵AB是⊙O的直径,∴⊙ACB=90°,∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA ∠D=∠CAD DO=AB∴⊙DCO⊙⊙ACB,∴⊙DCO=⊙ACB=90°,∴CO⊙DC,∴DC是⊙O的切线.7.【答案】(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴⊙ACB=90°,即⊙ACO+⊙OCB=90°.∵OA=OC ,⊙BCD=⊙A ,∴⊙ACO=⊙A=⊙BCD ,∴⊙BCD+⊙OCB=90°,即⊙OCD=90°,∴CD 是⊙O 的切线.(2)解:设CD 为x ,则AB= 32 x ,OC=OB= 34x , ∵⊙OCD=90°,∴OD= √OC 2+CD 2=√(34x)2+x 2 = 54 x , ∴BD=OD ﹣OB= 54x ﹣ 34 x= 12 x , ∵⊙BCD =⊙A ,⊙BDC =⊙CDA ,∴⊙ADC⊙⊙CDB ,∴AC CB =CD BD, 即 2CB =x 12, 解得CB=1,∴AB= √AC 2+BC 2 =√5∴⊙O 半径是 √52. 8.【答案】(1)证明:如图1,连接 DF ,∵四边形 ABCD 为菱形,∴AB =BC =CD =DA , AD//BC , ∠DAB =∠C ,∵BF=BE,∴AB−BF=BC−BE,即AF=CE,∴ΔDAF≌ΔDCE(2)解:∵ΔDAF≌ΔDCE∴∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°.∵AD//BC,∴∠ADE=∠DEC=90°,∴OD⊥DE.∵OD是⊙O的半径,∴DE是⊙O的切线(3)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=√5,∴DB=2DH=2√5,在RtΔADF和RtΔBDF中,∵DF2=AD2−AF2,DF2=BD2−BF2,∴AD2−AF2=DB2−BF2,∴AD2−(AD−BF)2=DB2−BF2,∴AD2−(AD−2)2=(2√5)2−22,∴AD=5.∴AF=3∴DF=√AD2−AF2=4∴四边形ABCD的面积=AB⋅DF=5×4=20.9.【答案】(1)证明:过点A作AG⊙DE,∴⊙AGD=90°在矩形ABCD 中,AD⊙BC ,⊙C=90°,∴⊙AGD=⊙C ,⊙ADG=⊙DEC∵AD=DE ,∴⊙ADG⊙⊙DEC∴AG=DC ,DG=EC ,∵AB=DC ,∴AG=AB ,即AG 为⊙A 的半径∴DE 是⊙A 的切线(2)解:连接AE ,由(1)可知,AG=AB ,⊙ABE=⊙AGE=90°,AE=AE ,∴⊙ABE⊙⊙AGE (HL ),∴BE=EG ,设DG=EC=x ,∵AB=2,BE=1,∴DE=x+1,DC=AB=2,在Rt⊙DEC 中,由勾股定理可得,x 2+22=(x +1)2解得,x =32, ∴AD=DE=52(3)解:过点F 作FH⊙DE ,∵AD =52,AF =AB =2, ∴DF =AD −AF =52−2=12, ∵FH⊙DE ,AG ⊥DE ,∴FH ∥AG ,∴⊙DFH⊙⊙DAG ,∴DF AD =FH AG ,即1252=FH 2, 解得FH =25, ∵DH =√(12)2−(25)2=310,DE =√(32)2−22=52, ∴EH =52−310=115∴tan⊙FED =FH EH =211, 10.【答案】(1)证明:如下图所示,连接OD .∵AB =AC ,AE⊙BC ,∴CE =EB ,⊙DCE +⊙CFE =90°.∴CE =12BC . ∵CD⊙AB ,∴DE =12BC ,⊙ADF=90°. ∴DE=CE ,⊙FAD +⊙AFD =90°,⊙ODA +⊙ODF =90°.∴∠DCE =∠CDE .∵⊙AFD 和⊙CFE 是对顶角,∴⊙AFD =⊙CFE .∴⊙FAD =⊙DCE .∴⊙FAD=⊙CDE .∵OA =OD ,∴⊙FAD =⊙ODA .∴⊙ODA =⊙CDE .∴⊙ODE=⊙ODF +⊙CDE =⊙ODF+⊙ODA=90°.∴OD⊙DE .∵OD 为半径,∴DE 是⊙O 的切线.(2)解:如下图所示,连接BF .∵CE =BE ,AE⊙BC ,CF=5,∴BF =CF =5.∵DF=3,∴DB =√BF 2−DF 2=4,CD =CF +DF =8.∵CD⊙AB ,∴⊙ADF=⊙CDB=90°.∴AF 是⊙O 直径.∵⊙FAD=⊙DCE ,即⊙FAD=⊙BCD ,∴⊙ADF⊙⊙CDB .∴AD CD =DF DB. ∴AD 8=34. ∴AD =6.∴AF =√AD 2+DF 2=√62+32=3√5.11.【答案】(1)解: ∵α=90°=∠AOB ,∴∠AOP =∠BOH ,又 ∵OP =OH, OA =OB ,∴△AOP ≌△BOH ,∴∠OPA =∠OHB ,∵AP 是⊙O 的切线,∴∠OPA =90° ,∴∠OHB =90° ,即 OH ⊥BH 于点H ,∴BH是⊙O的切线;(2)解:如图,过点B作⊙O的切线BC、BD,切点分别为C、D,连接OC,OD,则有OC⊥BC,OD⊥BD,∵OC=2,OB=4,∴cos∠BOC=OCOB=24=12,∴∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∴∠OHB=90°,∵OP=2,∴PH的长为90π×2180=π;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∴PH的长为210π×2180=73π,∴当BH与⊙O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π.(3)2+2√212.【答案】(1)解:连接OC,∵AB是⊙O的直径,点C是AB的中点,∴⊙AOC=90°,∵OA=OB,CD=AC,∴OC是⊙ABD是中位线,∴OC⊙BD,∴⊙ABD =⊙AOC =90°,∴AB⊙BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线(2)解:由(1)知,OC⊙BD ,∴⊙OCE⊙⊙BFE ,∴OC BF =OE EB, ∵OB =2,∴OC =OB =2,AB =4, OE EB =23, ∴2BF =23, ∴BF =3,在Rt⊙ABF 中,⊙ABF =90°,根据勾股定理得,AF =5, ∵S ⊙ABF = 12 AB•BF = 12AF•BH , ∴AB•BF =AF•BH ,∴4×3=5BH ,∴BH = 125. 13.【答案】(1)证明:连接OC ,∵AC 平分⊙DAB ,∴⊙DAC =⊙CAB ,∵OA =OC ,∴⊙OCA =⊙CAB ,∴⊙DAC =⊙OCA ,∴OC⊙AD ,又AD⊙PD ,∴OC⊙PD ,∴PC 与⊙O 相切(2)证明:∵CE 平分⊙ACB ,∴⊙ACE =⊙BCE ,∴AE =BE ,∴⊙ABE =⊙ECB ,∵OC =OB ,∴⊙OCB =⊙OBC ,∵AB 是⊙O 的直径,∴⊙ACB =90°,∴⊙CAB+⊙ABC =90°,∵⊙BCP+⊙OCB =90°,∴⊙BCP =⊙BAC ,∵⊙BAC =⊙BEC ,∴⊙BCP =⊙BEC ,∵⊙PFC =⊙BEC+⊙ABE ,⊙PCF =⊙ECB+⊙BCP ,∴⊙PFC =⊙PCF ,∴PC =PF(3)解:连接AE ,在Rt⊙ACB 中,tan⊙ABC = 43,AC =8, ∴BC =6,由勾股定理得,AB = √AC 2+BC 2=√82+62=10 ,∵AE =BE ,∴AE =BE ,则⊙AEB 为等腰直角三角形,∴BE = √22AB =5 √2 . 14.【答案】(1)解: A 的坐标为(5,8)在直线y=x+m 上,∴8=5+m ,∴m=3,∴直线AB 解析式为y=x+3,∴B (0,3),设抛物线解析式为y=a (x ﹣2)2+k ,∵点A ,B 在抛物线上,∴{9a +k =8a +k =0, ∴{a =1k =−1, ∴抛物线解析式为y=(x ﹣2)2﹣1=x 2﹣4x+3,顶点C (2,﹣1)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊙x轴,交抛物线与E,P (x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,⊙、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),⊙、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(2)解:∵点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴BP= √x2+(x+3−3)2=√2 |x|,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|= √22|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x+3|= √22|x|,∴x=﹣6﹣3 √2或x=﹣6+3 √2,∴P(﹣6﹣3 √2,﹣3+3 √2)或P(﹣6﹣3√2,﹣3﹣3 √2).故存在点P,坐标为P(﹣6+3 √2,﹣3+3 √2)或P(﹣6﹣3 √2,﹣3﹣3 √2)时,以PB为直径的圆能与坐标轴相切15.【答案】(1)证明:连接OB,OP,∵PA为⊙O的切线,∴OA⊥PA,∠OAP=90°,∵OA=OB,PA=PB,OP=OP,∴∠OBP=∠OAP=90°∴OB⊥PB∴PB为⊙O切线;(2)解:设OB=OD=r,在Rt△OBC中,BC2+OB2=OC2∴r2+42=(2+r)2,∴r=3,∴OB=OD=3,AC=OA+OD+CD=3,设PB=PA=x,在Rt△PAC中,AC2+PA2=PC2∴x2+82=(x+4)2,解得x=6,∴PB=PA=6,在Rt△PAO中,OP=√OA2+AP2=3√5,连接AB与OP交于G,连接BD,∵OA=OB,PA=PB,∴AB⊙OP,AG=BG,∴S△AOP=12AG⋅OP=12OA⋅AP,即S△AOP=12AG⋅3√5=12×3×6,∴AG=65√5,在Rt△OAG中,OG=√OA2−AG2=35√5,∵OA=OD,AG=BG,∴BD=2OG=65√5,∵AD为直径,∴∠ABD=90°,∴OP//BD,∴∠BDP=∠OPD,∠DBO=∠POE,∴PEDE=OPDB=52.16.【答案】(1)解:直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊙AC,∴⊙OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE⊙BC,∴⊙1=⊙B,⊙2=⊙3,∵OB=OD,∴⊙B=⊙3,∴⊙1=⊙2,在⊙AOE和⊙DOE中{OA=OD∠1=∠2 OE=OE,∴⊙AOE⊙⊙DOE,∴⊙ODE=⊙OAE=90°,∴OA⊙AE,∴DE为⊙O的切线(2)解:∵点E是AC的中点,∴AE=12AC=2.4,∵⊙AOD=2⊙B=2×50°=100°,∴图中阴影部分的面积=2• 12×2×2.4﹣100⋅π⋅22360=4.8﹣109π。