热力学概念名词解释
热力学概念名词解释

传热学名词解释一、绪论1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:物体各部分之间不发生相对位移时,依靠物质微粒(分子、原子或自由电子)的热运动而产生的热能传递,称为导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体间通过热辐射而进行的热量传递,称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
二、热传导1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
大学物理名词解释

大学物理名词解释大学物理名词解释1. 物理学(Physics)物理学是研究物质的本质、性质以及相互作用的科学,探讨物质的运动、力学、能量转换和传递、电磁现象、光学等。
它构建了自然界的基本规律并解释了许多现象。
2. 力学(Mechanics)力学是物理学的一个分支,研究物体的运动和受力情况。
力学分为经典力学和量子力学,前者主要研究中等尺度物体的运动,后者则研究微观尺度物体的运动。
3. 热学(Thermodynamics)热学是研究物体热平衡和能量转换的学科。
它研究热力学规律,包括热量、温度、热容、压强等概念,并研究暖热机和制冷机等热力学设备。
4. 电磁学(Electromagnetism)电磁学是研究电荷、电流和磁场相互作用的学科。
它研究电场、磁场、电磁波等现象,并揭示了电磁力的本质。
5. 光学(Optics)光学是研究光的传播和相互作用的学科。
光学研究光的传播规律和性质,包括反射、折射、干涉、衍射等现象,也涉及到光的波粒二象性。
6. 相对论(Relativity)相对论是爱因斯坦提出的物理理论,研究物理学在高速运动和强引力场中的现象。
相对论包括狭义相对论和广义相对论,改变了传统物理观念,解释了速度接近光速的物体运动规律。
7. 量子力学(Quantum Mechanics)量子力学是描述微观粒子行为的物理学理论。
它基于概率和波粒二象性的观念,研究微观粒子的运动、能量和相互作用。
8. 核物理学(Nuclear Physics)核物理学是研究原子核的性质和反应的学科。
核物理研究原子核的结构、核衰变、核反应等现象,并探索核能的应用。
9. 宇宙学(Cosmology)宇宙学是研究宇宙的起源、演化和结构的学科。
它探索宇宙的大尺度结构、宇宙背景辐射等,并尝试回答宇宙的起源和未来发展的问题。
10. 量子统计(Quantum Statistics)量子统计是研究同一量子体系中粒子的统计行为的学科。
它通过玻色-爱因斯坦统计和费米-狄拉克统计描述微观粒子的运动和分布。
工程热力学 名词解释

1.第一章 基本概念及定义 2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。
3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。
4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。
5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。
6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。
7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。
(系统质量不变) 8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。
(系统体积不变) 9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。
(无论开口、闭口系统,只要没有热量越过边界) 10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。
11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。
12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。
13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。
充要条件是同时到达热平衡和力平衡。
14.稳定状态:系统参数不随时间改变。
(稳定未必平衡) 15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。
它是无限接近于平衡状态的过程。
16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。
可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。
17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。
热力学名词解释

第一章:工程热力学1、热机:是将热能转化成机械能的机器统称为热力发动机,简称热机。
2、闭口系统:与外界无物质交换的系统、3、开口系统:与外界有物质交换的系统。
4、绝热系统:与外界无热量交换的系统。
5、孤立系统:与外界既无能量又无物质交换的系统。
6、平衡状态:在不受外界影响的条件下,工质的状态参数不随时间变化而变化的状态称为平衡状态。
7、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则它们彼此也必定处于热平衡。
这一结论称做“热力学第零定律。
8、准平衡过程:由一系列连续的平衡态或无限接近平衡状态的点组成的过程称为准平衡过程,也称为准静态过程。
9、弛豫时间:从非平衡状态趋向平衡状态所需的时间不是很长,这段时间叫弛豫时间。
10、可逆过程:。
热力学系统由某一状态出发,经过某一过程到达另一状态后,如果存在另一过程,它能使系统和外界完全复原,即使系统回到原来状态,同时又完全消除原来过程对外界所产生的一切影响,则原来的过程称为可逆过程。
11、耗散效应:对于热和力平衡过程中不存在摩擦,粘性扰动,温差传热等消耗功或潜在做工能力的损失。
第二章热力学第一定律1、热力学能:工程热力学所涉及的热力系统的储存能能主要有2类:一类是取决与热力状态的热力学能。
2、储存能:储存于热力系统的能量称为热力系统的储存能。
3、热力学第一定律:在热能与其他形式的能转换过程中能的总量不变。
4、稳定流动:工质在流动状况不随时间而改变,即任一流通截面上工质的状态不随时间而改变,各流动截面的工质的质量流量相等,且不随时间变化。
5、流动功:工质在热力设备中,必须受外力推动,这种推动工质流动的功叫流动功。
6、技术功:在稳定流动能量方式中。
第三章理想气体的性质与热力过程1、理性气体:分子之间的平均距离非常大,分子的体积与气体的总体积相比可以忽略不计,服务女子之间无作用力,分子之间的碰撞以及分子与容器壁之间的碰撞都是弹性碰撞。
热力学与热化学反应

热力学与热化学反应热力学是研究能量转化及其与物质结构的关系的科学,而热化学反应则是研究在化学反应中的能量转化过程。
两者相辅相成,为我们解释化学反应的驱动力和能量变化提供了基础。
一、热力学基础热力学的基本概念包括能量、系统和环境、热和功等。
能量是热力学研究的核心,可以分为内能、焓和自由能等形式。
系统是研究对象,可以分为开放系统、闭合系统和孤立系统。
环境则是与系统相互作用的外部物体。
热和功则是能量转化的两个主要方式,热是能量的传递方式,功是能量的传递和转化方式。
在热力学中,我们常用的热力学第一定律和第二定律来描述能量转化。
热力学第一定律是能量守恒定律,它表明能量可以转化,但不能被创造或破坏。
热力学第二定律则描述了自然界中能量转化的方向性,即能量在不可逆过程中总是趋向于自发向更稳定的状态转化。
二、热化学反应的能量变化热化学反应是通过化学反应来描述物质转化过程中的能量变化。
能量变化通常可以分为焓变和反应熵的变化。
焓变(ΔH)是热化学反应中最常见的能量变化指标,它表示在常压下反应所伴随的热变化。
当反应吸热时,焓变为正值,表示反应为吸热反应。
当反应放热时,焓变为负值,表示反应为放热反应。
焓变与反应物和产物的摩尔量之间有一定的关系,常用反应热来表示。
反应熵的变化(ΔS)则是热化学反应中描述随着反应进行所带来的体系无序化程度的变化。
当反应导致体系无序增加时,反应熵的变化为正值,表示反应为熵增反应。
当反应导致体系无序减少时,反应熵的变化为负值,表示反应为熵减反应。
反应熵变与反应的状态数之差有关,常用标准态下的反应熵变(ΔS°)来描述。
三、热化学反应的热力学条件热化学反应的进行受到热力学条件的限制,主要包括反应的焓变和反应熵变。
根据吉布斯自由能的定义,ΔG = ΔH - TΔS,其中ΔG表示反应的自由能变化,ΔH为焓变,T为温度,ΔS为反应熵变。
根据此关系式,当反应的焓变和熵变均为负值或当焓变为正值且熵变为正值时,系统的自由能减小,反应才能进行自发。
关于热力学的名词解释

关于热力学的名词解释热力学是研究热量与能量转化的物理学科。
它探讨了热能如何在物质之间传递,以及在不同物质之间如何进行能量转化的过程。
热力学的研究范围涉及太阳能、动力系统、自然界中的能量转化等众多领域。
在本文中,我们将通过解释一些与热力学相关的基本名词来概述这一学科的重要概念和原则。
一、热力学系统热力学系统是指研究对象,可以是任何有特定边界的实际物体或虚拟物体。
根据与外界的能量和物质交互情况,热力学系统可以分为开放系统、封闭系统和孤立系统。
开放系统是与外界能量和物质交换的系统。
一个典型的例子是一个开放的杯子,热量可以通过边界进入或离开系统。
封闭系统是不与外界物质交换的系统,但能与外界进行能量交换。
例如,将热咖啡倒入一个杯子,并将其封闭。
在这个系统中,只有热量可以通过杯子与外界交换,而咖啡则不能进入或离开系统。
孤立系统既不与外界物质交换,也不与外界能量交换。
例如,一个装满热水的高真空热水瓶就是一个孤立系统。
二、热力学过程热力学过程描述了系统从一个状态转换到另一个状态时的行为和能量交换。
常见的热力学过程包括等温过程、绝热过程、等压过程和等体过程。
等温过程是指系统在恒定温度下进行的过程。
在等温过程中,系统与外界进行热量交换,但温度保持不变。
例如,当我们将一杯热咖啡放在室温下冷却时,系统与外界之间的热量交换使得咖啡的温度逐渐降低。
绝热过程是指系统与外界没有热量交换的过程。
在绝热过程中,系统的热量不改变,而能量仅通过其他方式进行转移,如机械工作。
例如,当我们迅速挤压一块泡沫材料时,系统受到的外界压力使其内部温度升高,而在挤压过程中没有热量交换。
等压过程是在系统的压力保持恒定的条件下进行的过程。
这种过程可以通过加热或冷却来实现。
例如,当我们在平底锅中加热水时,系统中的压力保持不变,而温度上升。
等体过程是在系统的体积恒定的条件下进行的过程。
在这种过程中,系统不会对外界做功,因为体积没有改变。
例如,当我们在一个坚固的容器中加热一瓶气体时,气体的温度上升,但体积保持不变。
材料热力学名词解释

材料热力学名词解释
材料热力学是研究材料在不同条件下的热力学性质和相变行为的学科。
以下是一些常见的材料热力学名词解释:
1. 热力学第一定律:能量守恒的原理,即能量不会被创造或消失,只会转化为其他形式。
2. 状态函数:与材料的当前状态有关的物理量,如温度、压力和体积等。
状态函数的值只取决于系统的当前状态,与过程的路径无关。
3. 热力学第二定律:描述了能量转化的方向和过程的不可逆性。
其中最著名的表述是开尔文-普朗克表述,即不可能从单一热
源吸热使之完全转变为功而不产生其他影响。
4. 焓:表示了系统内部能量和对外界所做的功之和。
在常压下,焓变可以看作是系统吸收或释放的热量。
5. 熵:描述了系统的无序程度,是一个衡量系统混乱程度的物理量。
熵的增加表示系统的无序程度增加,熵的减小则表示系统的有序性提高。
6. 自由能:描述了系统可用能量,分为内部能和系统对外界所做的功。
自由能的变化可以用来预测系统在恒温恒压条件下是否会进行某个过程。
7. 平衡态:指系统的各种性质在时间上不再发生变化的状态,
即系统的宏观性质保持不变。
8. 相变:材料在一定条件下从一种相态转变为另一种相态的过程,如固态到液态的熔化、液态到气态的汽化等。
9. 等温过程:系统在恒定温度下进行的过程。
10. 等压过程:系统在恒定压力下进行的过程。
以上是一些常见的材料热力学名词解释,对于理解材料热力学和研究材料相变行为具有重要意义。
热力学名词解释

自然对流传热:由于流体内部存在着温度差,使得各部分流体的密度不同,温度高的流体密度小,必然上升;温度低的流体密度大,必然下降,从而引起流体内部的流动为自然对流。
这种没有外部机械力的作用,仅仅靠流体内部温度差,而使流体流动从而产生的传热现象,称为自然对流传热。
、对流换热:.运动的流体与固体壁面在温差作用下所发生的热传递现象。
卡诺循环:由两个可逆的等温过程和两个可逆的绝热过程所组成的理想循环。
光谱辐射力:与辐射力单位差一个长度单位,是指单位时间内物体的单位表面积向半球空间所有方向发射出去的在包含λ的单位波长范围内的辐射能。
辐射强度:点辐射源在某方向上单位立体角内传送的辐射通量,记作I,即I=dΦe/d,式中d Φe是d立体角元内的辐射通量。
灰体:把光谱吸收比与波长无关的物体称为灰体焓:热力学中表示物质系统能量的一个状态函数,常用符号H表示。
数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV。
焓的变化是系统在等压可逆过程中所吸收的热量的度量。
平衡状态:系统内工质各点相同的状态参数均匀一致的状态。
可逆过程:当一个过程进行完了以后,如能使工质沿相同的路径,逆行回复至原来状态,并使整个系统和外界全部都回复到原来状态而不留下任何改变。
相对湿度:湿空气的实际绝对湿度ρv与同温度下饱和湿空气的绝对湿度ρ″(最大湿度)之比,称为相对湿度,用φ表示,它表示湿空气的干湿程度。
绝对湿度:每1m3湿空气中所含水蒸汽的质量(kg数),用ρv表示。
自然流动:凡是由于流体内部因温度不同造成密度不同而引起的运动强制流动:凡是受外力影响如泵,鼓风机的租用所发生的运动准静态过程:热力过程中任何一个中间步骤都在无限接近平衡状态下进行的过程。
热力学系统在变化时经历的一种理想过程。
准静态过程中的每一中间状态都处于平衡态。
边界层:又称附面层是一个流体力学名词,表示流体中紧接着管壁或其他固定表面的部份。
含湿量:是指湿空气中与一千克干空气同时并存的水蒸气的质量(克)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学名词解释
一、绪论
1.热流量:单位时间所传递的热量
2.热流密度:单位传热面上的热流量
3.导热:物体各部分之间不发生相对位移时,依靠物质微粒(分子、原子或自由电子)的热运动而产生的热能传递,称为导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体间通过热辐射而进行的热量传递,称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表
示传热温差为1K时,单位传热面积在单位时间的传热量。
二、热传导
1.温度场:某一瞬间物体各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12W/(m·K)(平均温度不高于350℃时)
的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题
解的附加条件,包括初始条件和边界条件。
三、对流传热
1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.定性温度:确定换热过程中流体物性的温度。
4.特征尺度:对于对流传热起决定作用的几何尺寸。
5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
四、辐射传热
1.热辐射:由于物体部微观粒子的热运动状态改变,而将部分能转换成电磁波的能量发射出去的过程。
2.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
3.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。
4.穿透比:投射到物体表面的热辐射中穿透物体的比例。
5.黑体:吸收比α= 1的物体。
6.白体:反射比ρ=l的物体(漫射表面)
7.透明体:透射比τ= 1的物体
8.灰体:光谱吸收比与波长无关的理想物体。
9.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
10.辐射力:单位时间物体的单位辐射面积向外界(半球空间)发射的全部波长的辐射能。
11.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间围各方向上都有均匀的反射辐射度Lr,则该表面称为漫反射表面。
12.角系数:从表面1发出的辐射能直接落到表面2上的百分数。
13.有效辐射:单位时间从单位面积离开的总辐射能,即发射辐射和反射辐射之和。
14.投入辐射:单位时间投射到单位面积上的总辐射能。
15.定向辐射度:单位时间,单位可见辐射面积在某一方向p的单位立体角所发出的总辐射能(发射辐射和反射辐射),称为在该方向的定
向辐射度。
16.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。
17.定向辐射力:单位辐射面积在单位时间向某一方向单位立体角发射的辐射能。
18.表面辐射热阻:由表面的辐射特性所引起的热阻。
19.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。
20.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为
零的表面。
五、传热过程与传热器
1.传热过程:热量从高温流体通过壁面传向低温流体的总过程. 2.复合传热:对流传热与辐射传热同时存在的传热过程.
3.污垢系数:单位面积的污垢热阻.
4.肋化系数: 肋侧表面面积与光壁侧表面积之比.
5.顺流:两种流体平行流动且方向相同
6.逆流: 两种流体平行流动且方向相反
7.效能:换热器实际传热的热流量与最大可能传热的热流量之比. 8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.
9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层
外径.
导热系数
返回到上一层重点容:
影响导热系数的主要因素;典型工程材料导热系数的数值。
一、导热系数(Heat Conductivity)
定义式:
导热系数在数值上等于单位温度降度(即lK/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
二、影响因素
包括:物质的种类及性质、温度、压力、密度以及湿度
各种物质的导热系数相差很大,其根本原因在于不同的物质其导热机理存在着差异。
一般而言,金属的导热系数最大,非金属和液体次之,气体的导热系数最小。
导热系数越大,说明其导热性能越好。
由图中可以看出,各类物质导热系数的一般大小顺序。
现行国家标准(GB 4272—92)规定,平均温度在350℃以下时导热系数低于0.12时,这种材料称为保温材料。
同一种物质的导热系数也会因其状态的不同而改变,因而导热系数是物质温度和压力的函数。
由于物质温度和压力的高低直接反映物质分子的密集程度和热运动的强弱程度,直接影响着分子的碰撞、晶格的振动和电子的漂移,故物质的导热系数与温度和压力密切相关。
见下表。
※非金属材料的导热机理:非金属物质多属于多孔性材料,其部孔隙部分充满着空气。
其导热机理一般是通过材料的实体和孔隙空气两部分热量传递综合作用的结果,如果空隙大到一定程度,也会存在对流换热换热和辐射换热方式。
多孔性材料导热系数的影响因素:多孔材料湿度越大,λ也越大。
建筑材料,尤其是保温材料要防潮;多孔材料密度越小即孔隙中空气量越多,材料导热系数越小。
但密度也不能过小,否则由于对流换热强度的增大,材料导热系数反而增加。
三、典型工程材料导热系数的数值
273K时物质的导热系数
四、导热系数的确定
工程计算采用的各种物质的导热系数的数值都是用专门实验测定出来的。
测量方法包括稳态测量方法和非稳态测量方法。
物质的导热系数值可以查阅相关文献。
一般把导热系数仅仅视为温度的函数,而且在一定温度围还可以用一种线性关系来描述,即。
五、基本要求及例题
主要是加深对影响导热系数主要因素的理解,了解典型工程材料导热系数的数值。
例题1、工程中应用多孔性材料作保温隔热,使用时应注意什么问题?为什么?
答:应注意防潮。
保温材料的一个共同特点是它们经常呈多孔状,或者具有纤维结构,其中的热量传递是导热、对流换热、热辐射三种传热机理联合作用的综合过程。
如果保温材料受潮,水分将替代孔隙中的空气,这样不仅水分的导热系数高于空气,而且对流换热强度大幅度增加,这样材料保温性能会急剧下降。
返回到上一层。