2015-2016年云南省楚雄州八年级(上)期中数学试卷(解析版)

合集下载

云南省楚雄彝族自治州八年级上学期数学期中考试试卷

云南省楚雄彝族自治州八年级上学期数学期中考试试卷

云南省楚雄彝族自治州八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020八上·张店期末) 的平方根是()A . -2B .C .D .2. (2分)下列实数中,无理数是A .B .C .D . 0.10100100013. (2分)如图,在△ABC与△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A . ∠B=∠E,BC=EFB . ∠A=∠D,BC=EFC . ∠A=∠D,∠B=∠ED . BC=EF,AC=DF4. (2分)下列命题是真命题的是()A . 平行四边形的对角线相等B . 三角形的重心是三条边的垂直平分线的交点C . 五边形的内角和是540°D . 圆内接四边形的对角相等5. (2分) (2020八上·辽阳期末) 的平方根是()A . 2B . ﹣2C .D . ±26. (2分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A . 65°B . 95°C . 45°D . 100°7. (2分)已知x2+2mx+9是完全平方式,则m的值为()A . 1B . 3C . ﹣3D . ±38. (2分) (2018九下·福田模拟) 下列运算正确的是()A . 2a+3a=5aB . (x-2)2=x2-4C . (x-2)(x-3)=x2-6D . a8÷a4=a29. (2分) (2016八上·泰山期中) 下列因式分解正确的是()A . 4a2﹣4a+1=4a(a﹣1)+1B . x2﹣4y2=(x+4y)(x﹣4y)C . x2﹣x+ =( x﹣)2D . 2xy﹣x2﹣y2=﹣(x+y)210. (2分) (2019七下·南浔期末) 下列各式由左到右的变形中,属于因式分解的是()A . a(m+n)=am+anB . a2-b2-c2=(a-b)(a+b)-c2C . 10x2-5x=5x(2x-1)D . x2-16+6x=(x+4)(x-4)+6x11. (2分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A . 36B . 45C . 55D . 6612. (2分)如图,在菱形ABCD中,对角线AD,BC相交于点O,且AD≠BC,则图中全等三角形有()A . 4对B . 6对.C . 8对D . 10对二、填空题 (共14题;共51分)13. (1分)(2018·崇仁模拟) 函数y=的自变量x的取值范围是________.14. (1分) (2019八上·慈溪期末) 命題“等腰三角形两腰上的高线相等”的逆命题是________命題填“真”或“假”15. (1分) (2017七下·大石桥期末) 如图所示,把三张边长均为 cm的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,若底面未被卡片覆盖(阴影部分)的面积为5cm²,则盒底的边长是________.16. (1分) (2018七下·新田期中) 计算: =________; =________.(﹣2x3y2)•(3x2y)=________17. (1分) (2017七下·惠山期末) 分解因式: =________.18. (1分)如图,OA=OB,OC=OD,∠D=35°,则∠C等于________;19. (1分) (2016七下·东台期中) 若x2+(m﹣1)x+16是一个完全平方式,则m=________.20. (1分) (2018八上·江都月考) 如图,已知AC、BD相交于点O,且AO=BO,CO=DO,则根据________可推断△AOD≌△BOC。

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

云南省楚雄州独田中学2015-2016学年八年级上学期月考数学试卷【解析版】(11月份)

云南省楚雄州独田中学2015-2016学年八年级上学期月考数学试卷【解析版】(11月份)

2015-2016学年云南省楚雄州独田中学八年级(上)月考数学试卷(11月份)一、选择题:(本大题共9小题,每小题3分,共30分.)1.2的算术平方根是( )A.B.2 C.±D.±22.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,33.在实数:,π,,﹣中,无理数的个数有( )A.1个B.2个C.3个D.4个4.在平面直角坐标系中,点P(3,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列方程组中,是二元一次方程组的是( )A.B.C.D.6.已知一次函数y=kx+3,y随x的增大而减小,那么它的图象可能是( )A. B.C.D.7.二元一次方程组的解是( )A.B.C.D.8.如果a2b3与a x+1b x+y是同类项,则x,y的值是( )A.B.C.D.9.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是( )A.B.C.D.二、填空题:(本大题共10小题,每小题3分,共30分.)10.化简=__________,(+)(﹣)=__________,()2=__________.11.已知2x﹣3y=1,用含x的代数式表示y,则y=__________,当x=0时,y=__________.12.比较大小:4__________7.(填“>”、“=”、“<”)13.的平方根是__________;﹣3的绝对值是__________.14.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是__________.15.已知点(﹣1,y1),(2,y2)都在直线y=﹣2x+6上,则y1与y2大小关系是__________.16.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.17.已知点A(x,1)与点B(2,y)关于原点对称,则(x﹣y)2013的值为__________.18.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是__________(填写序号).19.函数y=﹣3x+2的图象上存在点P,使得P到x轴的距离等于3,则点P的坐标为__________.三、解答题:(本大题共60分.解答时应写出必要的计算过程、推演)20.解下列方程组(1);(2).21.计算:(1)()2﹣﹣(2)(3)|﹣3|+(π+1)0(4)()×.22.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为__________;(2)若连接AC,则以AC为一边的正方形的面积为__________;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为__________.23.为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?24.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.25.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.2015-2016学年云南省楚雄州独田中学八年级(上)月考数学试卷(11月份)一、选择题:(本大题共9小题,每小题3分,共30分.)1.2的算术平方根是( )A.B.2 C.±D.±2【考点】算术平方根.【分析】根据平方与开平方互为逆运算,可得一个数的算术平方根.【解答】解:,2的算术平方根是,故选:A.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.2.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.3.在实数:,π,,﹣中,无理数的个数有( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数是无限不循环小数,可得无理数的个数.【解答】解:π,是无理数,故选:B.【点评】本题考查了无理数,无限不循环小数是无理数,无限循环小数是有理数.4.在平面直角坐标系中,点P(3,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(3,﹣5)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.下列方程组中,是二元一次方程组的是( )A.B.C.D.【考点】二元一次方程组的定义.【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【解答】解:A、x2属于二次的,故选项A错误;B、第一个方程中的xy属于二次的,故选项B错误;C、属于分式,故选项C错误;D、符合二元一次方程组的定义,故选项D正确.故选D.【点评】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.6.已知一次函数y=kx+3,y随x的增大而减小,那么它的图象可能是( )A. B.C.D.【考点】一次函数的图象.【分析】根据y随x的增大而减小,得k<0,因为b=3,所以与y轴的正半轴相交,从而得出答案.【解答】解:∵一次函数y=kx+3,y随x的增大而减小,∴k<0,∴图象过第二和第四象限,∵b=3,∴与y轴的正半轴相交,故选B.【点评】本题考查了一次函数的图象,当k>0,图象过第一、三象限,k<0,图象过二、四象限.7.二元一次方程组的解是( )A.B.C.D.【考点】解二元一次方程组.【专题】计算题.【分析】根据y的系数互为相反数,利用加减消元法计算即可得解.【解答】解:,①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.如果a2b3与a x+1b x+y是同类项,则x,y的值是( )A.B.C.D.【考点】同类项;解二元一次方程组.【分析】首先根据同类项的定义,即相同字母的指数相同列出方程组,然后解出方程组就是所求的答案.【解答】解:∵a2b3与a x+1b x+y是同类项,∴,解得.故选C.【点评】本题是同类项与二元一次方程组的一道综合试题,求解时要注意正确列出方程组,然后求解.9.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是( )A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】关键描述语是:十位上的数字x比个位上的数字y大1;新数比原数小9.等量关系为:①十位上的数字=个位上的数字+1;②原数=新数+9.【解答】解:根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选D.【点评】本题需掌握的知识点是两位数的表示方法:十位数字×10+个位数字.二、填空题:(本大题共10小题,每小题3分,共30分.)10.化简=2,(+)(﹣)=1,()2=7﹣6.【考点】二次根式的混合运算.【专题】计算题.【分析】利用二次根式的性质化简,利用平方差公式计算(+)(﹣),利用完全平方公式计算()2.【解答】解:=2,(+)(﹣)=()2﹣()2=3﹣4=﹣1;()2=3﹣6+4=7﹣6.故答案为2;1;7﹣6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y=﹣.【考点】解二元一次方程.【专题】计算题.【分析】将x看做已知数,求出y即可;将x=0代入计算即可求出y的值.【解答】解:2x﹣3y=1,变形得:y=,将x=0代入,得:y=﹣.故答案为:;﹣【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.12.比较大小:4<7.(填“>”、“=”、“<”)【考点】实数大小比较.【分析】根据平方的幂越大底数越大,可得答案.【解答】解:(4)2=48,72=49,∴,故答案为:<.【点评】本题考查了实数比较大小,先算平方,再比较底数的大小.13.的平方根是±;﹣3的绝对值是3﹣.【考点】实数的性质;平方根;算术平方根.【分析】根据开平方,可得一个数的平方根,根据差的绝对值是大数减小数,可得答案.【解答】解:=9,9的平方根是,﹣3的绝对值是3﹣,故答案为:±3,3﹣.【点评】本题考查了实数的性质,一个正数有两个平方根,差的绝对值是大数减小数.14.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理根据2直角边求斜边是解题的关键.15.已知点(﹣1,y1),(2,y2)都在直线y=﹣2x+6上,则y1与y2大小关系是y1>y2.【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵直线y=﹣2x+6中,k=﹣2<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2.故答案为:y1>y2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35.【考点】二元一次方程组的应用.【分析】设这个两位数的十位数字为x,个位数字为y,等量关系为:十位数字与个位数字的和为8,两位数加上18=这个两位数的十位数字与个位数字对调后所组成的新两位数,列方程组求解.【解答】解:设这个两位数的十位数字为x,个位数字为y,由题意得,,解得:,则这个两位数为:35.故答案为:35.【点评】本题考查了二元一次方程组的应用,解答本题的关键是找出等量关系,根据等量关系列方程组求解.17.已知点A(x,1)与点B(2,y)关于原点对称,则(x﹣y)2013的值为﹣1.【考点】关于原点对称的点的坐标.【分析】利用关于原点对称点的性质得出x,y的值,进而结合有理数的乘方运算法则求出答案.【解答】解:∵点A(x,1)与点B(2,y)关于原点对称,∴x=﹣2,y=﹣1,则(x﹣y)2013=(﹣2+1)2013=﹣1.故答案为:﹣1.【点评】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.18.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是②④(填写序号).【考点】无理数;平方根;立方根;实数与数轴;二次根式有意义的条件.【专题】推理填空题.【分析】根据无理数的定义判断即可;根据平方根、立方根的定义求出,即可判断②③;根据二次根式的定义即可判断④;根据实数与数轴上的点能建立一一对应,即可判断⑤.【解答】解:无限循环小数是有理数,∴①错误;5的平方根是±,∴②正确;8的立方根是2,∴③错误;要使有意义,必须x+1≥0,即x≥﹣1,∴④正确;与数轴上的点一一对应的数是实数,∴⑤错误;故答案为:②④.【点评】本题考查了无理数、平方根、立方根、实数与数轴、二次根式有意义的条件等知识点的应用,能熟练地运用进行说理是解此题的关键.19.函数y=﹣3x+2的图象上存在点P,使得P到x轴的距离等于3,则点P的坐标为(﹣,3)或(,﹣3).【考点】一次函数图象上点的坐标特征.【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【解答】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣;当y=﹣3时,﹣3x+2=﹣3,解得x=;∴点P的坐标为(﹣,3)或(,﹣3).故答案为:(﹣,3)或(,﹣3).【点评】本题考查了一次函数图象上点的坐标特征,“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,求出点P的纵坐标是解题的关键.三、解答题:(本大题共60分.解答时应写出必要的计算过程、推演)20.解下列方程组(1);(2).【考点】解二元一次方程组.【分析】(1)利用加减法消去x即可解答.(2)先去分母,再利用加减法解答.【解答】解:(1),①×2﹣②,得3y=15,∴y=5,将y=5代入①,得2x﹣5=﹣4,∴x=,∴方程组的解为;(2),①×12得,3(y+1)=4(x+2),整理得,4x﹣3y=﹣5,与②组成方程组得,③﹣②得,2x=﹣6,∴x=3,将x=3代入②得6﹣3y=1,∴y=,∴方程组的解为.【点评】本题考查二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.21.计算:(1)()2﹣﹣(2)(3)|﹣3|+(π+1)0(4)()×.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式化简后,合并即可得到结果;(3)原式利用绝对值的代数意义,零指数幂运算法则,平方根、立方根定义计算即可得到结果;(4)原式利用二次根式的乘法法则计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=+2﹣6=﹣3;(3)原式=3+1﹣3+2=3;(4)原式=+﹣2=4+3﹣2=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为5;(2)若连接AC,则以AC为一边的正方形的面积为10;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为17.【考点】勾股定理.【专题】作图题;网格型.【分析】(1)先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论;(2)先根据勾股定理求出AC的长,再由正方形的面积公式即可得出结论;(3)画出符合条件的正方形,再求出其面积即可.【解答】解:(1)∵AB==,=5.∴S正方形ABCD故答案为:5;(2)∵正方形ABCD的边长为,∴AC==,∴以AC为一边的正方形的面积=10.故答案为:10;=()2=17.(3)如图,S正方形EFGH故答案为:17.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.23.为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?【考点】二元一次方程组的应用.【专题】应用题.【分析】可以设种玉兰树和松柏树各种x、y棵,根据总投资1.8万元,总棵树为80棵可得到两个关于xy的方程,求方程组的解即可.【解答】解:设可种玉兰树X棵,松柏树Y棵,根据题意得,,解这个方程组得.答:可种玉兰树20棵,松柏树60棵.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.24.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).【点评】此题考查了轴对称变换与关于原点对称的图形的性质.此题难度不大,注意掌握数形结合思想的应用.25.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.【考点】一次函数的应用.【专题】压轴题.【分析】从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.【解答】解:(1)200米;(2)设直线AB的解析式为:y=kx+b由图可知:A(5,0),B(10,1000)∴解得∴直线AB的解析式为:y=200x﹣1000;(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.【点评】正确认识图象和熟练运用待定系数法是解好本题的关键.。

云南省楚雄彝族自治州八年级上学期数学期中考试试卷

云南省楚雄彝族自治州八年级上学期数学期中考试试卷

云南省楚雄彝族自治州八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·丹东模拟) 一元二次方程x2﹣3x=0的解是()A . 0B . 3C . 0,3D . 0,﹣22. (2分)二次函数y=x2+2x﹣3的顶点坐标是()A . (﹣1,﹣3)B . (1,﹣4)C . (﹣1,﹣2)D . (﹣1,﹣4)3. (2分)若反比例函数的图象经过,,则()A . 1B . -1C . 8D . -84. (2分)已知二次函数y=kx2﹣6x+3,若k在数组(﹣3,﹣2,﹣1,1,2,3,4)中随机取一个,则所得抛物线的对称轴在直线x=1的右方时的概率为()A .B .C .D .5. (2分) (2019九上·硚口月考) 某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共31.若设主干长出个支干,则所列方程正确的是()A .B .C .D .6. (2分)(2017·新疆模拟) 如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A . AD=ABB . ∠BOC=2∠DC . ∠D+∠BOC=90°D . ∠D=∠B7. (2分) (2016九上·衢江月考) 已知y=x(x+5﹣a)+2是关于x的二次函数,当x的取值范围在1≤x≤4时,y在x=1时取得最大值,则实数a的取值范围是()A . a=10B . a=4C . a≥9D . a≥108. (2分)(2016·成都) 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A . πB . πC . πD . π二、填空题 (共6题;共6分)9. (1分) (2015八下·嵊州期中) 三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是________.10. (1分)若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长________11. (1分) (2018九上·无锡月考) 若关于x的一元二次方程没有实数根,则k的取值范围是________.12. (1分)(2018·福建模拟) 一只箱子里有红球和白球各若干个,现从中拿出与白球个数一样多的红球,结果随机摸出一个球是红球的概率为,则箱子里原有红球个数与白球个数的比是________.13. (1分)(2018·日照) 为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为________.14. (1分) (2017七下·东城期中) 在平面直角坐标系中,任意两点,,规定运算:☆.若,且☆ ,则点的坐标是________.三、解答题 (共9题;共87分)15. (10分) (2016九上·滨州期中) 已知关于x的方程x2﹣(2m+1)x+m2+m=0.(1)求证:方程恒有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3,求实数m的值.16. (5分)(2018·中山模拟) 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?17. (5分)二元一次方程组的解x,y的值相等,求k.18. (12分)(2018·南宁模拟) 为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛. 某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有________名学生;扇形统计图中C等级所对应扇形的圆心角等于________度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.19. (10分)(2014·泰州) 如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.20. (10分) (2015八下·开平期中) 如图,一次函数y=ax+b的图像与反比例函数y= 的图像交于M、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图像写出使反比例函数的值大于一次函数的值的x的取值范围.21. (10分) (2017九上·黄岛期末) 服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.(1)求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)服装厂批发单价是多少时可以获得最大利润?最大利润是多少?22. (10分) (2016八上·大悟期中) 如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在边AC、BC边上,且AD=CE,连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试判断△DFE的形状,并说明理由.23. (15分) (2016九上·腾冲期中) 如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共87分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

云南省楚雄彝族自治州八年级上学期期中数学试卷

云南省楚雄彝族自治州八年级上学期期中数学试卷

云南省楚雄彝族自治州八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列图形中,是轴对称图形的是()A .B .C .D .2. (2分)(2017·深圳) 如图,已知线段,分别以为圆心,大于为半径作弧,连接弧的交点得到直线,在直线上取一点,使得,延长至,求的度数为()A .B .C .D .3. (2分) (2018八上·洪山期中) 如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A . AB=AD,AC=AEB . AB=AD,BC=DEC . AB=DE,BC=AED . AC=AE,BC=DE4. (2分)点P(-2,1)关于x轴对称的点的坐标是()A . (-2,-1)B . ( 2,-1)C . ( 2,1)D . (1,-2)5. (2分) (2019八上·常州期末) 如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A .B .C .D .6. (2分)(2018·济南) 在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是()A . ∠E=∠CDFB . EF=DFC . AD=2BFD . BE=2CF7. (2分)如图所示,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A . 甲和乙B . 乙和丙C . 只有乙D . 只有丙8. (2分) (2017七下·水城期末) 已知,如图AB∥CD,∠1=∠2,EP⊥FP,则以下错误的是()A . ∠3=∠4B . ∠2+∠4=90°C . ∠1与∠3互余D . ∠1=∠3二、精心填一填 (共6题;共6分)9. (1分) (2019八上·玉泉期中) 如图,在四边形ABCD中,∠A=450 ,直线l与边AB、AD分别相交于点M、N。

云南省楚雄州2015_2016学年八年级数学上学期期中试题(含解析)新人教版

云南省楚雄州2015_2016学年八年级数学上学期期中试题(含解析)新人教版

云南省楚雄州2015-2016学年八年级数学上学期期中试题一、选择题(每小题3分,共24分)1.25的平方根是()A.5 B.﹣5 C.±D.±52.设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=03.函数值y随x的增大而减小的是()A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x4.下列直线不经过第二象限的是()A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣15.某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96,91,96,95,94,这组数据的中位数是()A.95 B.94 C.94.5 D.966.如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.257.下列各结论中,正确的是()A.B.C.D.﹣(﹣)2=﹣258.在直角坐标系中A(2,0),B(﹣3,﹣4),O(0,0),则△AOB的面积为()A.4 B.6 C.8 D.3二、填空题(每小题3分,共21分)9.已知两条线段的长为5cm和12cm,当第三条线段的长为cm时,这三条线段能组成一个直角三角形.10.某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是:30,34,32,37,28,31.那么,请你估计该小区6月份(30天)的总用水量约是吨.11.直线y=kx+2与x轴交于点(﹣1,0),则k= .12.化简: = .13.某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为.14.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为.15.数据1,2,3,4,5的方差为.三、解答题(共55分)16.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标.17.计算:(1)()×()(2)()×(3)()2(4).18.已知一次函数y=kx﹣3的图象与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.19.已知一次函数y=(3﹣k)x﹣2k+18,(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,﹣2)?20.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?21.有一种节能型轿车的邮箱最多可装天然气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天然气可供轿车行驶多少千米?(2)轿车每行驶200千米消耗燃料多少升?(3)写出y与x之间的关系式(0≤x≤1000).2015-2016学年云南省楚雄州八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.25的平方根是()A.5 B.﹣5 C.±D.±5【考点】平方根.【分析】根据平方根的定义和性质即可得出答案.【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:D.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.2.设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=0【考点】点的坐标.【分析】根据点在x轴上点的坐标特点解答.【解答】解:∵点A(m,n)在x轴上,∴纵坐标是0,即n=0,又∵点位于原点的左侧可知,∴横坐标小于0,即m<0,∴m<0,n=0.故选D.【点评】本题主要考查了点在x轴上时点的纵坐标是0的特点.3.函数值y随x的增大而减小的是()A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x【考点】一次函数的性质.【分析】根据一次函数的性质:当k>0时,y随x的增大而增大,可得答案.【解答】解:A、k=1>0,y随x的增大而增大,故A错误;B、k=>0,y随x的增大而增大,故B错误;C、k=﹣1<0,y随x的怎大而减小,故C正确;D、k=3>0,y随x的增大而增大,故D错误;故选:C.【点评】本题考查了一次函数的性质,当k>0时,y随x的增大而增大,k<0时,y随x 的怎大而减小.4.下列直线不经过第二象限的是()A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣1【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=﹣3x+1中,k=﹣3,b=1,∴此函数的图象经过一、二、四象限,不经过第三象限,故本选项错误;B、∵一次函数y=3x+2中,k=3,b=2,∴此函数的图象经过一、二、三象限,不经过第四象限,故本选项错误;C、∵一次函数y=x﹣1中,k=1,b=﹣1,∴此函数的图象经过一、三、四象限,不经过第二象限,故本选项正确;D、∵一次函数y=﹣2x﹣1中,k=﹣2,b=﹣1,∴此函数的图象经过二、三、四象限,不经过第一象限,故本选项错误.故选C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k >0,b>0时,函数的图象在一、二、三象限;当k>0,b<0时,函数的图象在一、三、四象限;当k<0,b>0时,函数的图象在一、二、四象限;当k<0,b<0时,函数的图象在二、三、四象限.5.某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96,91,96,95,94,这组数据的中位数是()A.95 B.94 C.94.5 D.96【考点】中位数;算术平均数.【专题】应用题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有六个,按从小到大排列为90,91,94,95,96,96故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(94+95)=94.5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.25【考点】勾股定理.【分析】由正方形的面积得出EF2=169,DF2=144,在Rt△DEF中,由勾股定理得出DE2=EF2﹣DF2,即可得出结果.【解答】解:如图所示:根据题意得:EF2=169,DF2=144,在Rt△DEF中,由勾股定理得:DE2=EF2﹣DF2=169﹣144=25,即正方形A的面积为25;故选:D【点评】本题考查了勾股定理、正方形的性质;熟练掌握正方形的性质,由勾股定理求出DE2是解决问题的关键.7.下列各结论中,正确的是()A.B.C.D.﹣(﹣)2=﹣25【考点】二次根式的性质与化简.【分析】根据二次根式的性质对备选答案进行化简,从解答的结论中就可以求出答案.【解答】解:A,原式=﹣6,本答案正确;B、原式=3,本答案错误;C、原式=16,本答案错误.故选A.【点评】本题考查了二次根式的性质的运用及二次根式的化简.8.在直角坐标系中A(2,0),B(﹣3,﹣4),O(0,0),则△AOB的面积为()A.4 B.6 C.8 D.3【考点】三角形的面积;坐标与图形性质.【分析】由三个点的坐标可得,△AOB的边OA=2,高为0﹣(﹣4)=4,据此求三角形的面积即可.【解答】解:△AOB的面积=×2×4=4.故选:A.【点评】本题主要考查了坐标与图形的性质及三角形面积的求法,解决本题的关键是得到三角形相应的底边长度和高.当一边在坐标轴时,通常选用坐标轴上的边为三角形的底边.二、填空题(每小题3分,共21分)9.已知两条线段的长为5cm和12cm,当第三条线段的长为13或cm时,这三条线段能组成一个直角三角形.【考点】勾股定理的逆定理.【分析】已知直角三角形的二边求第三边时,一定区分所求边是直角三角形斜边和短边二种情况下的结果.【解答】解:根据勾股定理,当12为直角边时,第三条线段长为=13;当12为斜边时,第三条线段长为==.故答案为:13或.【点评】本题考查了勾股定理的逆定理,注意要分两种情况讨论.10.某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是:30,34,32,37,28,31.那么,请你估计该小区6月份(30天)的总用水量约是960 吨.【考点】算术平均数;用样本估计总体.【专题】计算题.【分析】要估计该小区6月份(30天)的总用水量,就要算出这六天的平均用水量,这个平均数可用样本平均数来代替,即求出6天用水的平均数即可.【解答】解:(30+34+…+31)÷6=32,∴估计该小区6月份(30天)的总用水量约是32×30=960吨.故答案为:960.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.11.直线y=kx+2与x轴交于点(﹣1,0),则k= 2 .【考点】一次函数图象上点的坐标特征.【分析】把点(﹣1,0)代入直线y=kx+2得﹣k+2=0,即可解得k的值.【解答】解:把点(﹣1,0)代入直线y=kx+2得:﹣k+2=0.解得k=2.故答案为2.【点评】本题考查的是用待定系数法求一次函数的解析式,比较简单.解答此题的关键是弄清题意,直线与x轴有交点,则交点坐标一定适合直线的解析式.12.化简: = 2 .【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则即可求解.【解答】解:原式==2.故答案是:2.【点评】主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.13.某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为y=5x+15 .【考点】函数关系式.【分析】原来的水的量15m3,加上xh进的水量就是y的值.【解答】解:y关于x的关系式为:y=5x+15.故答案是:y=5x+15.【点评】本题考查了列函数解析式,正确理解各个量之间的关系是关键.14.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为y=2x+2 .【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+3,即y=2x+2.故答案为:y=2x+2.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.数据1,2,3,4,5的方差为 2 .【考点】方差.【专题】计算题.【分析】根据方差的公式计算.方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2= [(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故填2.【点评】本题考查方差的定义.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共55分)16.已知在平面直角坐标系中有三点A (﹣2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置,并求△ABC 的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC 关于x 轴对称,并写出△A′B′C′三顶点的坐标.【考点】作图-轴对称变换.【分析】(1)根据直角坐标系的特点作出点A 、B 、C 的位置,然后顺次连接,求出△ABC 的面积;(2)作出点A 、B 、C 关于x 轴对称的点,然后顺次连接,写出各点的坐标.【解答】解:(1)所作图形如图所示: S△ABC=ABh=×5×2=5;(2)所作图形如图所示:A′(﹣1,﹣1),B′(3,﹣1),C′(2,﹣3).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接. 17.计算:(1)()×()(2)()×(3)()2(4).【考点】二次根式的混合运算. 【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并后进行二次根式的乘法运算;(2)先根据二次根式的乘法法则运算,然后化简后合并即可;(3)利用完全平方公式计算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=(﹣)×(2+)=(﹣)×=×﹣×=16﹣;(2)原式=﹣2﹣3=3﹣6﹣3=﹣6;(3)原式=3+2+1=4+2;(4)原式=2+4+3﹣2=9﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.已知一次函数y=kx﹣3的图象与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.【考点】两条直线相交或平行问题.【分析】(1)直接把点(2,a)代入正比例函数的解析式y=x可求出a;(2)将求得的交点坐标代入到直线y=kx﹣3中即可求得其表达式;(3)利用与坐标轴的交点及交点即可确定两条直线的解析式;【解答】解:(1)∵正比例函数y=x的图象过点(2,a)∴a=1(2)∵一次函数y=kx﹣3的图象经过点(2,1)∴1=2k﹣3∴k=2∴y=2x﹣3(3)函数图象如下图:【点评】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.19.已知一次函数y=(3﹣k)x﹣2k+18,(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,﹣2)?【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0代入一次函数的解析式解答即可;(2)把x=0,y=﹣2代入一次函数的解析式解答即可.【解答】解:(1)把x=0,y=0代入y=(3﹣k)x﹣2k+18,可得:﹣2k+18=0,解得:k=9;(2)把x=0,y=﹣2代入y=(3﹣k)x﹣2k+18,可得:﹣2=﹣2k+18,解得:k=10.【点评】此题考查一次函数的图象上点的坐标特征,关键是把x,y的值代入解析式解答.20.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数: =260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.21.有一种节能型轿车的邮箱最多可装天然气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天然气可供轿车行驶多少千米?(2)轿车每行驶200千米消耗燃料多少升?(3)写出y与x之间的关系式(0≤x≤1000).【考点】一次函数的应用.【分析】(1)观察图形,即可求得一箱天然气可供轿车行驶多少千米;(2)根据一种节能型轿车的邮箱最多可装天然气50升,可以行驶1000km,可求行驶1km 需要天然气的升数,即可得出每行驶200千米消耗汽油升数;(3)根据剩余油量=节能型轿车的油箱容量﹣每100千米消耗油量×行驶里程,利建立函数关系式用待定系数法求解.【解答】解:(1)一箱天然气可供轿车行驶1000千米.(2)200×(50÷1000)=10(升).答:轿车每行驶200千米消耗燃料10升.(3)设y与x之间的关系式为y=kx+b,代入(0,50),(1000,0)得:,解得:,故y与x之间的关系式为y=﹣0.05x+50(0≤x≤1000).【点评】此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,从一次函数的图象上获取正确的信息是解题关键.。

云南省楚雄彝族自治州八年级上学期数学期中考试试卷

云南省楚雄彝族自治州八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七下·桥东期中) 如果一个三角形的两条边长分别为2和6,那么它的第三边长可能是()A . 2B . 4C . 6D . 82. (2分)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为()A . +B . +2C . +D . 2 +3. (2分) (2019九下·温州竞赛) 下列运算正确的是()A . (a2)3=a5B . a2·a4=a8C . a6÷a3=a2D . (ab)3=a3b34. (2分) (2019七下·南阳期末) 如图,,其中,,则()A .B .C .D .5. (2分)(2019·襄州模拟) 如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD 于点E,则图中阴影部分的面积是()A .B . 2C .D . 2﹣6. (2分)(2018·平南模拟) 如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A . 34°B . 35°C . 43°D . 44°7. (2分) (2018八上·仁寿期中) 根据下列条件,能画出唯一的是()A . ,,B . ,,C . ,,D . ,8. (2分)(2014·茂名) 下列运算正确的是()A . a3+a3=a6B . a3•a3=a9C . (a+b)2=a2+b2D . (a+b)(a﹣b)=a2﹣b29. (2分) (2019八下·渠县期末) 如果代数式4x2+kx+25能够分解成(2x﹣5)2的形式,那么k的值是()A . 10B . ﹣20C . ±10D . ±2010. (2分)如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A . ①B . ②C . ③D . ①和②11. (2分)如图,在△ABC中,∠B=46°,∠ADE=40°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠C的大小是()A . 46°B . 66°C . 54°D . 80°12. (2分)下列图形中,阴影部分的面积为2的有()个A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共7分)13. (1分) (2019七上·松江期末) (2x-1)2=________.14. (1分)(2019·松桃模拟) 一个多边形的内角和与外角和相等,则这个多边形的边数为________.15. (1分)如图所示,点D在AC上,∠BAD=∠DBC,△BDC的内部到∠BAD两边距离相等的点有________个,△BDC内部到∠BAD的两边、∠DBC两边等距离的点有________个.16. (1分) (2018·灌南模拟) 已知点G是△ABC的重心,AG=8,那么点G与边BC中点之间的距离是________.17. (2分) (2019八上·吉林期中) 已知中,,,满足,则该三角形必为________三角形.18. (1分) (2016七上·射洪期中) 有理数a、b、c在数轴上的对应点如图所示,化简代数式|2a﹣b|+3|a+b|﹣|4c﹣a|=________.三、解答题 (共8题;共61分)19. (10分)化简:a(a﹣3b)+(a+b)2﹣a(a﹣b)20. (10分)如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC于一点O,AC=AE,AD=AB,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)若∠BAD=20°,求∠CDE的度数.21. (5分) (2016八上·鄂托克旗期末) 已知:如图,是和的平分线,.求证:.22. (10分)(2018·宁波) 先化简,再求值:(x-1)2+x(3-x),其中x= .23. (5分) (2019七下·宝应月考) 如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.24. (5分) (2018八上·建昌期末) 已知:如图,点C、D,在线段AB上,且AC =BD,AE=BF,ED⊥AB,FC⊥AB.求证:AE∥BF.25. (6分) (2019八上·景县期中) 如图,AB=AD,AC=AE,BC=DE,点E在BC上。

2015—2016学年度第一学期期中质量测试八年级数学试题附答案

2015—2016学年度第一学期期中质量测试八年级数学试题(总分:120分时间:100分钟)一、选择题1、若分式112--xx的值为0,则应满足的条件是()A. x≠1B. x=-1C. x=1D. x=±12、下列计算正确的是()A.a·a2=a2 B.(a2)2=a4 C.3a+2a=5a2 D.(a2b)3=a2·b3 3、下列四个图案中,是轴对称图形的是()4、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)5、下列运算正确的是()A.yxyyxy--=--B.3232=++yxyx C.yxyxyx+=++22D.yxyxxy-=-+1226、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在().A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7、如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误..的是()A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8、如果2592++kxx是一个完全平方式,那么k的值是()A、30B、±30C、15D、±15BC(第7题)FEADB9、若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍二、填空题10、一种细菌半径是0.000 012 1米, 将0.000 012 1用科学记数法表示为 . 11.计算: ()a a a 2262÷-= .12、如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,则AC = .三、解答题13、分解因式:(4分) x 3﹣4x 2+4x14、先化简再求值:(6分))52)(52()1(42-+-+m m m ,其中3-=m15、解方程:(6分) .16、(6分)如图,点B ,E ,F ,C 在一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:∠A =∠D .DECB12题(第16题)F E DCBA图8ABCDE17(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.18、如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D . (1)求证:△ADC ≌△CEB .(5分)(2),5cm AD =cm DE 3=,求BE 的长度.(4分)第17题答案一、B B C A D C C BC二、1.21×10-5 , 3a-1 ,6 三、13、解:原式=x(x-2)214、解:原式=4m 2+8m+4-4m 2+25=8m+29当m=-3时,原式= -24+29=5 15、解:去分母得:x(x+2)-(x 2-4)=8整理 得:2x=4 解得:x=2经检验得x=2是原方程的增根 ∴原分式方程无解16、证明:∵BE =CF∴BF=CE在△ABE和△DCF中∵AB =DC ,∠B =∠C ,BF=CE∴△ABE≌△DCF∴∠A =∠D17、证明:∵BD平分∠ABC ∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD ∴BE=DE 。

人教版2015~2016年八年级上期中数学试卷含答

2015~2016 学年度八年级上学期期中数学试卷一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和12.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=03.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y24.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab36.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b27.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数.10.一个数的平方是4,这个数的立方根为.11.命题“相等的角是对顶角”是命题,题设是,结论是.12.计算:﹣a11÷(﹣a)6•(﹣a)5= .13.已知(a n b m+1)3=a9b15,则m n= .14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是(写一个即可).15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形.三、解答题(8+8+9+9+9+10+10+12=75)16.计算(1)(﹣)•3•()2÷(﹣bc)3(m+2n)•(m2﹣2mn+4n2)17.分解因式(1)2x3﹣8xy2xy3+4x3y﹣4x2y2.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)==(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定,依据的判定方法是.第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足条件时,就可以使△ABC≌△DEF(请直接写出结论)河南省南阳市南召县2015~2016 学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和1【考点】立方根;平方根.【分析】根据任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0 的平方根是0,负数没有平方根,进行进行解答.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选:A.【点评】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.2.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=0【考点】单项式乘单项式;合并同类项;整式的除法.【分析】根据整式的各种运算法则逐项分析即可.【解答】解:A、3a2•a3=3a5≠3a6,故A 错误;B、5x4﹣x2 不是同类项,所以不能合并,故B 错误;C、3•(﹣ab)=﹣8a7b,计算正确,故C 正确;D、2x2÷2x2=1≠0,计算错误,故D 错误;故选:C.【点评】本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.3.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y2【考点】完全平方公式;平方差公式.【专题】计算题;整式.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=x2+y2+2xy,错误;B、原式=x2﹣4y2,错误;C、原式=x2﹣2xy+y2,错误;D、原式=x2﹣2xy+y2,正确,故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【考点】因式分解-运用公式法.【分析】把(x﹣1)看成一个整体,利用平方差公式分解即可.【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.【点评】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式没有公因式时,考虑用公式法,将其分解因式.此题直接应用平方差公式.5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab3【考点】整式的除法;单项式乘单项式.【分析】利用被除式除以商式列出式子计算得出答案即可.【解答】解:6a2•(﹣b3)2÷=6a2b6÷=9a2b6=(±3ab3)2.所以括号内应填入±3ab3.故选:D.【点评】此题考查整式的除法,积的乘方,掌握运算顺序与计算方法是解决问题的关键.6.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b2【考点】完全平方公式的几何背景.【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4 个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4 个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.【点评】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.7.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC 中,∠C+2∠C+90°=180°∴∠C=30°故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④【考点】全等三角形的判定.【分析】要使△ADB≌△ADC 的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:①BD=AC,AB=DC,满足SSS,能证明△ADB≌△ADC;②∠B=∠C,∠BAD=∠CDA满足AAS,能证明△ADB≌△ADC;③∠B=∠C,BD=AC 只是SSA,不能证明△ADB≌△ADC;④∠ADB=∠CAD,BD=AC 满足SAS,能证明△ADB≌△ADC,故选C【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数﹣.【考点】估算无理数的大小.【专题】开放型.【分析】利用无理数的定义直接得出答案.【解答】解:小于零的无理数可以为:﹣等.故答案为:﹣.【点评】此题主要考查了估算无理数的大小,正确把握无理数的定义是解题关键.10.一个数的平方是4,这个数的立方根为±.【考点】立方根.【分析】首先利用平方根的定义求得这个数,然后根据立方根的定义即可求解.【解答】解:4 的平方根是±2,±2 的立方根是:±.故答案为:± .【点评】本题考查了平方根与立方根的定义,正确理解定义是关键.11.命题“相等的角是对顶角”是假命题,题设是两个角相等,,结论是这两个角是对顶角.【考点】命题与定理.【专题】应用题.【分析】任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论,再判断真假即可.【解答】解:命题“相等的角是对顶角”可写成:若两个角相等,那么这两个角是对顶角,故命题“对顶角相等”的题设是两个角相等,结论是这两个角是对顶角,故答案为假,两个角相等,这两个角是对顶角.【点评】本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.12.计算:﹣a11÷(﹣a)6•(﹣a)5= a10 .【考点】同底数幂的除法;同底数幂的乘法.【分析】根据同底数幂的除法进行计算即可.【解答】解:﹣a11÷(﹣a)6•(﹣a)5=﹣a11÷a6•(﹣a)5=a11﹣6+5=a10,故答案为:a10【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法进行解答.13.已知(a n b m+1)3=a9b15,则m n= 64 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵(a n b m+1)3=a3n b3m+3=a9b15,∴3n=9,3m+3=15,∴m=4,n=3,则m n=64.故答案为:64.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是 DC=BE (写一个即可).【考点】全等三角形的判定.【分析】添加DC=BE,根据平行线的性质可得∠CDF=∠E,再加对顶角∠DFC=∠BFE,可利用AAS 判定△BEF≌△CDF.【解答】解:添加DC=BE,∵AB∥CD,∴∠CDF=∠E,在△DCF 和△EBF 中,∴△DCF≌△EBF(AAS),故答案为:DC=BE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形△ABE≌△DCF,△ABF≌△DCE,△BEF≌△CFE .【考点】全等三角形的判定.【分析】利用已知结合全等三角形的判定方法分别判断得出答案.【解答】解:∵AB∥CD,∴∠A=∠D,∵AE=DF,∴AF=DE,在△ABF 和△DCE 中,,∴△ABF≌△DCE(SAS),在△ABE 和△DCF 中,第 10 页(共 16 页),∴△ABE ≌△DCF (SAS ), ∵△ABF ≌△DCE ,∴∠BFE=∠FEC ,BF=EC , 在△BEF 和△CFE 中,,∴△BEF ≌△CFE (SAS ). 故答案为:△ABE ≌△DCF ,△ABF ≌△DCE ,△BEF ≌△CFE .【点评】此题主要考查了全等三角形的判定与性质,正确利用 SAS 得出全等三角形是解题关键. 三、解答题(8+8+9+9+9+10+10+12=75) 16.计算 (1)(﹣)•3•()2÷(﹣bc )3(m+2n )•(m 2﹣2mn+4n 2) 【考点】整式的混合运算. 【专题】计算题;整式.【分析】(1)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即 可得到结果;原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=﹣ a 3b •8a 3b 3c 6• a 2÷(﹣b 3c 3)=a 8bc 3; 原式=m 3﹣2m 2n+4mn 2+2m 2n ﹣4mn 2+8n 3=m 3+8n 3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.分解因式 (1)2x 3﹣8xy 2xy 3+4x 3y ﹣4x 2y 2.【考点】提公因式法与公式法的综合运用. 【分析】(1)直接提取公因式 2x ,进而利用平方差公式分解因式得出答案; 直接提取公因式 xy ,进而利用完全平方公式分解因式得出答案. 【解答】解:(1)原式=2x (x 2﹣4y 2) =2x (x+2y )(x ﹣2y );原式=xy (y 2+4x 2﹣4xy )=xy(y﹣2x)2.【点评】此题主要考查了提取公因式法以及公式法因式分解,正确应用乘法公式是解题关键.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2+4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=1时,原式=1﹣1 =﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.【解答】证明:∵在△ODC 和△OBA 中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).【点评】此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.【考点】多项式乘多项式.【专题】应用题;几何图形问题.【分析】设原长方形的宽为x 米,则长为(x+5)米,根据将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,列出方程,求出方程的解即可得到结果.【解答】解:设原长方形的宽为x 米,则长为(x+5)米,根据题意得:(x+4)(x+5﹣3)=x(x+5)+10,整理得:x2+6x+8=x2+5x+10,解得:x=2,经检验符合题意,且x+5=2+5=7(米),则原长方形的长为7 米,宽为2 米.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠ADB=∠ADC=90°,根据HL 推出Rt△ABD≌Rt△ACD,根据全等三角形的性质求出即可.【解答】证明:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°,在Rt△ABD 与Rt△ACD 中,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠1=∠2.【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)= x2﹣(y+1)2= (x+y+1)(x﹣y﹣1)(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.【考点】因式分解-分组分解法.【专题】阅读型.【分析】首先利用完全平方公式将y2+2y+1 分解因式,进而结合平方差公式分解得出答案;(3)首先重新分组,使a2﹣2ab+b2 组合,进而利用完全平方公式以及提取公因式法分解因式得出答案.【解答】解:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1),=x2﹣(y+1)2,=(x+y+1)(x﹣y﹣1);故答案为:x2﹣(y+1)2;(x+y+1)(x﹣y﹣1);(3)a2﹣2ab﹣ac+bc+b2=(a2﹣2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).【点评】此题主要考查了分组分解法分解因式,正确应用乘法公式是解题关键.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL .第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足∠B≥∠A 条件时,就可以使△ABC≌△DEF(请直接写出结论)【考点】全等三角形的判定与性质.【分析】(1)根据直角三角形全等的方法“HL”证明;过点C 作CG⊥AB 交AB 的延长线于G,过点F 作FH⊥DE 交DE 的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG 和Rt△DFH 全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D,E与B 重合,F 与C 重合,得到△DEF 与△ABC 不全等;(4)根据三种情况可得结论,∠B 不小于∠A 即可.【解答】解:(1)△ABC 与△DEF 一定全等,依据的判定方法是HL;证明:如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS);(3)小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等;(4)若∠B≥∠A,则△ABC≌△DEF.如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS).【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等。

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年云南省楚雄州八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)25的平方根是()A.5 B.﹣5 C.±D.±52.(3分)设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=03.(3分)函数值y随x的增大而减小的是()A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x4.(3分)下列直线不经过第二象限的是()A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣15.(3分)某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96,91,96,95,94,这组数据的中位数是()A.95 B.94 C.94.5 D.966.(3分)如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.257.(3分)下列各结论中,正确的是()A.B.C.D.﹣(﹣)2=﹣25 8.(3分)在直角坐标系中A(2,0),B(﹣3,﹣4),O(0,0),则△AOB的面积为()A.4 B.6 C.8 D.3二、填空题(每小题3分,共21分)9.(3分)已知两条线段的长为5cm和12cm,当第三条线段的长为cm 时,这三条线段能组成一个直角三角形.10.(3分)某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是:30,34,32,37,28,31.那么,请你估计该小区6月份(30天)的总用水量约是吨.11.(3分)直线y=kx+2与x轴交于点(﹣1,0),则k=.12.(3分)化简:=.13.(3分)某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为.14.(3分)若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为.15.(3分)数据1,2,3,4,5的方差为.三、解答题(共55分)16.(6分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标.17.(20分)计算:(1)()×()(2)()×(3)()2(4).18.(9分)已知一次函数y=kx﹣3的图象与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.19.(5分)已知一次函数y=(3﹣k)x﹣2k+18,(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,﹣2)?20.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?21.(9分)有一种节能型轿车的油箱最多可装天然气50升,加满燃气后,油箱中的剩余燃气量y(升)与轿车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天然气可供轿车行驶多少千米?(2)轿车每行驶200千米消耗燃料多少升?(3)写出y与x之间的关系式(0≤x≤1000).2015-2016学年云南省楚雄州八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)25的平方根是()A.5 B.﹣5 C.±D.±5【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:D.2.(3分)设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0 D.m<0,n=0【解答】解:∵点A(m,n)在x轴上,∴纵坐标是0,即n=0,又∵点位于原点的左侧可知,∴横坐标小于0,即m<0,∴m<0,n=0.故选:D.3.(3分)函数值y随x的增大而减小的是()A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x【解答】解:A、k=1>0,y随x的增大而增大,故A错误;B、k=>0,y随x的增大而增大,故B错误;C、k=﹣1<0,y随x的怎大而减小,故C正确;D、k=3>0,y随x的增大而增大,故D错误;故选:C.4.(3分)下列直线不经过第二象限的是()A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣1【解答】解:A、∵一次函数y=﹣3x+1中,k=﹣3,b=1,∴此函数的图象经过一、二、四象限,不经过第三象限,故本选项错误;B、∵一次函数y=3x+2中,k=3,b=2,∴此函数的图象经过一、二、三象限,不经过第四象限,故本选项错误;C、∵一次函数y=x﹣1中,k=1,b=﹣1,∴此函数的图象经过一、三、四象限,不经过第二象限,故本选项正确;D、∵一次函数y=﹣2x﹣1中,k=﹣2,b=﹣1,∴此函数的图象经过二、三、四象限,不经过第一象限,故本选项错误.故选:C.5.(3分)某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96,91,96,95,94,这组数据的中位数是()A.95 B.94 C.94.5 D.96【解答】解:题目中数据共有六个,按从小到大排列为90,91,94,95,96,96故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(94+95)=94.5.故选:C.6.(3分)如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.25【解答】解:如图所示:根据题意得:EF2=169,DF2=144,在Rt△DEF中,由勾股定理得:DE2=EF2﹣DF2=169﹣144=25,即正方形A的面积为25;故选:D.7.(3分)下列各结论中,正确的是()A.B.C.D.﹣(﹣)2=﹣25【解答】解:A,原式=﹣6,本答案正确;B、原式=3,本答案错误;C、原式=16,本答案错误.故选:A.8.(3分)在直角坐标系中A(2,0),B(﹣3,﹣4),O(0,0),则△AOB的面积为()A.4 B.6 C.8 D.3【解答】解:△AOB的面积=×2×4=4.故选:A.二、填空题(每小题3分,共21分)9.(3分)已知两条线段的长为5cm和12cm,当第三条线段的长为13或cm时,这三条线段能组成一个直角三角形.【解答】解:根据勾股定理,当12为直角边时,第三条线段长为=13;当12为斜边时,第三条线段长为==.故答案为:13或.10.(3分)某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是:30,34,32,37,28,31.那么,请你估计该小区6月份(30天)的总用水量约是960吨.【解答】解:(30+34+…+31)÷6=32,∴估计该小区6月份(30天)的总用水量约是32×30=960吨.故答案为:960.11.(3分)直线y=kx+2与x轴交于点(﹣1,0),则k=2.【解答】解:把点(﹣1,0)代入直线y=kx+2得:﹣k+2=0.解得k=2.故答案为2.12.(3分)化简:=2.【解答】解:原式==2.故答案是:2.13.(3分)某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为y=5x+15.【解答】解:y关于x的关系式为:y=5x+15.故答案是:y=5x+15.14.(3分)若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为y=2x+2.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+3,即y=2x+2.故答案为:y=2x+2.15.(3分)数据1,2,3,4,5的方差为2.【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故填2.三、解答题(共55分)16.(6分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标.【解答】解:(1)所作图形如图所示:S△ABC=AB•h=×5×2=5;(2)所作图形如图所示:A′(﹣1,﹣1),B′(3,﹣1),C′(2,﹣3).17.(20分)计算:(1)()×()(2)()×(3)()2(4).【解答】解:(1)原式=(﹣)×(2+)=(﹣)×=×﹣×=16﹣;(2)原式=﹣2﹣3=3﹣6﹣3=﹣6;(3)原式=3+2+1=4+2;(4)原式=2+4+3﹣2=9﹣2.18.(9分)已知一次函数y=kx﹣3的图象与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.【解答】解:(1)∵正比例函数y=x的图象过点(2,a)∴a=1(2)∵一次函数y=kx﹣3的图象经过点(2,1)∴1=2k﹣3∴k=2∴y=2x﹣3(3)函数图象如下图:19.(5分)已知一次函数y=(3﹣k)x﹣2k+18,(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,﹣2)?【解答】解:(1)把x=0,y=0代入y=(3﹣k)x﹣2k+18,可得:﹣2k+18=0,解得:k=9;(2)把x=0,y=﹣2代入y=(3﹣k)x﹣2k+18,可得:﹣2=﹣2k+18,解得:k=10.20.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.21.(9分)有一种节能型轿车的油箱最多可装天然气50升,加满燃气后,油箱中的剩余燃气量y(升)与轿车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天然气可供轿车行驶多少千米?(2)轿车每行驶200千米消耗燃料多少升?(3)写出y与x之间的关系式(0≤x≤1000).【解答】解:(1)一箱天然气可供轿车行驶1000千米.(2)200×(50÷1000)=10(升).答:轿车每行驶200千米消耗燃料10升.(3)设y与x之间的关系式为y=kx+b,代入(0,50),(1000,0)得:,解得:,故y与x之间的关系式为y=﹣0.05x+50(0≤x≤1000).。

相关文档
最新文档