新人教版九年级下二次函数全章教案

合集下载

九年级《二次函数》全章教案

九年级《二次函数》全章教案

一、教学内容
1.定义:二次函数的定义
2.标准二次函数:了解标准二次函数的式子及其性质
3.图像特征:了解图像的性质,如极值,唯一性,对称性,凹凸性等
4.求解二次函数的根:了解求解二次函数根的方法,学会用数学方法解二次方程
二、教学目标
1.学会定义二次函数的概念,以及熟练使用标准二次函数的式子
2.掌握图像性质,能够分析二次函数的图像特征
3.掌握二次函数根的求解方法,能熟练运用二次函数的性质进行求解
三、教学重点
1.学会定义二次函数的概念,以及熟练使用标准二次函数的式子
2.掌握图像性质,能够分析二次函数的图像特征
四、教学难点
1.了解求解二次函数根的方法,学会用数学方法解二次方程
五、教学过程
(一)热身
1.学生回顾前一节课学习内容,小组讨论二次函数的定义
2.学生观察二次函数的图像,分析图像的特征
3.启发:求解二次函数的根的方法
(二)正式教学
1.由学生结合上节课内容,定义二次函数的概念,以及介绍标准二次函数的式子
2.提出图像的性质,如极值,唯一性,对称性,凹凸性,并通过实例图形进行理解
3.通过实例,让学生学会求解二次函数的根的方法。

新人教版九年级数学下第二十六章二次函数全章教案

新人教版九年级数学下第二十六章二次函数全章教案

新人教版九年级数学下二次函数全章教案课题:26.1二次函数教学目标:1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、 理解二次函数的概念,掌握二次函数的形式。

3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、 会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。

2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?1113x让学生充分发表意见,提出各自看法。

二次函数教案 (第一课时)

二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。

2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。

3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。

4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。

三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。

2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。

第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。

学生能独立运用函数知识解决变量之间的关系。

2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。

得到二次函数的解析式,获取新知。

本组题目是新知识的直接应用,目的是让学生能够区分。

活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。

总结内容、应用、数学思维方法、获取知识的途径等。

活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。

活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。

第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。

2.揭示课题:以篮球为例。

人教版本初中九年级的数学下册的二次函数全章精品导学案

人教版本初中九年级的数学下册的二次函数全章精品导学案

人教版九年级数学下册二次函数全章精选导教案【师生共用】第 1 课时 26.1二次函数一、阅读教科书第4— 6 页上方二、学习目标:1.知道二次函数的一般表达式;2.会利用二次函数的看法剖析解题;3.列二次函数表达式解实质问题.三、知识点:一般地,形如 ____________________________ 的函数,叫做二次函数。

此中x 是________, a 是 __________, b 是 ___________, c 是 _____________.四、基本知识练习2 3 2 + 30x ;③ y= 200x 2 + 400x+ 200 .这三个式子中,虽1.察看:① y= 6x ;② y=-x2然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,假如 y= ax2+ bx + c( a、b、c 是常数, a≠ 0),那么 y 叫做 x 的 _____________.2.函数 y= (m- 2)x 2+ mx - 3( m 为常数).(1)当 m__________ 时,该函数为二次函数;(2)当 m__________ 时,该函数为一次函数.3.以下函数表达式中,哪些是二次函数?哪些不是?假如二次函数,请指出各项对应项的系数.( 1)y= 1- 3x2(2)y=3x2+2x(3)y=x (x-5)+ 2( 4)y= 3x 3+ 2x2 ( 5) y= x+1x五、讲堂训练1. y=(m + 1)x m2 m- 3x+ 1 是二次函数,则 m 的值为 _________________ .2.以下函数中是二次函数的是()1B . y= 3 (x - 1) 2 C. y= (x+ 1) 2 2 1A. y= x+- x D. y=2-x2 x3.在必定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s= 5t2+ 2t,则当 t= 4 秒时,该物体所经过的行程为()A.28 米B.48 米C.68 米D.88 米4.n 支球队参加竞赛,每两队之间进行一场竞赛.写出竞赛的场次数 m 与球队数 n 之间的关系式 _______________________ .25.已知 y 与 x 成正比率,而且当x=- 1 时, y=- 3.(2)当 x= 4 时, y 的值;(3)当 y=-1时, x 的值.36.为了改良小区环境,某小区决定要在一块一边靠墙(墙长形绿化带 ABCD ,绿化带一边靠墙,另三边用总长为25m )的空地上修筑一个矩40m 的栅栏围住(如图).若设绿化带的 BC 边长为 x m ,绿化带的面积为y m 2.求 出自变量x 的取值范围.y 与 x 之间的函数关系式,并写六、目标检测1.若函数 y = (a - 1)x 2+ 2x + a 2- 1 是二次函数,则()A . a = 1B . a =± 1C . a ≠ 1D . a ≠- 12.以下函数中,是二次函数的是()2-1B . y =x - 1C . y = 8 8A . y =x x D .y = 2x 3.一个长方形的长是宽的 2 倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数 y =- x 2+ bx + 3.当 x = 2 时, y = 3,求 这个二次函数分析式.第 2 课时二次函数 y =ax 2 的图象与性质一、阅读课本:P6 — 8 二、学习目标:1.知道二次函数的图象是一条抛物线; 2.会画二次函数y = ax 2的图象;3.掌握二次函数y = ax 2的性质,并会灵巧应用.三、研究新知:2【提示:绘图象的一般步骤:①列表(取几组x 、y 的对应值;②描点(表中x 、 y 的数值在座标平面中描点( x , y );③连线(用光滑曲线).】列表:x ⋯-3-2-1 0 1 2 3 ⋯y=x2 ⋯⋯描点,并由象可得二次函数 y= x2的性:1.二次函数 y= x 2 是一条曲,把条曲叫做______________.2.二次函数 y= x2中,二次函数a= _______,抛物 y= x2的象张口 __________ .3.自量 x 的取范是 ____________ .4.察象,当两点的横坐互相反数,函数 y 相等,所描出的各点对于________称,进而象对于 ___________称.5.抛物 y=x2与它的称的交点(,)叫做抛物y=x2的 _________.所以,抛物与称的交点叫做抛物的_____________.6.抛物 y=x 2有 ____________点(填“最高”或“最低”).四、例剖析例 1 在同向来角坐系中,画出函数1 2 2 2的象.y= x , y= x , y=2x2解:列表并填:x ⋯-4-3 -2 -1 01 2 34⋯1 2⋯⋯y=2xy= x2的象画,再把它画出来.xy= 2x2 ⋯- 2 ⋯- 1.5 - 1 - 0.5 0 0.5 1 1.52 ⋯⋯1 2 2,y =2x 2 的二次 系数a_______0; 点都是 __________ ; :抛物 y = x ,y =x2称 是 _________ ; 点是抛物 的最_________点(填“高”或“低” ).例 2在例 1 的直角坐 系中画出函数y =- x 2, y =-1x 2, y =- 2x 2 的 象.2列表:x ⋯-3-2-112 3⋯ y = x 2⋯⋯x ⋯-4-3-2-10 1234⋯12⋯⋯y=- 2xx y =- 2x 2⋯ -4 ⋯- 3 - 2 - 10 1 2 3 4⋯ ⋯:抛物 y =- x 2,y =-12x 2, y =- 2x 2的二次 系数a______0, 点都是 ________,称 是 ___________, 点是抛物 的最________点(填“高”或“低” ).五、理一理 1.抛物 y = ax 2 的性象(草 )张口 称 有最高或 点最方向最低点当 x = ____ a > 0, y 有 最_______ ,是______. 当 x = ____ a < 0, y 有 最_______ ,是______.2.抛物线 y= x2与 y=- x2 对于 ________对称,所以,抛物线y=ax2与 y=- ax2对于_______对称,张口大小 _______________.3.当 a> 0 时, a 越大,抛物线的张口越___________;当 a< 0 时,| a|越大,抛物线的张口越 _________;所以,| a|越大,抛物线的张口越________,反之,| a|越小,抛物线的张口越________.六、讲堂训练1.填表:张口方向极点有最高或最值对称轴最低点2 2 当 x= ____ 时, y 有最y=3x _______值,是 ______.y=-8x 22.若二次函数y= ax2的图象过点( 1,- 2),则 a 的值是 ___________ .3.二次函数y=(m- 1)x 2的图象张口向下,则m____________.24.如图,①y=ax② y= bx2③ y= cx2④ y= dx2比较 a、 b、c、 d 的大小,用“>”连结.___________________________________七、目标检测1.函数 y=37x2的图象张口向 _______,极点是 __________,对称轴是 ________,当 x= ___________时,有最 _________值是 _________.22.二次函数y=mx m2 有最低点,则m= ___________.23.二次函数y=(k + 1)x 的图象以下图,则k 的取值4.写出一个过点(1, 2)的函数表达式_________________.第 3 课时二次函数y=ax2+k的图象与性质一、本:P9— 10二、学目:1.会画二次函数y= ax2+ k 的象;2.掌握二次函数y= ax2+ k 的性,并会用;3.知道二次函数y= ax2与 y=的 ax2+ k 的系.三、研究新知:在同向来角坐系中,画出二次函数y= x2+ 1,y= x2- 1 的象.解:先列表x ⋯-3-2 - 10 1 2 3 ⋯y= x2+ 1 ⋯⋯y= x2- 1 ⋯⋯描点并画察象得:1.张口方向点称有最高(低)点最y= x2y= x2-1y= x 2+12.能够发现,把抛物线 y= x2向 ______平移 ______个单位,就获得抛物线y= x2+ 1;把抛物线 y= x2向 _______平移 ______ 个单位,就获得抛物线y= x2- 1.3.抛物线 y=x2, y= x2- 1 与 y= x2+ 1 的形状 _____________ .四、理一理知识点1.y= ax2 y= ax2+ k张口方向极点对称轴有最高(低)点a>0 时,当 x= ______时, y 有最 ____ 值为 ________;最值a<0 时,当 x= ______时, y 有最 ____ 值为 ________.增减性2.抛物线 y= 2x2向上平移 3 个单位,就获得抛物线__________________ ;抛物线 y= 2x 2向下平移 4 个单位,就获得抛物线__________________ .所以,把抛物线 y= ax2向上平移 k(k> 0)个单位,就获得抛物线 _______________;把抛物线 y= ax 2向下平移 m( m> 0)个单位,就获得抛物线 _______________.3.抛物线 y=- 3x2与 y=- 3x2+ 1 是经过平移获得的,进而它们的形状__________,由此可得二次函数y= ax2与 y= ax2+ k 的形状 __________________ .五、讲堂稳固训练1.填表函数草图张口对称轴对称轴右边的增减极点最值性方向y= 3x2y=- 3x2+12y=- 4x -2 .将二次函数 y = 5x2- 3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个极点坐标为( 0,- 3),张口方向与抛物线y=- x2的方向相反,形状同样的抛物线分析式 ____________________________ .4.抛物线 y= 4x2+ 1 对于 x 轴对称的抛物线分析式为______________________ .六、目标检测1.填表函数张口对称轴最值对称轴左边的增减性极点方向y=- 5x 2+ 3 y= 7x2- 11 2-2 1 22.抛物线 y=-x 可由抛物线 y=- x + 3 向 ___________平移 _________个单位3 3获得的.3.抛物线 y=- x2+h 的极点坐标为( 0, 2),则 h= _______________ .4.抛物线 y= 4x 2- 1 与 y 轴的交点坐标为_____________ ,与 x 轴的交点坐标为_________.第 4 课时二次函数y=a(x-h)2的图象与性质一、阅读课本:P10— 11二、学 目 :1.会画二次函数y = a ( x- h )2的 象;2.掌握二次函数y = a ( x- h )2的性 ,并要会灵巧 用; 三、研究新知:画出二次函数y =-1 21 2的 象,并考 它 的张口方向、 称 、(x +1), y - (x - 1)22点以及最 、增减性.先列表:x⋯-4-3-2-101234⋯12⋯⋯ y =- 2(x + 1)1 2⋯y =- 2(x - 1)⋯描点并画 . 1. 察 象,填表:函数张口点 称最增减性方向12 y =- 2(x + 1)1 2 y =- 2(x - 1)1 2也画上去(草 ) .2. 在 上把抛物 y =- x2①抛物 y =-1(x +1) 2, y =- 1x 2, y =- 1(x - 1)2的形状大小 ____________ .2 2 2②把抛物线 y=-1 2向左平移 _______个单位,就获得抛物线y=-1 2;x2(x+ 1)2把抛物线 y=-1 2向右平移 _______个单位,就获得抛物线y=-1 2 x (x +1) .2 2四、整理知识点1.y= ax2 y= ax2+ k y= a (x- h)2 张口方向极点对称轴最值增减性(对称轴左边)2.对于二次函数的图象,只需|a|相等,则它们的形状_________,不过 _________不一样.五、讲堂训练1.填表张口对称对称轴极点右边的增减图象(草图)最值方向轴性1 2y=2xy=- 5 (x + 3)2y= 3 (x- 3)22.抛物线 y= 4 (x - 2)2与 y 轴的交点坐标是___________,与 x 轴的交点坐标为________.3 .把抛物线y = 3x 2向右平移4个单位后,得到的抛物线的表达式为____________________ .把抛物线y = 3x2向左平移6个单位后,得到的抛物线的表达式为____________________ .4.将抛物线 y=-1(x- 1)x 2向右平移 2 个单位后,获得的抛物线分析式为____________ .35.写出一个极点是( 5,0),形状、张口方向与抛物线y=- 2x2都同样的二次函数解析式___________________________ .六、目标检测1.抛物线 y= 2 (x + 3)2的张口 ______________;极点坐标为 __________________;对称轴是 _________;当 x>- 3 时, y______________ ;当 x=- 3 时, y 有 _______ 值是 _________.2.抛物线 y= m (x + n) 2 向左平移 2 个单位后,获得的函数关系式是 y=- 4 (x - 4)2,则m= __________ ,n= ___________.3 .若将抛物线 y = 2x2+ 1向下平移2个单位后,得到的抛物线解析式为_______________ .4.若抛物线y= m (x +1) 2过点( 1,- 4),则 m= _______________.第 5 课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第12页~第13页上方.二、学习目标:1.会画二次函数的极点式y= a (x- h)2+ k 的图象;2.掌握二次函数y= a (x- h)2+ k 的性;3.会用二次函数y= a (x- h)2+ k 的性解.三、研究新知:画出函数 y=-12(x +1)2-1 的象,指出它的张口方向、称及点、最、增减性.列表:x ⋯-4-3-2-10 12⋯y=-1 2- 1 ⋯⋯(x+ 1)2由象:1.函数张口称最增减性点方向1 2- 1 y=- (x+1)22.把抛物 y=-1x2向 _______平移 ______个位,再向 _______平移 _______ 个位,2就获得抛物 y=-1(x +1) 2-1.2四、理一理知点y= ax2 y= ax2+ k y= a (x- h) 2 y= a (x- h)2+ k张口方向极点对称轴最值增减性(对称轴右侧)2.抛物线y= a (x- h)2+ k 与 y=ax2形状 ___________,地点 ________________ .五、讲堂练习1.y= 3x2 y=- x2+ 1 y=1(x+ 2)2 y=- 4 (x- 5)2-3 2张口方向极点对称轴最值增减性(对称轴左侧)2. y= 6x2+ 3 与 y= 6 (x - 1)2+ 10_____________ 同样,而 ____________ 不一样.3.极点坐标为(- 2, 3),张口方向和大小与抛物线y=1 x2同样的分析式为()21 2 1 2- 3A . y=(x -2) + 3B . y= (x+ 2)2 21 2 1 2+ 3C. y= (x +2) + 3 D .y=- (x +2)2 24.二次函数 y= (x- 1)2+ 2 的最小值为 __________________ .5.将抛物线 y= 5(x- 1)2+ 3 先向左平移 2 个单位,再向下平移 4 个单位后,获得抛物线的分析式为 _______________________ .6.若抛物线 y= ax2+ k 的极点在直线y=- 2 上,且 x= 1 时, y=- 3,求 a、 k 的值.7.若抛物线y= a (x- 1)2+ k 上有一点 A (3, 5),则点 A 对于对称轴对称点A’的坐标为__________________.六、目标检测1.张口方向极点对称轴y= x2+ 1y= 2 (x-3) 2y=-(x+ 5)2- 42.抛物线y=- 3 (x + 4)2+ 1 中,当 x= _______时, y 有最 ________值是 ________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用以下哪幅图表示()ABCD4.将抛物线y= 2 (x + 1)2- 3 向右平移 1 个单位,再向上平移 3 个单位,则所得抛物线的表达式为 ________________________ .5.一条抛物线的对称轴是x= 1,且与 x 轴有独一的公共点,而且张口方向向下,则这条抛物线的分析式为____________________________ .(任写一个)第 6 课时二次函数y=ax2+bx+c的图象与性质一、 本:第 14 ~第 15 上方. 二、学 目 :21.配方法求二次函数一般式y =ax + bx + c 的 点坐 、 称 ; 22.熟 二次函数y = ax + bx +c 的 点坐 公式;23.会画二次函数一般式y = ax + bx + c 的 象. 三、研究新知:1.求二次函数y =12x 2- 6x +21 的 点坐 与 称 .1 2解:将函数等号右 配方:y = x -6x + 21 2.画二次函数 y =1x 2- 6x +21 的 象.2解: y =1x 2- 6x + 21 配成 点式 _______________________ .2 列表:x⋯345678 9⋯y = 1x 2- 6x + 21 ⋯ ⋯ 23.用配方法求抛物 y = ax 2+ bx + c ( a ≠ 0)的 点与 称 . 四、理一理知 点:y = ax 2y = ax 2+ k y =a( x - h)2 y = a( x - h)2+k y = ax 2+ bx+ c张口方向点对称轴最值增减性(对称轴左边)五、讲堂练习1.用配方法求二次函数y=- 2x2- 4x+ 1 的极点坐标.2.用两种方法求二次函数y= 3x2+ 2x 的极点坐标.3.二次函数 y= 2x2+ bx +c 的极点坐标是( 1,- 2),则 b= ________,c= _________ .4.已知二次函数 y=- 2x 2- 8x-6,当 ___________时, y 随 x 的增大而增大;当x=________时, y 有 _________值是 ___________.六、目标检测1 2的极点坐标.1.用极点坐标公式和配方法求二次函数y= x - 2- 122.二次函数y=- x2+ mx 中,当 x= 3 时,函数值最大,求其最大值.第 7 课时二次函数y=ax2+bx+c的性质一、复习知识点:第 6 课中“理一理知识点”的内容.二、学习目标:21.懂得求二次函数y= ax + bx+ c 与 x 轴、 y 轴的交点的方法;22.知道二次函数中a, b,c 以及△= b - 4ac 对图象的影响.三、基本知识练习1.求二次函数y= x2+ 3x- 4 与 y 轴的交点坐标为_______________ ,与 x 轴的交点坐标____________ .2.二次函数y= x2+ 3x- 4 的极点坐标为 ______________,对称轴为 ______________.3.一元二次方程x2+ 3x- 4= 0 的根的鉴别式△=______________.4.二次函数y= x2+ bx 过点( 1, 4),则 b= ________________ .5.一元二次方程y=ax2+bx+ c( a≠ 0),△> 0 时,一元二次方程有_______________,△= 0 时,一元二次方程有___________,△< 0 时,一元二次方程_______________.四、知识点应用1.求二次函数y= ax2+ bx+ c 与 x 轴交点(含 y= 0 时,则在函数值y= 0 时, x 的值是抛物线与 x 轴交点的横坐标).例 1求y=x2-2x-3与x轴交点坐标.2.求二次函数 y= ax2+ bx+ c 与 y 轴交点(含 x= 0 时,则 y 的值是抛物线与 y 轴交点的纵坐标).2例 2求抛物线y= x - 2x- 3 与 y 轴交点坐标.23. a、 b、 c 以及△= b - 4ac 对图象的影响.( 1) a 决定:张口方向、形状( 2) c 决定与 y 轴的交点为(0,c)b( 3) b 与-共同决定b 的正负性0与 x轴有两个交点(4)△= b2- 4ac0与 x轴有一个交点0与 x轴没有交点例 3 如图,由图可得:a_______0b_______0c_______0△______0例 4已知二次函数y= x2+ kx + 9.①当 k 为何值时,对称轴为y 轴;②当 k 为何值时,抛物线与x 轴有两个交点;③当 k 为何值时,抛物线与x 轴只有一个交点.五、课后练习1.求抛物线 y= 2x2-7x- 15 与 x 轴交点坐标 __________ ,与 y 轴的交点坐标为_______.2.抛物线 y= 4x2- 2x+ m 的极点在 x 轴上,则 m= __________ .3.如图:由图可得:a_______0b_______0c_______0△= b2- 4ac______0六、目标检测1.求抛物线y= x2- 2x+ 1 与 y 轴的交点坐标为 _______________.2.若抛物线y= mx2- x+ 1 与 x 轴有两个交点,求 m 的范围.3.如图:由图可得: a _________0b_________0c_________0△= b2- 4ac_________0第 8 课时二次函数y=ax2+bx+c分析式求法一、学习目标:1.会用待定系数法求二次函数的分析式;2.实质问题中求二次函数分析式.二、课前基本练习1.已知二次函数y= x2+ x+m 的图象过点(1, 2),则 m 的值为 ________________ .2.已知点 A ( 2,5), B( 4, 5)是抛物线y=4x2+bx+ c 上的两点,则这条抛物线的对称轴为 _____________________ .3.将抛物线y=- (x- 1)2+ 3 先向右平移 1 个单位,再向下平移3 个单位,则所得抛物线的分析式为 ____________________.4.抛物线的形状、张口方向都与抛物线y=-12x2同样,极点在(1,- 2),则抛物线的解析式为 ________________________________ .三、例题剖析例 1 已知抛物线经过点 A (- 1, 0), B( 4,5), C(0,- 3),求抛物线的分析式.例 2 已知抛物线极点为( 1,- 4),且又过点( 2,- 3).求抛物线的分析式.例 3 已知抛物线与 x 轴的两交点为(- 1, 0)和( 3, 0),且过点( 2,- 3).求抛物线的分析式.四、概括用待定系数法求二次函数的分析式用三种方法:1.已知抛物线过三点,设一般式为y= ax2+ bx+ c.2.已知抛物线极点坐标及一点,设极点式y= a(x- h)2+ k.3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标),设两根式: y= a(x- x1)(x -x2 ).(此中 x1、 x2是抛物线与x 轴交点的横坐标)五、实质问题中求二次函数分析式例 4要修筑一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?六、讲堂训练1.已知二次函数的图象过(0, 1)、( 2, 4)、( 3, 10)三点,求这个二次函数的关系式.2.已知二次函数的图象的极点坐标为(-2,- 3),且图像过点(-3,- 2),求这个二次函数的分析式.3.已知二次函数y= ax2+ bx+c 的图像与x 轴交于 A (1, 0), B( 3, 0)两点,与y轴交于点 C( 0, 3),求二次函数的极点坐标.4.如图,在△ ABC 中,∠ B = 90°, AB = 12mm, BC = 24mm,动点 P 从点 A 开始沿边 AB 向 B 以 2mm/s 的速度挪动,动点Q 从点 B 开始沿边BC 向 C 以 4mm/s 的速度挪动,假如P、Q 分别从 A 、 B 同时出发,那么△PBQ 的面积 S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.APBQC七、目标检测1.已知二次函数的图像过点A(- 1,0),B( 3,0),C( 0,3)三点,求这个二次函数分析式.第 9 课时二次函数y=ax2+bx+c的性质一、阅读教科书:P15 的研究二、学习目标:几何问题中应用二次函数的最值.三、课前基本练习1.抛物线y=- (x +1)2+2 中,当 x= ___________时, y 有 _______值是 __________.1 2-x+ 1 中,当 x= ___________时, y 有 _______ 值是 __________ .2.抛物线 y= x23.抛物线 y= ax2+ bx+(ca≠ 0)中,当 x= ___________时,y 有 _______ 值是 __________ .四、例题剖析:( P15 的研究)用总长为 60m 的篱笆围成矩形场所,矩形面积S 随矩形一边长l的变化而变化,当l 是多少时,场所的面积S 最大?五、课后练习1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h(单位: m)与小球运动时间t(单位:2高度是多少?3.如图,四边形的两条对角线AC 、BD 相互垂直, AC + BD = 10,当 AC 、BD 的长是D多少时,四边形ABCD 的面积最大?CAB 4.一块三角形废料以下图,∠ A = 30°,∠ C= 90°, AB =12.用这块废料剪出一个长方形 CDEF ,此中,点 D、 E、 F 分别在 AC 、 AB 、 BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在哪处?AEDC F B六、目标检测如图,点 E、F、G、H 分别位于正方形ABCD 的四条边上,四边形 EFGH 也是正方形.当点 E 位于哪处时,正方形EFGH 的面积最小?D G CHFAEB第 10 课时用函数看法看一元二次方程一、阅读课本:第 20~ 22 页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程 ax2+ bx+c= 0 根的鉴别式△= b2- 4ac 判断二次函数y= ax2+ bx +c 与 x 轴的公共点的个数.三、研究新知1.问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,球的飞翔路线将是一条抛物线.假如不考虑空气阻力,球的飞翔高度h(单位: m)与飞翔时间t(单位:s)之间具相关系h= 20t- 5t2.考虑以下问题:(1)球的飞翔高度可否达到 15m?如能,需要多少飞翔时间?(2)球的飞翔高度可否达到 20m?如能,需要多少飞翔时间?(3)球的飞翔高度可否达到 20.5m?为何?(4)球从飞出到落地要用多少时间?2.察看图象:2+ x- 2 的图象与 x 轴有 ____个交点,则一元二次方程x2+ x- 2 ( 1)二次函数y= x=0 的根的鉴别式△= _______0;( 2)二次函数 y= x2- 6x+ 9 的图像与x 轴有 ___________ 个交点,则一元二次方程x2- 6x+ 9= 0 的根的鉴别式△=_______0;( 3)二次函数 y= x 2- x+1 的图象与x 轴 ________公共点,则一元二次方程x2- x+1= 0 的根的鉴别式△ _______0.四、理一理知识1.已知二次函数y=- x2+ 4x 的函数值为3,求自变量x 的值,能够看作解一元二次方程__________________ .反之,解一元二次方程-x2+ 4x=3 又能够看作已知二次函数__________________ 的函数值为3 的自变量 x 的值.一般地:已知二次函数 y=ax2+bx + c 的函数值为 m,求自变量 x 的值,能够看作解一元二次方程 ax2+ bx + c= m.反之,解一元二次方程 ax2+ bx+ c= m 又能够看作已知二次函数 y= ax2+ bx+ c 的值为 m 的自变量 x 的值.2.二次函数y= ax2+ bx+ c 与 x 轴的地点关系:一元二次方程ax2+ bx+ c=0 的根的鉴别式△=b2- 4ac.2( 1)当△= b-4ac>时( 2)当△= b 2-4ac = 0 时( 3)当△= b 2-4ac < 0 时五、基本知识练习 2 1.二次函数y = x - 3x + 2,当 22.二次函数y = x - 4x + 6,当 3.如图, 4.如图抛物线 y = ax 2+ bx + c 与 x 轴有两个交点;抛物线 y = ax 2+ bx + c 与 x 轴只有一个交点;抛物线 y = ax 2+ bx + c 与 x 轴没有公共点.x = 1 时, y = ________;当 y = 0 时, x = _______.x = ________时, y = 3.2一元二次方程ax + bx + c = 0 一元二次方程ax 2+ bx + c = 3 的解为 _________________5.如图填空:(1) a________0 (2) b________0 (3) c________0(4) b 2- 4ac________0六、讲堂训练1.特别代数式求值: ①如图看图填空:(1) a + b +c_______0 (2) a - b +c_______0 (3) 2a - b_______0②如图2a +b_______04a + 2b +c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程 ax2+bx+ c= 0 的根为 ___________;(2)方程 ax2+bx+ c=- 3 的根为 __________;(3)方程 ax2+bx+ c=- 4 的根为 __________;(4)不等式 ax2+ bx+ c>0 的解集为 ________;(5)不等式 ax2+ bx+ c<0 的解集为 ________;6)不等式- 4< ax2+ bx+ c< 0 的解集为 ________.七、目标检测依据图象填空:(1) a_____0;( 2) b_____0;( 3) c______0;(4)△= b2- 4ac_____0;( 5) a+ b+ c_____0;(6) a- b+ c_____0;( 7) 2a+ b_____0;(8)方程 ax2+ bx+ c= 0 的根为 __________ ;(9)当 y> 0 时, x 的范围为 ___________;(10)当 y< 0 时, x 的范围为 ___________ ;八、课后训练1.已知抛物线 y= x2- 2kx + 9 的极点在 x 轴上,则 k= ____________.2.已知抛物线 y= kx 2+ 2x- 1 与坐标轴有三个交点,则k 的取值范围 ___________ .3.已知函数 y= ax2+ bx+ c( a,b,c 为常数,且 a≠ 0)的图象以下图,则对于x 的方程ax 2+ bx+c- 4= 0 的根的状况是()A .有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y= ax2+ bx+ c 的图象,在以下说法中:①a c< 0;②方程 ax2+ bx +c= 0 的根是 x1=- 1, x2= 3;③ a+b+ c>0;④当 x> 1 时, y 随 x 的增大而增大.正确的说法有 __________________ (把正确的序号都填在横线上).第 11 课时实质问题与二次函数商品价风格整问题一、阅读课本:第25~26页上方(研究1)二、学习目标:1.懂得商品经济等问题中的相等关系的找寻方法;2.会应用二次函数的性质解决问题.三、研究新知某商品此刻的售价为每件60 元,每礼拜可卖出300 件,市场检查反应:如调整价钱,每涨价 1 元,每礼拜要少卖出10 件;每降价 1 元,每礼拜可多卖出20 件.已知商品的进价为每件40 元,如何订价才能使利润最大?剖析:调整价钱包含涨价和降价两种状况,用如何的等量关系呢?解:( 1)设每件涨价 x 元,则每礼拜少卖_________件,实质卖出 _________件,设商品的利润为y 元.( 2)设每件降价x 元,则每礼拜多卖_________件,实质卖出 __________件.四、讲堂训练1.某种商品每件的进价为30 元,在某段时间内若以每件x 元销售,可卖出(100- x)件,应如何订价才能使利润最大?2.蔬菜基地栽种某种蔬菜,由市场行情剖析知,1 月份至 6 月份这类蔬菜的上市时间x(月份)与市场售价P(元 /千克)的关系以下表:上市时间x/(月份)123456市场售价P(元 /千克)3这类蔬菜每千克的栽种成本y(元 / 千克)与上市时间x(月份)知足一个函数关系,这个函数的图象是抛物线的一段(如图).( 1)写出上表中表示的市场售价P(元 /千克)对于上市时间x(月份)的函数关系式;( 2)若图中抛物线过 A 、 B、 C 三点,写出抛物线对应的函数关系式;( 3)由以上信息剖析,哪个月上市销售这类蔬菜每千克的利润最大?最大值为多少?(利润=市场售价-栽种成本)五、目标检测元,某旅馆客房部有60 个房间供游旅居住,当每个房间的订价为每日住满.当每个房间每日的订价每增添10 元时,就会有一个房间空间.对有旅客入住的房间,旅馆需对每个房间每日支出20 元的各样花费.求:(1)房间每日入住量 y(间)对于 x(元)的函数关系式;(2)该旅馆每日的房间收费 z(元)对于 x(元)的函数关系式;(3)该旅馆客房部每日的利润 w(元)对于 x(元)的函数关系式,当每个房间的订价为多少元时, w 有最大值?最大值是多少?第 12 课时实质问题与二次函数一、阅读课本:第27页研究 3二、学习目标:1.会成立直角坐标系解决实质问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的极点为原点,以抛物线的对称轴为y 轴成立直角坐标系时,可设这条抛物线的关系式为 ___________________________________ .1 2AB 地点时,水面2.拱桥呈抛物线形,其函数关系式为y=- x ,当拱桥下水位线在4宽为12m,这时水面离桥拱顶端的高度h 是()A . 3mB. 2 6m C. 4D. 9m3m3.有一抛物线拱桥,已知水位线在AB 地点时,水面的宽为 4 6米,水位上升4 米,就达到戒备线CD,这时水面宽为 4 3米.若洪水到来时,水位以每小时0.5 米的速度上升,则水过戒备线后几小时吞没到拱桥顶端M 处?四、讲堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为 5m.( 1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式 y= ax 2+ c 的形式,请依据所给的数据求出a、c 的值;( 2)求支柱 MN 的长度;( 3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔绝带),此中的一条行车道可否并排行驶宽 2m,高 3m 的三辆汽车(汽车间的间隔忽视不计)?请谈谈你的原因.2.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,假如水位上升的宽是 10m.( 1)建图①立以下图的直角坐标系,求此抛物线的分析式.( 2)现有一辆载有营救物质的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥 280km (桥长忽视不计).货车正以每小时 40km 的速度开往乙地,当行驶1h 时,突然接到紧迫通知:前面连降暴雨,造成水位以每小0.25m 的速度持续上升(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,严禁车辆通行).试问:假如货车按本来速度行驶,可否安全经过此桥?若能,请说明原因.若不可以,要使货车安全经过此桥,速度应超出每小时多少千米?第 13 课时二次函数综合应用一、复习二次函数的基天性质二、学习目标:灵巧运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y= kx 2+ 2x+ 1( k< 0)的图象可能是()2.如图:( 1)当 x 为何范围时, y1> y2?( 2)当 x 为何范围时, y1= y2?( 3)当 x 为何范围时, y1< y2?3.如图,是二次函数y= ax2- x+ a2- 1 的图象,则a= ____________.13 5 24.若 A(-4,y1),B(- 1,y2), C(3,y3)为二次函数y=- x - 4x+ 5 图象上的三点,则 y1、 y2、 y3的大小关系是()A .y1< y2< y3B . y3< y2< y1 C. y3< y1< y2 D. y2< y1< y35.抛物线 y=(x -2) (x + 5)与坐标轴的交点分别为 A 、B、C,则△ ABC 的面积为 __________ .6.如图,已知在平面直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD = 5.若矩形以每秒 2 个单位长度沿x 轴正方向做匀速运动,同时点P 从 A 点出发以每秒 1 个单位长度沿A→ B→C→ D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形 ABCD 也随之停止运动.(1)求点 P 从点 A 运动到点 D 所需的时间.(2)设点 P 运动时间为 t (秒)①当 t= 5 时,求出点P 的坐标.②若△ OAP 的面积为S,试求出S 与t之间的函数关系式(并写出相应的自变量 t 的取值范围).五、目标检测如图,二次函数y= ax2+ bx+ c 的图像经过 A (- 1, 0),B ( 3,0)两交点,且交y 轴于点 C.(1)求 b、 c 的值;(2)过点 C 作 CD ∥x 轴交抛物线于点 D ,点 M 为此抛物线的极点,试确立△ MCD 的形状.。

人教版九年级数学22章二次函数全章教案

人教版九年级数学22章二次函数全章教案

第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。

二次函数是描述现实世界变量之间关系的重要的数学模型。

二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。

二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。

新人教版九下二次函数全章优质教案[下学期]-12

新人教版九下二次函数全章优质教案[下学期]-12

26.1 二次函数(7)教学目标:1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。

3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。

重点难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。

教学过程:一、复习旧知1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)y=6x2+12x;(2)y=-4x2+8x-10[y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x -1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6))2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? (函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6)二、范例有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题;例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>O,所以O <x<1O。

围成的花圃面积y与x的函数关系式是y=x(20-2x)即y=-2x2+20x配方得y=-2(x-5)2+50所以当x=5时,函数取得最大值,最大值y=50。

因为x=5时,满足O<x<1O,这时20-2x=10。

所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大。

例2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。

将这种商品的售价降低多少时,能使销售利润最大?教学要点(1)学生阅读第2页问题2分析, (2)请同学们完成本题的解答; (3)教师巡视、指导;(4)教师给出解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。

新课标人教版初中数学九年级下册 第26章《二次函数》精品教案

新课标人教版初中数学九年级下册第26章《二次函数》精品教案第1课时 26.1 二次函数一、阅读教科书第4—6页上方 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13 时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( ) A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时二次函数y=ax2的图象与性质一、阅读课本:P6—8二、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.三、探索新知:画二次函数y=x2的图象.【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】描点,并连线由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.解:列表并填:y=x2的图象刚画过,再把它画出来.归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y=-x2,y=-12x2,y=-2x2的图象.列表:归纳:抛物线y=-x2,y=-12x2,y=-2x2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五、理一理122.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________.六、课堂训练 12.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________.2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本:P9—10 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________; 抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.第4课时二次函数y=a(x-h)2的图象与性质一、阅读课本:P10—11二、学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.描点并画图.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.第5课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第12页~第13页上方.二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.三、探索新知:画出函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.由图象归纳:2.把抛物线y =-12 x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12 (x +1)2-1.2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第14页~第15页上方.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.四、理一理知识点:五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点:第6课中“理一理知识点”的内容. 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为_______________,与x 轴的交点坐标____________.2.二次函数y =x 2+3x -4的顶点坐标为______________,对称轴为______________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________. 5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得: a_______0 b_______0 c_______0 △______0例4 已知二次函数y =x 2+kx +9.①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点.五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3). 求抛物线的解析式. 四、归纳用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c .2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k .3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标), 设两根式:y =a(x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.第10课时 用函数观点看一元二次方程Q PC B A一、阅读课本:第20~22页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx +c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x +1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第12课时实际问题与二次函数一、阅读课本:第27页探究3二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y=-14x2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是()A.3m B.2 6 m C.4 3 m D.9m 3.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.图①(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A (-134 ,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.(1)求点P 从点A 运动到点D 所需的时间.(2)设点P 运动时间为t (秒)①当t =5时,求出点P 的坐标.②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).五、目标检测如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于点C .(1)求b 、c 的值;(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.。

新人教版九年级数学下第二十六章二次函数教案

新人教版九年级数学下二次函数教案课题:26.1二次函数教学目标:1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、 理解二次函数的概念,掌握二次函数的形式。

3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、 会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。

2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?x让学生充分发表意见,提出各自看法。

二次函数全章教案(九年级数学下)

二次函数全章教案(九年级数学下)以下是查字典数学网为您引荐的二次函数全章教案(九年级数学下),希望本篇文章对您学习有所协助。

二次函数全章教案(九年级数学下)教学目的:(1)可以依据实践效果,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重先生参与,联络实践,丰厚先生的理性看法,培育先生的良好的学习习气教学重点:可以依据实践效果,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学难点:求出函数的自变量的取值范围。

教学进程:一、效果引新1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m) 1 2 3 4 5 6 7 8 9BC长(m) 12面积y(m2) 482.x的值能否可以恣意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,教员可提出效果,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少? y=x(20-2x)二、提出效果,处置效果1、引导先生看书第二页效果一、二2、观察概括y=6x2 d= n /2 (n-3) y= 20 (1-x)2以上函数关系式有什么共同特点? (都是含有二次项)3、二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.4、课堂练习(1) (口答)以下函数中,哪些是二次函数?(1)y=5x+1 (2)y=4x2-1(3)y=2x3-3x2 (4)y=5x4-3x+1(2).P3练习第1,2题。

五、小结表达二次函数的定义.六、作业:课本第14页习题1.2七、板书第二课时:26.1 二次函数(2)教学目的:1、使先生会用描点法画出y=ax2的图象,了解抛物线的有关概念。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1围。

(2教学重点:值范围。

教学难点:教学过程:一、问题引新1.矩形的另一边BC2.x3积y等于多少12、观察概括y=6x2以上3次函数,a4、课堂练习(1) (口答)(1)y=5x(3)y=2x3(2).P3五、小结六、作业:课本第七、板书第二课时:26.1 二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质。

教学过程:一、问题引新1,同学们可以回想一下,一次函数的性质是什么?2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?3.一次函数的图象是什么?二次函数的图象是什么?二、学习新知1、例1、画二次函数y=2x2与y=2x2的图象。

(有学生自己完成)解:(1)列表:在x的取值范围内列出函数对应值表:(2)描点 (3)连线找一名学生板演画图提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,)2、归纳:抛物线概念:像这样的曲线通常叫做抛物线。

抛物线与它的对称轴的交点叫做抛物线的顶点.顶点坐标(0,0)3、运用新知(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?(2).课件出示:在同一直角坐标系中, y=2x2与y=-2x2的图象,观察并比较(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。

当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______三、总结:函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。

四、课堂练习:练习册P 练习1、2、3、4。

五、作业: 1.画出函数y=1/2x2的图象?2.写出函数y=ax2具有哪些性质?第三课时:二次函数(3)教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书第四课时26.1 二次函数(4)教学目标:1.使学生能利用描点法画出二次函数y =a(x —h)2的图象。

2.让学生经历二次函数y =a(x -h)2性质探究的过程,理解其性质,理解二次函数y =a(x -h)2的图象与二次函数y =ax 2的图象的关系。

重点:会用画出二次函数y =a(x -h)2的图象,理解其性质,理解二次函数y =a(x -h)2的图象与二次函数y =ax 2的图象的关系。

难点:理解二次函数y =a(x -h)2的性质,理解二次函数y =a(x -h)2的图象与二次函数y =ax 2的图象的相互关系。

教学过程:一、提出问题导入新课1.在同一直角坐标系内,画出二次函数y =-12x 2,y =-12x 2-1的图象,并回答:(1)两条抛物线的位置关系。

(2)说出它们所具有的公共性质。

2.二次函数y =2(x -1)2的图象与二次函数y =2x 2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系? 二、学习新知1、探究新知:学生画出二次函数y =2(x -1)2和y =2x 2的图象,并加以观察 教师巡视、指导。

分组讨论,交流合作2.、学生汇报:函数y =2(x -1)2与y =2x 2的图象,开口方向、对称轴和顶点坐标;函数y =2(x 一1)2的图象可以看作是函数y =2x 2的图象怎样平移得到的。

师:由函数y =2x 2的性质总结函数y =2(x -1)2的性质 3.让学生完成以下填空:当x______时,函数值y 随x 的增大而减小;当x______时,函数值y 随x 的增大而增大;当x =______时,函数取得最______值y =______。

4、做一做在同一直角坐标系中画出函数y =2(x +1)2与函数y =2x 2的图象,并比较它们的联系和区别吗?让学生讨论、交流,举手发言,归纳:在y =2(x +1)2中,当x <-1时,函数值y 随x 的增大而减小;当x >-1时,函数值y 随x 的增大而增大;当x =一1时,函数取得最小值,最小值y =0。

4、课堂练习: P11练习1、2、3。

三、小结:谈谈本节课的收获和体会。

四、作业1.P19习题26.2 1(2)。

第五课时26.1 二次函数(5)教学目标:1.使学生理解函数y=a(x -h)2+k 的图象与函数y=ax 2的图象之间的关系。

2.会确定函数y=a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标。

3.让学生经历函数y=a(x -h)2+k 性质的探索过程,理解函数y=a(x -h)2+k 的性质。

重点:,理解函数y=a(x -h)2+k 的性质以及图象与y=ax 2的图象之间的关系, 难点:正确理解函数y=a(x -h)2+k 的图象与函数y=ax2的图象之间的关系以及函数y=a(x -h)2+k 的性质 一、提出问题导入新课1.函数y=2x 2+1的图象与函数y=2x 2的图象有什么关系?(函数y=2x 2+1的图象可以看成是将函数y=2x 2的图象向上平移一个单位得到的) 2.函数y=2(x -1)2+1图象与函数y=2(x -1)2图象有什么关系?函数y=2(x -1)2+1有哪些性质?这就是本节要学习得内容。

二、学习新知1、画图:在同一直角坐标系中画出函数y=2(x -1)2与y=2x 2y=2(x -1)2+1的图象,看看它们之间有何的关系? 在学生画函数图象时,教师巡视指导; 出示例3:你能发现函数y=2(x -1)2+1有哪些性质?教师可组织学生分组讨论,互相交流,让各组代表发言,函数y =2(x -1)2+1的图象可以看成是将函数y=2(x -1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x 2的图象向右平移1个单位再向上平移1个单位得到的。

当x <1时,函数值y 随x 的增大而减小,当x >1时,函数值y 随x 的增大而增大;当x=1时,函数取得最小值,最小值y=1。

2:出示4 (P10)3、课堂练习:不画图像说说函数y=2(x -1)2-2与y=2(x -1)2的异同点 三、小结1.通过本节课的学习,你学到了哪些知识?还存在什么困惑? 2.谈谈你的学习体会。

四、作业:1.巳知函数y =-12x 2、y =-12x 2-1和y =-12(x +1)2-1(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线y =-12x 2得到抛物线y =-12x 2-1和抛物线y =12(x +1)2-1;思考:函数y =2(x -1)2+k 的图象与函数y =2x 2的图象有什么关系?第六课时26.1 二次函数(6)教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。

难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。

教学过程:一、提出问题导入新课1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?具有哪些性质?2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?3.不画出图象,你能直接说出函数y=-1/2x2-6x+21的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了二、学习新知1、思考:像函数 y=-4(x-2)2+1很容易说出图像的顶点坐标,函数y=-1/2x2-6x+21能画成y=a(x-h)2+k 这样的形式吗?2、师生合作探索: y=-1/2x2-6x+21 变成 y=a(x-h)2+k的过程3、做一做(1).通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?在学生做题时,教师巡视、指导;让学生总结配方的方法;思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。

相关文档
最新文档