中考数学能力提高题___第二十三章_旋转(含答案)
九年级数学上册第二十三章旋转能力提升单元测试卷含解析新版新人教版

九年级数学上册第二十三章旋转(能力提升)考试时间:120分钟一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C【解析】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.3.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为( )A. 6 cmB. 4 cmC. (6-3cm36)cm【答案】C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解析】∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,AC=22AB BC-=22126-=63cm,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC-B′C′=63-6,过点B′作B′D⊥AC交AB于D,则B′D=33AB′=33×(63-6)=(6-23)cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q【答案】B【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解析】如图,连接N 和两个三角形的对应点;发现两个三角形的对应点到点N 的距离相等,因此格点N 就是所求的旋转中心;故选B .【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( ) A .2222⎛- ⎝⎭B .(1,0)C .2222⎛-- ⎝⎭ D .(0,1)- 【答案】A 【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【解析】四边形OABC 是正方形,且OA 1=,()A 0,1∴,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴由勾股定理得:点A 12A 12,122A ∴⎝⎭, 继续旋转则()2A 1,0,322A ⎝⎭,A 4(0,-1),A 522⎛ ⎝⎭,A 6(-1,0),A 722⎛ ⎝⎭,A 8(0,1),A 922⎝⎭,......,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.将一副三角板顶点重合,三角板ABC 绕点A 顺时针转动的过程中,∠EAB 度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB =AE )( )A .∠EAB =30° B .∠EAB =45°C .∠EAB =60°D .∠EAB =75°【答案】C【分析】由旋转的性质和平行线的判定依次判断,可求解.【解析】当∠EAB =30°时.∵∠CAB =90°,∴∠CAE =60°=∠E ,∴AC ∥DE ,故A 不合题意;当∠EAB =45°,∴∠BAD =45°=∠B ,∴BC ∥AD ,故B 不合题意;当∠EAB =60°时,三角尺不存在一组边平行.当∠EAB =75°时,如图,延长AB 交DE 于点M ,∴∠BAD =15°,∴∠EMA =∠D +∠MAB =45°=∠ABC ,∴BC ∥DE .故选C .【点睛】本题考查了旋转的性质,平行线的判定,熟练运用旋转的性质是本题的关键.7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【答案】A【分析】根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=14S正方形ABCD,即可得出选项.【解析】∵四边形ABCD、四边形OEFG是两个边长相等正方形,∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,∴∠BOC-∠COM=∠EOG-∠COM,即∠BOM=∠CON,∵在△BOM和△CON中BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOM≌△CON,∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=14S正方形ABCD,即不论旋转多少度,阴影部分的面积都等于14S正方形ABCD,故选A.【点睛】本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC 沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,3.(1345,3D.(1346,0)【答案】D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364 )即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【解析】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .3【答案】D【分析】将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB 的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.【解析】∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,∴△PAB的面积=12PB•AF=12×4×32=3,故选:D.【点睛】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于()A.22B.3 C.4 D.42【答案】C【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转的性质得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解析】∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE 绕点B 顺时针旋转90°可得到△BCG ,如图,∴BG =BE ,CG =AE ,∠GBE =90°,∠BAE =∠C =90°,∴点G 在DC 的延长线上,∵∠EBF =45°,∴∠FBG =∠EBG ﹣∠EBF =45°,∴∠FBG =∠FBE ,在△FBG 和△EBF 中,BF =BF ,∠FBG =∠FBE ,BG =BE∴△FBG ≌△FBE (SAS ),∴FG =EF ,而FG =FC +CG =CF +AE ,∴EF =CF +AE ,∴△DEF 的周长=DF +DE +CF +AE =CD +AD =2+2=4,故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质.11.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .1【答案】A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD 为等边三角形,然后进一步通过证明△BAE ≅△BDE 得出∠ABE=∠DBE ,根据等腰三角形“三线合一”可知BF ⊥AD ,且AF=DF ,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE=BF −EF 进一步计算即可得出答案.【解析】如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形“三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴AB=222222+=,∴AB=BD=AD=22,∴AF=2,∴BF=226AB AF-=,∵∠AED=90°,AE=DE,∴∠FAE=45°,∵BF⊥AD,∴∠FEA=45°,∴EF=AF=2,∴BE=BF−EF=62-,故选:A.【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.12.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.3-1 B.32C.3D.2【答案】A【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90° 得到CH,连接HE,延长HE交AB的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【解析】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90° 得到CH,连接HE,延长HE 交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小∵∠A= 30° ∴∠ABC=60°在Rt △CBK 中, BC= 2, ∴勾股定理得:CK =3,BK= = 1∴KJ = CK =3,所以BJ = KJ-BK=31-;BE 的最小值为31-.故选A.【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为__________.【答案】15°或45°.【解析】分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°.【点睛】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【答案】2﹣1.【解析】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.【考点】本题主要考查了以正方形旋转为载体的求线段长度.15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.【答案】(﹣2,﹣2).【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【考点】本题主要考查了以等边三角形和坐标系旋转为载体的求点的坐标.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.【答案】y=x﹣1.【解析】∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【考点】本题主要考查了以线段旋转和一次函数为载体的求解析式.17.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【解析】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120°,∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15.故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____.【答案】523+【分析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .首先证明∠CPB =90°,求出DT ,PT 即可解决问题.【解析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .∵四边形ABCD 是正方形,∴AC ⊥BD ,AE =EB ,∠EAM =∠EBN =45°,∵四边形EFGH 是正方形,∴∠MEN =∠AEB =90°,∴∠AEM =∠BEN ,∴△AEM ≌△BEN (ASA ),∴AM =BN ,EM =EN ,∠AME =∠BNE ,∵AB =BC ,EF =EH ,∴FM =NH ,BM =CN ,∵∠FMB =∠AME ,∠CNH =∠BNE ,∴∠FMB =∠CNH ,∴△FMB ≌△HNC (SAS ),∴∠MFB =∠NHC ,∵∠EFO +∠EOF =90°,∠EOF =∠POH ,∴∠POH +∠PHO =90°,∴∠OPH =∠BPC =90°, ∵∠DBP =75°,∠DBC =45°,∴∠CBP =30°,∵BC =AB =2,∴由勾股定理:PB =3,PR =12PB =32,RC =12, ∵∠RTD =∠TDC =∠DCR =90°,∴四边形TDCR 是矩形,∴TD =CR =12,TR =CD =AB =2, 在Rt △PDT 中,PD 2=DT 2+PT 2=2213()(2)52322++=+, 故答案为523+. 【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于常考题型.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.【答案】(1)、(2)答案见解析;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1.(2)利用网格特点和平移的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.(3)讨论:当OA2为平行四边形的边时,利用平行四边形的判定和点平移的坐标特征确定N点坐标;当OA2为平行四边形的对角线时,利用平行四边形的性质和点平移的坐标特征确定N点坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质和平行四边形的判定.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形 B.正五边形 C.菱形 D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【解析】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21、(8分)如图,点P 是正方形ABCD 内的一点,连接CP ,将线段CP 绕点C 顺时针旋转90°,得到线段CQ ,连接BP ,DQ .(1)如图a ,求证:△BCP ≌△DCQ ;(2)如图,延长BP 交直线DQ 于点E .①如图b ,求证:BE ⊥DQ ;②如图c ,若△BCP 为等边三角形,判断△DEP 的形状,并说明理由.【答案】(1)证明见试题解析;(2)①证明见试题解析;②△DEP 为等腰直角三角形.【分析】:(1)由旋转的性质得到∠BCP =∠DCQ ,即可证明△BCP ≌△DCQ ;(2)①由全等的性质和对顶角相等即可得到答案;②由等边三角形的性质和旋转的性质求出∠EPD =45°,∠EDP =45°,即可判断△DEP 的形状.【解析】(1)∵∠BCD =90°,∠PCQ =90°,∴∠BCP =∠DCQ ,在△BCP 和△DCQ 中,∵BC =CD ,∠BCP =∠DCQ ,PC =QC ,∴△BCP ≌△DCQ ;(2)①如图b , ∵△BCF ≌DCQ , ∴∠CBF=∠EDF, 又∠BFC =∠DFE ,∴∠DEF =∠ BCF =90°,∴BE ⊥DQ②∵△BCP 为等边三角形,∠BCP =60°,∴∠PCD =30°,又CP =CD ,∠CPD =∠CDP =75° , 又∠BPC =-60° ,∠CDQ =60°,∴∠EPD =45°,∠EDP =45°,∴△DEP 为等腰直角三角形.【考点】1.四边形综合题;2.正方形的性质;3.旋转的性质;4.全等三角形的判定与性质;5.综合题.22.(8分)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【解析】(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE =3,由旋转的性质可得:CF=CA =2,CE=CG =3,∠ACG =∠ECF =30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =()2230330236036012πππ⨯⨯-=;故答案为:12π; ②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1,∴13,22FH EH ==,∴CH =13222-=, 设OH=x ,则32OC x =-,222222334OE EH OH x x =+=+=+⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=. 【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.23.(8分)如图,正方形ABCD 中,点P 从点A 出发沿AD 边向点D 运动,到达点D 停止.作射线CP ,将CP 绕着点C 逆时针旋转45°,与AB 边交于点Q ,连接PQ(1)画图,完善图形.(2)三条线段DP ,PQ ,BQ 之间有无确定的数量关系?请说明理由.(3)过点C 作CH PQ ⊥于H .若线段CP 的最大值为4,求点H 运动的路径长.【解析】(1)画图,如图1.(2)DP ,PQ ,BQ 之间有确定的数量关系,PQ DP BQ =+.理由如下:如图1,∵ABCD 是正方形,∴可将DCP ∆绕点C 逆时针旋转90°到BCM ∆. ∴DCP BCM ∆∆≌,90PCM ∠=︒.∴DP BM =,CP CM =,190D ∠=∠=︒.∴Q ,B ,M 在同一条直线上.∵45PCQ ∠=︒,∴45MCQ ∠=︒.∴PCQ MCQ ∠=∠.∵CQ CQ =,∴()SAS PCQ MCQ ∆∆≌.∴PQ MQ =. ∴PQ DP BQ =+.(3)如图2,由(2),2M ∠=∠.∵3190∠=∠=︒,∴(AAS)PCH MCB ∆∆≌.∴CH CB =.当点P 还在点A 处时,CP 是正方形的对角线,此时最长.即正方形的对角线为4.∴正方形的边长22CB =∴22CH =当点P 从A 到点D 时,点H 从点B 沿圆弧到点D ,圆心角90BCD ∠=︒.∴点H 运动的路径长为1224CB ππ⨯⋅=.24.(8分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).【答案】(1)点D 的坐标为()633,3;(2)点D 的坐标为618,55⎛⎫ ⎪⎝⎭;(3)点E 的坐标为()12,8. 【分析】(1) 过点D 作DG x ⊥轴于,G 根据已知条件可得出AD=6,再直角三角形ADG 中可求出DG ,AG 的长,即可确定点D 的坐标.(2) 过点D 作DG x ⊥轴于,G DH AE ⊥于H 可得出,GADH HA DG ==,根据勾股定理得出AE 的长为10,再利用面积公式求出DH ,从而求出OG,DG 的长,得出答案(3) 连接AE ,作EG x ⊥轴于G ,由旋转性质得到,DAE AOC AD AO ∠∠==,从而可证AEG AED AAS ≌(),继而可得出结论.【解析】(1)过点D 作DG x ⊥轴于,G ,如图①所示:点6,0A (),点0,8B ().6,8OAOB ∴==, 以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,6,30,8AD AO OAD DE OB α∴∠︒======,在Rt ADG 中,13,3332DG AD AG DG ==== 633OG OA AG ∴--==∴点D 的坐标为()633,3; (2)过点D 作DG x ⊥轴于,G DH AE ⊥于H ,如图②所示:则,GADH HA DG ==, 8,90DE OB ADE AOB ∠∠︒====,22226810AE AD DE ∴++===, 1122AE DH AD DE ⨯⨯=,6824105AD DE DH AE ⨯⨯∴===, 246655OG OA GA OA DH ∴---====,22222418655DG AD AG ⎛⎫-=-= ⎪⎝⎭=, ∴点D 的坐标为618,55⎛⎫ ⎪⎝⎭; (3)连接AE ,作EG x ⊥轴于G ,如图③所示:由旋转的性质得:,DAE AOC AD AO ∠∠==,OAC ADO ∴∠∠=,DAE ADO ∴∠∠=,//AE OC ∴,GAE AOD ∴∠∠=,DAE GAE ∴∠∠=,在AEG △和AED 中,90AGE ADE GAE DAE AE AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,AEG AED AAS ∴≌(), 6,8AG AD EG ED ∴====,12OG OA AG ∴+==,∴点E 的坐标为()12,8.【点睛】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.。
2021年九年级数学上册第二十三章《旋转》提高卷(答案解析)

一、选择题1.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限B .第三象限C .第四象限D .第二或第四象限D解析:D【分析】根据旋转的性质,以原点为中心,将点P (3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限.【详解】如图,点P (3,4)按逆时针方向旋转90°,得到点1Q ,按顺时针方向旋转90°,得到点2Q ,得点Q 所在的象限为第二、四象限.故选:D .【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论. 2.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°A解析:A【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.3.下列四个图案中,是中心对称图形的是( )A .B .C .D .B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B 中的图形是中心对称图形,而A 、C 和D 中的图形不是中心对称图形.故选:B .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个C解析:C【分析】 证明△BO′A ≌△BOC ,又∠OBO′=60°,所以△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S 四边形AOBO′=S △AOO′+S △OBO′=12×3×4+34×42=6+43,故结论④错误. 【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B ,AB=BC ,∴△BO′A ≌△BOC ,又∵∠OBO′=60°,∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B ,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故④错误;故选:C.【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.5.如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针转90︒,则旋转后点A的对应点A'的坐标是()A.(-1,3)B.(3,-1)C.(31-,)D.(-2,1)C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222==132AO OE--∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=3,∴A′(-3,1),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90º,则旋转后点D的对应点D的坐标是( )A.(-2,0) B.(-2,10) C.(2,10)或(-2,0) D.(10,2)或( -2,10)C解析:C【分析】根据题意,分顺时针和逆时针旋转两种情况解答即可.【详解】解:由题意,AB=BC=5,BD=5﹣3=2,∠B=90°,若把△CDB顺时针旋转90º,则点D在x轴的负半轴上,O D=BD=2,所以点D坐标为(﹣2,0);若把△CDB逆时针旋转90º,则点D到x轴的距离是5+5=10,到y轴的距离是2,∴点D的坐标为(2,10),综上,旋转后点D的对应点D的坐标是(2,10)或(-2,0),故选:C.【点睛】本题考查坐标与图形变化-旋转、正方形的性质,熟练掌握旋转的性质,分顺时针和逆时针旋转两种情况是解答的关键.7.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1)A解析:A【解析】 试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称8.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A 3B .2C .1D 2A解析:A【解析】 试题分析:由题意可知:∠A=60°,AC=EC ,所以△ACE 是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF ,所以△CBF 是等边三角形,所以∠CBF=60°, ∠FBE=60°+30°=90°, △BEF 是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,21213-=A .考点:1.旋转性质;2.直角三角形性质.9.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是( )A.22B.4 C.23D.不能确定C解析:C【分析】依据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=4,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=1CD=2,2∴22-=,4223∴DQ的最小值是3故选:C.【点睛】此题考查旋转的性质,解题关键在于掌握对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.10.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4C.m=6,n=4 D.m=6,n=-4B解析:B试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称二、填空题11.已知点(,2)A m m 在直线3y x 上,则点A 关于原点对称点B 的坐标为______.【分析】先由点在直线上求出m 的值然后根据关于原点对称的点的坐标特点:横纵坐标均互为相反数解答即可【详解】解:∵点在直线上∴2m=m+3∴m=3∴点A 坐标是(36)∴点(36)关于原点对称的点的坐标为 解析:(3,6)--【分析】先由点(,2)A m m 在直线3y x 上求出m 的值,然后根据关于原点对称的点的坐标特点:横纵坐标均互为相反数解答即可. 【详解】解:∵点(,2)A m m 在直线3y x 上,∴2m =m +3,∴m =3,∴点A 坐标是(3,6),∴点A (3,6)关于原点对称的点B 的坐标为(﹣3,﹣6).故答案为:(﹣3,﹣6).【点睛】本题考查了一次函数图象上点的坐标特点和关于原点对称的点的坐标特征,属于基本题型,熟练掌握基本知识是解题的关键.12.如图,将ABC 绕点A 逆时针旋转得到AB C ''△.若B '落到BC 边上,50B ∠=︒,则CB C ''∠的度数为______. 80【分析】由旋转的性质可得AB=AB ∠ABC=50°再根据据等腰三角形的性质得到∠B=∠BBA=50°最后根据平角的定义即可解答【详解】解:由旋转的性质可得:AB=AB ∠ABC=50°∵AB=AB解析:80【分析】由旋转的性质可得AB=AB',∠AB' C'=50°,再根据据等腰三角形的性质得到∠B=∠BB'A=50°,最后根据平角的定义即可解答.解:由旋转的性质可得:AB=AB',∠AB' C'=50°.∵AB=AB',∴∠B=∠BB'A=50°.∵∠BB'A+∠AB' C'+∠CB' C' =180°.∴∠CB'C'=180°-(∠BB'A+∠AB' C')=80°.故答案为80°.【点睛】本题主要考查的是旋转的性质、等腰三角形的性质,灵活运用旋转的性质是解答本题的关键.13.如图,点O是等边△ABC内一点,∠AOB=112°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为______________度时,△AOD是等腰三角形?112°或124°或136°【分析】由题意可得△COD是等边三角形进而可得∠CDO=∠COD=60°然后分三种情况根据等腰三角形的性质和三角形的内角和定理建立方程求解即可【详解】解:∵将△BOC绕点解析:112°或124°或136°【分析】由题意可得△COD是等边三角形,进而可得∠CDO=∠COD=60°,然后分三种情况,根据等腰三角形的性质和三角形的内角和定理建立方程求解即可.【详解】解:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∠ADC=α,∴△COD是等边三角形.∴∠CDO=∠COD=60°,①若AO=AD,则∠AOD=∠ADO,∵∠AOD=360°﹣112°﹣60°﹣α=188°﹣α,∠ADO=α﹣60°,∴188°﹣α=α﹣60°,解得:α=124°;②若OA=OD,则∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(188°﹣α+α﹣60°)=52°,∴α﹣60°=52°,∴α=112°;③若OD=AD,则∠OAD=∠AOD.∵∠AOD=188°﹣α,∠OAD=()180602α︒--︒=120°﹣2α,∴188°﹣α=120°﹣2,解得:α=136°. 综上所述:当α为112°或124°或136°时,△AOD 是等腰三角形.故答案为:112°或124°或136°.【点睛】本题考查了等边三角形的判定和性质、旋转的性质、等腰三角形的性质以及三角形的内角和定理等知识,全面分类、熟练掌握上述知识是解题的关键.14.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180),如果EF ⊥AB ,那么n 的值是_______.135【分析】画出旋转后的图象满足EF ⊥AB 然后根据旋转的性质和三角板的角度去求出旋转角的度数【详解】解:①如图延长EF 交AB 于H ∵EF ⊥AB ∠A =45°∴∠ACH =45°∴∠ACE =135°∴n =解析:135【分析】画出旋转后的图象满足EF ⊥AB ,然后根据旋转的性质和三角板的角度去求出旋转角的度数.【详解】解:①如图,延长EF 交AB 于H ,∵EF ⊥AB ,∠A =45°,∴∠ACH =45°,∴∠ACE =135°,∴n =135;②如图,∵EF ⊥AB ,∠A =45°,∴∠ACE =45°,∴n =360﹣45=315,∵0<n <180,∴n =315不合题意舍去,故答案为:135.【点睛】本题考查旋转的性质,解题的关键是利用旋转的性质和三角板的角度去求解,需要考虑多种情况.15.如图,在△ABC 中,∠C =90°,AC =2cm ,AB =3cm ,将△ABC 绕点B 顺时针旋转60°得到△FBE ,则点E 与点C 之间的距离是_________cm .【解析】试题 解析:5【解析】试题连接EC ,即线段EC 的长是点E 与点C 之间的距离,在Rt △ACB 中,由勾股定理得:2222325AB AC -=-=cm ), ∵将△ABC 绕点B 顺时针旋转60°得到△FBE ,∴BC=BE ,∠CBE=60°,∴△BEC 是等边三角形,∴EC=BE=BC=5cm.16.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)【分析】先根据正方形的性质得到CD=1∠CDA=90°再利用旋转的性质得CF=根据正方形的性质得∠CFE=45°则可判断△DFH 为等腰直角三角形从而计算CF-CD 即可【详解】∵四边形ABCD 为正方形21【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得2,根据正方形的性质得∠CFE=45°,则可判断△DFH 为等腰直角三角形,从而计算CF-CD 即可.【详解】∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置,使得点D 落在对角线CF 上,∴2,∠CFDE=45°,∴△DFH 为等腰直角三角形,∴2-1.2-1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.17.将点P (-2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是______【分析】首先利用平移变化规律得出P1(13)进而利用关于原点对称点的坐标性质得出P2的坐标【详解】∵点P (-23)向右平移3个单位得到点P1∴P1(13)∵点P2与点P1关于原点对称∴P2的坐标是:解析:()1,3--【分析】首先利用平移变化规律得出P 1(1,3),进而利用关于原点对称点的坐标性质得出P 2的坐标.【详解】∵点P (-2,3)向右平移3个单位得到点P 1,∴P1(1,3),∵点P2与点P1关于原点对称,∴P2的坐标是:(-1,-3).【点睛】此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.18.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.2+【详解】过点E作EM⊥BD于点M如图所示:∵四边形ABCD为正方形∴∠BAC=45°∠BCD=90°∴△DEM为等腰直角三角形∵BE平分∠DBCEM⊥BD∴EM=EC=1cm∴DE=EM=cm由解析:2+2【详解】过点E作EM⊥BD于点M,如图所示:∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE2EM2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF22cm.故答案为219.如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为_____.2【分析】过点E作EM⊥BD于点M则△DEM为等腰直角三角形根据角平分线以及等腰直角三角形的性质即可得出ME的长度再根据正方形以及旋转的性质即可得出线段BF的长【详解】过点E作EM⊥BD于点M如图所解析:2【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【详解】过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM2,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x22﹣x),解得x=2﹣2,∴EM=2﹣2,由旋转的性质可知:CF=CE=22,∴BF=BC+CF=2﹣2=2.故答案为:2【点睛】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段CF 的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.20.如图,将边长为1的正三角形AOP 沿x 轴正方向作无滑动的连续反转,点P 依次落在点1P ,2P ,32020P P ⋅⋅⋅的位置,则点2020P 的坐标为______. 【分析】根据图形的翻转分别得出的横坐标再根据规律即可得出各个点的横坐标进一步得出答案即可【详解】解:由题意可知的横坐标是1的横坐标是25的横坐标是4的横坐标是依此类推下去的横坐标是2017的横坐标是解析:(2020,0)【分析】根据图形的翻转,分别得出1P 、2P 、3P ⋯的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.【详解】解:由题意可知1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5⋯依此类推下去,2017P 、2018P 的横坐标是2017,2019P 的横坐标是2018.5,2020P 的横坐标是2020,2020P ∴的坐标是(2020,0),故答案为(2020,0).【点睛】本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出1P 、2P 、3P ⋯的横坐标,得出规律是解答此题的关键.三、解答题21.在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.解析:(1)图见解析,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)P1的坐标为(n,﹣m);(3)见解析【分析】(1)依据点(0,0)为旋转中心,将△ABC顺时针转动90°,即可得到△A1B1C1;(2)依据旋转前后坐标的变化规律,即可得到对应点P1的坐标;(3)依据中心对称的性质,即可得到△ABC关于点O的中心对称图形△A2B2C2.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC上有一点P(m,n),则对应点P1的坐标为(n,﹣m).(3)如图所示,△A2B2C2即为所求.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?解析:(1)旋转中心:点A,旋转角度:90°或270°;(2)DE= 3;(3)BE⊥DF.【分析】先根据正方形的性质得到:△AFD≌△AEB,从而得出等量关系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋转中心和旋转角度.这些等量关系即可求出DE=AD-AE=7-4=3;BE⊥DF.【详解】解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为:90°或270°;(2)DE=AD-AE=7-4=3;(3)BE⊥DF ;延长BE交DF于点G由旋转△ADF≌△ABE∴∠ADF=∠ABE又∵∠DEG=∠AEB∴∠DGE=∠EAB=90°∴BE⊥DF.【点睛】本题考查旋转的性质和正方形的性质,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点——旋转中心;②旋转方向;③旋转角度.23.如图,已知△ABC 的顶点均在格点上,A (1,-4),B (5,-4),C (4,-1) 以原点O 为对称中心,画出△ABC 关于原点O 对称的△111A B C ,并写出点1A ,1B ,1C 的坐标.解析:画图见详解;A 1(-1,4),B 1(-5,4),C 1(-4,1).【分析】根据网格结构找出点A 、B 、C 关于坐标原点O 的对称点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.【详解】解:△A 1B 1C 1如图所示;A 1(-1,4),B 1(-5,4),C 1(-4,1).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 24.点O 为直线AB 上一点,过点O 作射线OC ,使65BOC ∠=︒,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,求MOC ∠的度数;(2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是MOB ∠的角平分线,求旋转角BON ∠的度数,CON ∠的度数;(3)将三角板MON 绕点O 逆时针旋转至图3时,5NOC ∠=︒,求AOM ∠.解析:(1)25° (2)40°,25° (3)20°.【分析】(1)直接利用角的和差计算即可;(2)先根据角平分线的性质求得∠MOB=130°,再根据旋转角的定义BON ∠,然后∠BOC-∠BON 即可求得CON ∠;(3)先求出∠BON ,然后利用平角的性质和角的和差即可解答.【详解】(1)906525MOC MON BOC ∠=∠-∠=︒-︒=︒,故答案为25°;(2)∵OC 是MOB ∠的角平分线,∴2265130MOB BOC ∠=∠=⨯︒=︒,∴旋转角1309040BON MOB MON ∠=∠-∠=︒-︒=︒,654025CON BOC BON ∠=∠-∠=︒-︒=︒,故答案为40°,25°;(3)∵5NOC ∠=︒,65BOC ∠=︒,∴70BON NOC BOC ∠=∠+∠=︒,∵点O 为直线AB 上一点,∴180AOB ∠=︒,∵90MON ∠=︒,∴180907020AOM AOB MON BON ∠=∠-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了角平分线的定义、旋转角的性质、直角的性质和角的和差等知识点,考查知识点较多,灵活运用所学知识成为解答本题的关键.25.(1)如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,求证:EF BE FD =+;(2)如图,四边形ABCD 中,90≠︒∠BAD ,AB AD =,180B D ∠+∠=︒,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么关系时,仍有EF BE FD =+,说明理由.解析:(1)见解析;(2)2BAD EAF ∠∠=,见解析【分析】(1)根据旋转的性质可以得到△ADG ≌△ABE ,则GF=BE+DF ,只要再证明△AFG ≌△AFE 即可.(2)延长CB 至M ,使BM=DF ,连接AM ,证△ADF ≌△ABM ,再证△FAE ≌△MAE ,即可得出答案;【详解】(1)证明:把ABE △绕点A 逆时针旋转90°至ADG ,连结EF ,如图所示:则ADG ABE △△≌.∴AG AE =,DAG BAE ∠∠=,DG BE =,又∵45EAF ∠=︒,∴45DAF BAE EAF ∠+∠=∠=︒,∴GAF FAE ∠=∠,在GAF 和FAE 中,AG AE GAF FAE AF AF =⎧⎪∠=∠⎨⎪=⎩,∴)(AFG AFE SAS ≌,∴GF EF =,又∵DG BE =,∴GF BE DF =+,∴BE DF EF +=;(2)2BAD EAF ∠∠=.理由如下:如图所示,延长CB 至M ,使BM DF =,连接AM .∵180ABC D ∠+∠=︒,180ABC ABM ∠+∠=︒,∴D ABM ∠=∠,在ABM 和ADF 中,AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩,∴)(ABM ADF SAS ≌, ∴AF AM =,DAF BAM ∠∠=,∵2BAD EAF ∠∠=,∴DAF BAE EAF ∠+∠=∠,∴EAB BAM EAM EAF ∠+∠=∠=∠,在FAE 和MAE 中,AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩,∴)(FAE MAE SAS ≌,∴EF EM BE BM BE DF ==+=+,即EF BE DF =+.【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质等知识;作出合适的辅助线构建全等三角形是解决问题的关键.26.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由.解析:(1)旋转角的度数为90°;(2)AE 与BD 互相垂直,理由见详解.【分析】(1)由题意易得BC=AC ,则有∠CBA=∠CAB=45°,进而问题可求解;(2)由(1)可得∠DBC=∠EAC ,如图∠1=∠2,∠2+∠DBC=90°,进而问题可求解.【详解】解:(1)由将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △可得:BCD ACE ≌,∴BC=AC ,∵45ABC ADC ∠=∠=︒,∴∠CBA=∠CAB=45°,∴∠ACB=90°,即旋转角度为对应边的夹角,故旋转角为∠ACB=90°;(2)AE ⊥BD ,理由如下:如图所示,由(1)可得:BCD ACE ≌,∴∠DBC=∠EAC ,∵∠ACB=90°,∴∠2+∠DBC=90°,∵∠1=∠2,∴∠1+∠EAC=90°,∴BD ⊥AE .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.27.如图,P 是正方形ABCD 内一点,△ABP 绕着点B 旋转后能到达△CBE 的位置. (1)旋转的角度是多少度?(2)若BP =3cm ,求线段PE 的长.解析:(1)90,(2)2cm .【分析】(1)找出对应边AB、BC的夹角的度数就是旋转角的度数;(2)根据旋转变换的性质可知BP=BE,∠PBE=∠ABC,再根据勾股定理列式求解即可得到PE的长度.【详解】解:(1)∵△ABP绕着点B旋转后能到达△CBE的位置,∴∠ABC为旋转角.∵四边形ABCD是正方形,∴∠ABC=90°,即旋转的角度是90度;(2)∵△ABP绕着点B旋转后能到达△CBE的位置,∴BP=BE=3cm,∠PBE=∠ABC=90°,∴PE===cm.【点睛】本题主要考查了旋转变换的性质,根据对应边的夹角的度数就等于旋转角的度数求解是解题的关键.28.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?解析:(1)(10+x);10x;(2)10【分析】(1)根据获利=原利润+涨价即可得出答案;根据销售单价每涨价1元,月销售量就减少10千克即可得出月销售量减少的数量;(2)利用“每千克水产品获利×月销售量=总利润”列出方程,解方程即可求出结果.【详解】解:(1)(10+x),10x;(2)由题意,得:(10+x)(500﹣10x)=8000;化简为:x2﹣40x+300=0;解得:x1=10,x2=30.∵“薄利多销”,∴x=30不符合题意,舍去.答:销售单价应涨价10元.【点睛】本题考查了一元二次方程的应用,正确表示出月销售量是解题的关键.。
九年级数学上册第二十三章旋转必须掌握的典型题(带答案)

九年级数学上册第二十三章旋转必须掌握的典型题单选题1、如图,将△ABC绕点A逆时针旋转40°得到△ADE,AD与BC相交于点F,若∠E=80°且△AFC是以线段FC 为底边的等腰三角形,则∠BAC的度数为()A.55°B.60°C.65°D.70°答案:B分析:由旋转的性质得出∠E=∠C=80°,∠BAD=40°,由等腰三角形的性质得出∠C=∠AFC=80°,求出∠CAF=20°,根据∠BAC=∠BAD+∠CAF即可得出答案.解:∵将△ABC绕点A逆时针旋转40°得到△ADE,且∠E=80°,∴∠E=∠C=80°,∠BAD=40°,又∵△AFC是以线段FC为底边的等腰三角形,∴AC=AF,∴∠C=∠AFC=80°,∴∠CAF=180°−∠C−∠AFC=180°−80°−80°=20°,∴∠BAC=∠BAD+∠CAF=40°+20°=60°,故选:B.小提示:本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.2、如图,△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°−12αC.180°−32αD.32α答案:C分析:根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.解:∵将△ABC绕点C顺时针旋转得到△EDC,且∠BCD=α∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故选:C.小提示:本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.3、如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°答案:C分析:由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.小提示:本题考查了旋转的性质,掌握旋转的性质是本题的关键.4、下列四个银行标志中,是中心对称图形的标志是()A.B.C.D.答案:A分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此即可判断.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.小提示:本题主要考查了中心对称图形定义,关键是找出对称中心.5、如图,在ΔABC中,AB=2,BC=3.6,∠B=60∘,将ΔABC绕点A顺时针旋转度得到ΔADE,当点B的对应点D 恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6答案:A分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.由旋转的性质可知,AD=AB,∵∠B=60∘,AD=AB,∴ΔADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选A.小提示:此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、如图,将ΔABC绕点C顺时针旋转得到ΔDEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC答案:D分析:利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出∠A=∠EBC,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB判断选项B不一定正确即可.解:∵ΔABC 绕点C 顺时针旋转得到ΔDEC ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180°−∠ACD 2;∠EBC=∠BEC=180°−∠BCE 2,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB 不一定等于900,∴选项B 不一定正确;故选D .小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7、如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .AD//EF,AB//GFB .BO =GOC .CD =HE,BC =GH D .DO =HO答案:D分析:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.A .∵AD 与EF 关于点O 成中心对称,∴AD //EF ,同理可得AB //GF ,正确;B .∵点B 与点G 关于点O 成中心对称,∴BO =GO ,正确;C .∵CD 与HE 关于点O 成中心对称,∴CD=HE,同理可得BC=GH,正确;D.∵点D与点E关于点O成中心对称,∴DO=EO,∴DO=HO错误,故选:D.小提示:本题考查中心对称图形的性质,是基础考点,掌握相关知识是解题关键.8、某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是().A.B.C.D.答案:D解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D小提示:本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.填空题11、在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=________.答案:12分析:根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可求出a和b的值,从而求出结论.解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=-6,b=-2∴ab=12所以答案是:12.小提示:此题考查的是根据两点关于原点对称,求参数的值,掌握关于原点对称的两点坐标关系是解题关键.12、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13、如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AB、CD于E、F,那么图中阴影部分面积为___cm2.答案:7分析:先根据矩形的性质可得OA=OC,AB∥CD,S▭ABCD=28cm2,再根据平行线的性质可得∠OAE=∠OCF,∠OEA=∠OFC,然后根据三角形全等的判定定理证出△AOE≅△COF,根据全等三角形的性质可得S△AOE=S△COF,由此即可得.解:∵四边形ABCD是矩形,且长、宽分别为7cm、4cm,∴OA=OC,AB∥CD,S▭ABCD=7×4=28(cm2),∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE和△COF中,{∠OAE=∠OCF∠OEA=∠OFCOA=OC,∴△AOE≅△COF(AAS),∴S△AOE=S△COF,则图中阴影部分面积为S△AOE+S△DOF=S△COF+S△DOF=S△COD=14S▭ABCD=7cm2,所以答案是:7.小提示:本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握三角形全等的判定与性质是解题关键.14、如图,△ABC与△DEF关于O点成中心对称.则AB________DE,BC//________,AC=________.答案: = EF DF分析:利用关于某点对称的图形全等,这样可以得出对应边与对应角之间的关系,进而解决.∵△ABC与△DEF关于O点成中心对称,∴△ABC≌△DEF,∴AB=DE,AC=DF,∠ABC=∠DEF∴∠CBO=∠FEO,∴BC//EF.所以答案是:=,EF,DF.小提示:此题主要考查了关于某点对称的图形之间的关系,涉及全等三角形,难度不大,熟练掌握中心对称图形的定义是解题的关键.15、以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.答案:(2,﹣1)分析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),所以答案是:(2,﹣1).小提示:此题考查中心对称图形的顶点在坐标系中的表示.解答题16、如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.答案:(1)PM=PN,PM⊥PN(2)△PMN是等腰直角三角形,理由见解析(3)492分析:(1)利用三角形的中位线定理得出PM=12CE,PN=12BD,进而得出BD=CE,即可得出结论,再利用三角形的中位线定理得出PM∥CE,再得出∠DPM=∠DCA,最后利用互余得出结论;(2)先判断出△ABD≌△ACE(SAS),得出BD=CE,同(1)的方法得出PM=12CE,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)由等腰直角三角形可知,当PM最大时,△PMN面积最大,而BD的最大值是AB+AD=14,即可得出结论.(1)解:∵P、N分别为DC、BC的中点,∴PN∥BD,PN=12BD,∵点M、P分别为DE、DC的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,PM∥CE,∴∠DPN=∠ADC,∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN.所以答案是:PM=PN,PM⊥PN.(2)解:△PMN是等腰直角三角形,理由如下.由旋转可知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,由三角形的中位线定理得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法可得,PM∥CE,PN∥BD,∠DPM=∠DCE,∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC,=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.(3)解:由(2)可知,△PMN是等腰直角三角形,PM=PN=12BD,∴当PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.小提示:本题综合考查了三角形全等的判定与性质、旋转的性质及三角形的中位线定理,熟练应用相关知识是解决本题的关键.17、如图,在等边△ABC中,D为BC边上一点,连接AD,将△ACD沿AD翻折得到△AED,连接BE并延长交AD的延长线于点F,连接CF.(1)若∠CAD=20°,求∠CBF的度数;(2)若∠CAD=a,求∠CBF的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.答案:(1)20°;(2)∠CBF=α;(3)AF=CF+BF,理由见解析分析:(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠ABE=∠AEB=1(180°−∠BAE)=80°,∠CBF=∠ABE-2∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴∠ABE=∠AEB=1(180°−∠BAE)=80°,2∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=α,AC=AE,∴∠BAE=∠BAC−∠EAD−∠CAD=60°−2α,AB=AE,∴∠ABE=∠AEB=12(180°−∠BAE)=60°+α,∴∠CBF=∠ABE−∠ABC=α;(3)AF=CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,{AE=AC∠EAF=∠CAF AF=AF,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.小提示:本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.18、马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′O与正方形ABCD的边长相等.在正方形A′B′C′O绕点O旋转的过程中,OA′与AB相交于点M,OC′与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的______”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.答案:(1)14,见解析(2)18,见解析分析:(1)只需要证明△MOB≌△NOC得到S△MOB=S△NOC,即可求解.(2)过A作AE⊥AC,交CD的延长线于E,证明△EAD≌△CAB得到S△ABC=S△ADE,AE=AC=6,则S△AEC=12×6×6=18S四边形ABCD =S△ACD+S△ABC=S△ACD+S△ADE=S△EAC=12AE⋅AC=18.(1)解:∵四边形ABCD是正方形,四边形OA′B′C′是正方形,∴AC⊥BD,OB=OC,∠OBM=∠OCN=45°,∠A′OC′=90°,∴∠BOC=∠A′OC′=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴S四边形OMBN =S△OBC=14S正方形ABCD.答案为:14;(2)过A作AE⊥AC,交CD的延长线于E,∵AE⊥AC,∴∠EAC=90°,∵∠DAB=90°,∴∠DAE=∠BAC,∵∠BAD=∠BCD=90°,∴∠ADC+∠B=180°,∵∠EDA+∠ADC=180°,∴∠EDA=∠B,∵AD=AB,在△ABC与△ADE中,{∠EAD=∠CABAD=AB∠EDA=∠B,∴△ABC≌△ADE(ASA),∴AC=AE,∵AC=6,∴AE=6,∴S△AEC=12×6×6=18,∴S四边形ABCD=18.小提示:本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.。
九年级数学上册第二十三章旋转笔记重点大全(带答案)

九年级数学上册第二十三章旋转笔记重点大全单选题1、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.2、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.4、以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是()A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位答案:D分析:根据旋转、平移和轴对称的定义进行分析即可.由旋转、平移和轴对称的性质可知:经过A、B、C的变化,图(1)均可得到图(2),经过D的变化不能得到图(2);故选:D小提示:本题主要考查了旋转、平移和轴对称的性质,熟练地掌握各个性质是解题的关键.5、如图,在平面直角坐标系中,OA1=OB1,∠A1OB1=120°,将ΔA1OB1绕点O顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120°的等腰三角形.第一次变化后得到等腰三角形A2OB2,点A1(1,0)的对应点为A2(−1,−√3);第二次变化后得到等腰三角形A3OB3,点A2的对应点为A3(−32,3√32);第三次变化后得到等腰三角形A4OB4,点A3的对应点为A4(4,0)⋯⋯依此规律,则第2022个等腰三角形中,点B2022的坐标是()A.(2022,0)B.(−2022,−2022√3)C.(−1011,1011√3)D.(−1011,−1011√3)答案:D分析:利用循环的规律,找到第2022个等腰三角形与第一个循环的图形的第几个位置相同,再根据第一个循环中的点坐标进行求值即可.解:由题意可知,旋转规律为4次一个循环,即第2022次为:505个循环余2,∴点B2022位置与B3相同,在第三象限,∵B3坐标为(−32,−3√32),∴点B2022坐标为(−20222,−2022√32),即为(−1011,−1011√3).故选:D.小提示:本题主要考查的是坐标系与几何图形的规律问题,准确找到循环规律是解题的关键.6、如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC答案:C分析:根据旋转的性质,对每个选项逐一判断即可.解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.小提示:本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.7、在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:A分析:先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x=0时,y=5,∴C(0,5);设新抛物线上的点的坐标为(x,y),∵原抛物线与新抛物线关于点C成中心对称,由2×0−x=−x,2×5−y=10−y;∴对应的原抛物线上点的坐标为(−x,10−y);代入原抛物线解析式可得:10−y=(−x)2−4⋅(−x)+5,∴新抛物线的解析式为:y=−x2−4x+5;故选:A.小提示:本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8、将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)答案:A分析:根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及OA长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点A′作x轴的垂线,垂足为C,如下图所示:由A的坐标为(1,√3)可知:OB=1,AB=√3,在RtΔAOB中,∠AOB=90°−∠A=60°,OA=2由旋转性质可知:ΔAOB≌ΔA′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°−∠A′OB′−∠AOB=60°,在ΔA′OC与ΔAOB中:{∠A′OC′=∠AOB=60°∠A′CO=∠ABO=90°OA′=OA∴ΔA′OC′≌ΔAOC(AAS),∴OC =OB =1,A ′C =AB =√3,∴此时点A 对应坐标为(−1,√3),当第二次旋转时,如下图所示:此时A 点对应点的坐标为(−2,0).当第3次旋转时,第3次的点A 对应点与A 点中心对称,故坐标为(−1,−√3).当第4次旋转时,第4次的点A 对应点与第1次旋转的A 点对应点中心对称,故坐标为(1,−√3). 当第5次旋转时,第5次的点A 对应点与第2次旋转的A 点对应点中心对称,故坐标为(2,0). 第6次旋转时,与A 点重合.故前6次旋转,点A 对应点的坐标分别为:(−1,√3)、(−2,0)、(−1,−√3)、(1,−√3)、(2,0)、(1,√3).由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A 点的对应点为(−1,√3).故选:A .小提示:本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.9、如图,点O 是等边三角形ABC 内一点,OA =2,OB =1,OC =√3,则ΔAOB 与ΔBOC 的面积之和为( )A .√34B .√32C .3√34D .√3答案:C分析:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,得到△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而求解.解:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴ΔBOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴ΔAOB与ΔBOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34.故选:C.小提示:本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将ΔAOB与ΔBOC的面积之和转化为S△BOC+S△BCD,是解题的关键.10、已知点P(m−3,m−1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.答案:D分析:先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.解:∵点P(m −3,m −1)关于原点的对称点P′在第四象限,∴点P 在第二象限,∴ {m −3<0m −1>0, 解得:1<m <3,故选:D .小提示:本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.填空题11、△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长度的范围是__________.答案:1<AD <7分析:延长AD 至E ,使DE =AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,得CE =AB ,再根据三角形的三边关系即可求解.解:延长AD 至E ,使DE =AD ,连接CE .在△ABD 和△ECD 中,{DE =AD∠ADB =∠CDE DB =DC,∴△ABD ≌△ECD (SAS ),∴CE =AB .在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <14,故1<AD<7.故答数为:1<AD<7.小提示:本题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12、如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.答案:√6+√2分析:连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,由正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,所以∠OC'E=45°,OA=OC'=AB=2,∠A=90°,根据勾股定理得到BE的长,从而得到BC'.解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,∴OB=2√2,OE=EC'=√2,在Rt△OBE中,由勾股定理得:BE=√OB2−OE2=√(2√2)2−(√2)2=√6,∴BC'=BE+EC'=√6+√2.所以答案是:√6+√2小提示:本题考查了旋转的性质、正方形的性质以及勾股定理,解题的关键是作辅助线构造特殊三角形.13、已知坐标系中点A(−2,a)和点B(b,3)关于原点中心对称,则a+b=__________.答案:-1分析:直接利用关于原点对称点的性质,得出a,b的值,即可得出答案.解:∵坐标系中点A(-2,a)和点B(b,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.所以答案是:-1.小提示:此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.答案:(1,-1)分析:由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)所以答案是:(1,-1)小提示:本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.15、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.解答题16、如图,已知等边△ABC中,点D、E、F分别为边AB、AC、BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你连结EN,并判断EN与MF有怎样的数量关系?点F是否在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M在点C右侧时,请你判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论:若不成立,请说明理由.答案:(1)相等,在,理由见解析;(2)成立,证明见解析;(3)成立.分析:(1)连接DE、DF、EF,NF,根据等边三角形的性质和三角形中位线的性质,先证得△DBF是等边三角形,可得△DMB≌△DNF,可得∠DBM=∠DFN,从而得到∠NFD+∠DFE=180°,再由△DMN是等边三角形,从而证得△DMF≌△DNE,得到EN=MF,即可求证;(2)连接DF,NF,EF,等边三角形的性质,可证得△DMB≌△DNF,得到BM=FN,∠DFN=∠FDB=60°,从而NF∥BD,再由EF是△ABC的中位线,可得EF∥BD,从而F在直线NE上,即可求证;(3)连接DF、DE,EF,根据等边三角形的性质和三角形中位线的性质,可得△DBF是等边三角形,从而证得△DNE≌△DMF,即可求证.解:(1)EN=MF,点F在直线NE上,理由如下:如图1,连接DE、DF、EF,NF,∴AB=AC=BC,∠ABC=60°,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴∠FDE=∠DFE=60°∵D、F分别是AB、BC的中点,∴BD=BF,∴△DBF是等边三角形,∴∠BDF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠BDN=∠BDF-∠BDN,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN,∵∠ABC=60°,∴∠DBM=120°,∴∠NFD=120°,∴∠NFD+∠DFE=120°+60°=180°,∴N、F、E三点共线,∴F在直线NE上;∴∠MDN=60°,DM=DN,∴∠FDE+∠NDF=∠MDN+∠NDF,∴∠MDF=∠NDE,在△DMF和△DNE中,∵DF=DE,∠MDF=∠NDE,DM=DN,∴△DMF≌△DNE,∴MF=NE,(2)成立,理由如下:如图2,连接DF,NF,EF,∵△ABC是等边三角形且D、F分别是AB、BC的中点,∴∠ABC=60°,BD=BF,∴△DBF是等边三角形,∴∠BDF=∠DBF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠FDM=∠BDF-∠FDM,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN=60°,BM=FN,∴∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,BF=12BC=12AB,∴EF∥BD,EF=12AB,∴F在直线NE上,BF=EF,∴MF=EN;(3)MF与EN相等的结论仍然成立,理由如下:如图3,连接DF、DE,EF,∵△ABC是等边三角形,∴AB=AC=BC,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴△DEF是等边三角形,∴∠FDE=60°,∵△DMN是等边三角形,∴∠MDN=∠FDE=60°,DM=DN,∴∠EDM+∠NDE=∠EDM+∠FDM,∴∠NDE=∠FDM,在△DNE和△DMF中,∵DE=DF,∠NDE=∠FDM,DN=DM,△DNE≌△DMF,∴MF=NE.小提示:本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,熟练掌握等边三角形的性质和判定,全等三角形的性质和判定是解题的关键.17、已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.答案:(1)见解析(2)∠DPQ大小不变,理由见解析(3)CP=AQ,证明见解析分析:(1)连接BD,由等边三角形的性质可得AC垂直平分BD,继而得出AB=BC=CD=AD,便可证明;(2)连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,可证明△APE是等边三角形,由等腰三角形三线合一证明∠APF=∠EPF,∠QPF=∠BPF,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE,QF = BF,即可证明.(1)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵点B,D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形;(2)当点Р在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠APE=∠BAC=60°=∠AEP,∴△APE是等边三角形,∴AP=EP=AE,∵PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB = PD,∠DPA =∠BPA,∴PQ = PD,∵PF⊥AB,∴∠QPF=∠BPF,∴∠QPF -∠APF=∠BPF -∠EPF,即∠QPA = ∠BPE,∴∠DPQ =∠DPA - ∠QPA=∠BPA-∠BPE = ∠APE= 60°;(3)AQ= CP,证明如下:∵AC = AB,AP= AE,∴AC - AP = AB–AE,即CP= BE,∵AP = EP,PF⊥AB,∴AF = FE,∵PQ= PD,PF⊥AB,∴QF = BF,∴QF - AF = BF–EF,即AQ= BE,∴AQ= CP.小提示:本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.18、如图所示的两个图形成中心对称,请找出它的对称中点.答案:见解析.分析:根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.小提示:本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.。
人教版九年级数学上册第23章 巧用旋转进行计算专项训练(包含答案)

巧用旋转进行计算类型之一利用旋转构造等腰三角形由旋转性质1:对应点到旋转中心的距离相等,可得对应点与旋转中心所构成的三角形是等腰三角形.1.如图1,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′相交于点O,则∠COA′的度数是( )图1A.50°B.60°C.70°D.80°2.如图2,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )图2A.90°-αB.αC.180°-αD.2α3.如图3,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C是由△ABC绕点C顺时针旋转得到的,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且点A,B′,A′在同一条直线上,则AA′的长为( )图3A.6 B.4 3 C.3 3 D.34.如图4,△COD是由△AOB绕点O顺时针旋转40°后得到的图形.若点C恰好落在AB 上,且∠AOD的度数为90°,则∠B的度数是________.图4类型之二利用旋转构造等腰直角三角形如果旋转角为90°,那么对应点与旋转中心构成的三角形是等腰直角三角形.5.如图5,将Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,连接BB′.若∠A′B′B=20°,则∠A的度数是________.图56.如图6,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.把△ADE以点A为中心顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于________.图6类型之三利用旋转构造等边三角形如果旋转角是60°,那么对应点与旋转中心构成的三角形是等边三角形.7.如图7所示,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n(n<90)度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n 的大小和图中阴影部分的面积分别为( )图7A.30,2 B.60,2 C.60,32D.60, 38.如图8所示,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C 逆时针旋转至△A′B′C的位置,使得点A′恰好落在AB上,连接BB′,则BB′的长为________.图89.如图9,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=________.图910.如图10,O是等边三角形ABC内一点,∠AOB=105°,∠BOC等于α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)求∠OAD的度数;(3)探究:当α为多少度时,△AOD是等腰三角形?图1011.如图11,在等边三角形ABC中,D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.图1112.请阅读下列材料:问题:如图12①,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC 的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边三角形ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1.求∠BPC的度数和正方形ABCD的边长.图121.B [解析] ∵在△ABC 中,∠ACB =90°,∠B =50°, ∴∠A =180°-∠ACB -∠B =40°. 由旋转的性质可知BC =B ′C , ∴∠B =∠BB ′C =50°.又∵∠BB ′C =∠A +∠ACB ′=40°+∠ACB ′, ∴∠ACB ′=10°,∴∠COA ′=∠OB ′C +∠ACB ′=∠B +∠ACB ′=60°.2.C [解析] 由题意可得,∠ABE =α,BE =BA ,∴∠BAE =∠E =12(180°-∠ABE)=12(180°-α)=90°-12α,∴∠BAC =90°-12α,∴∠CAD =∠BAC +∠BAE =180°-α,故选C.3.A [解析] ∵在Rt △ABC 中,∠ACB =90°,∠B =60°,∴∠CAB =30°.∵BC =2,∴AB =4.∵△A ′B ′C 由△ABC 绕点C 顺时针旋转得到的,其中点A ′与点A 是对应点,点B ′与点B 是对应点,且点A ,B ′,A ′在同一条直线上,∴AB =A ′B ′=4,AC =A ′C ,∠A ′B ′C =∠B =60°,∴∠A ′=30°.又∵AC =A ′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠A ′B ′C -∠CAA ′=60°-30°=30°,则∠ACB ′=∠B ′AC ,∴AB ′=B ′C =2,∴AA ′=2+4=6.4.60° [解析] 由旋转的性质,得∠AOC =∠BOD =40°,OA =OC ,则∠A =∠ACO =70°. 由∠AOD =90°,得∠BOC =∠AOD -(∠AOC +∠BOD)=10°.∴∠B =∠ACO -∠BOC =70°-10°=60°.5.65° [解析] ∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A ′B ′C ,∴△BCB ′是等腰直角三角形,∴∠CBB ′=45°.∴∠B ′A ′C =∠A ′B ′B +∠CBB ′=20°+45°=65°.由旋转的性质得∠A =∠B ′A ′C =65°.6.2 5 [解析] ∵DE =1,AD =3,∠D =90°,∴AE 2=AD 2+DE 2=32+12=10. 由旋转的性质得∠EAE ′=90°,AE =AE ′,∴EE ′2=AE 2+AE ′2=10+10=20,即EE ′=2 5.7.C [解析] ∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC =2, ∴∠B =60°,AB =2BC =4,AC =AB 2-BC 2=2 3. ∵△EDC 是由△ABC 绕点C 按顺时针方向旋转得到的, ∴CD =BC =2,∠CDE =∠B =60°. ∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°, ∴∠DFC =90°, 即DE ⊥AC ,∴DE ∥BC. ∵BD =BC =12AB =2,∴DF 是△ABC 的中位线,∴DF =12BC =12×2=1,CF =12AC =12×2 3=3,∴S 阴影=12DF ·CF =12×1×3=32.故选C.8. 3 [解析] ∵Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,∴A ′C =AC =1,AB =2,BC = 3.∵∠A =60°,∴△AA ′C 是等边三角形, ∴AA ′=12AB =1,∴A ′C =A ′B ,∴∠A ′CB =∠A ′BC =30°. ∵△A ′B ′C 是由△ABC 旋转而成的, ∴∠A ′CB ′=90°,BC =B ′C , ∴∠B ′CB =90°-30°=60°,∴△BCB ′是等边三角形,∴BB ′=BC = 3. 9.5 [解析] 连接BE.∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB =3,BC =4,∠ABC =30°, ∴∠BCE =60°,CB =CE ,AE =BD , ∴△BCE 是等边三角形, ∴∠CBE =60°,BE =BC =4,∴∠ABE =∠ABC +∠CBE =30°+60°=90°,∴AE=AB2+BE2=32+42=5.又∵AE=BD,∴BD=5.10.解:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BOC≌△ADC,∠OCD=60°,∴OC=CD,∴△OCD是等边三角形.(2)∵∠AOB=105°,∠BOC=α,∴∠AOC=360°-∠AOB-∠BOC=360°-105°-α.∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BCO≌△ACD,∴∠ADC=∠BOC=α.∴∠OAD=360°-∠AOC-∠OCD-∠ADC=360°-(360°-105°-α)-60°-α=45°.(3)∵由(1)知△COD是等边三角形,∴∠COD=60°.由(2)知∠OAD=45°.若△AOD是等腰三角形,则分以下三种情况讨论:当OA=OD时,∠AOD=90°,α=360°-105°-60°-90°=105°;当OA=AD时,∠AOD=67.5°,α=360°-105°-60°-67.5°=127.5°;当AD=OD时,∠AOD=45°,α=360°-105°-60°-45°=150°.综上所述,当α=105°,127.5°或150°时,△AOD是等腰三角形.11.解:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE,∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°.∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形,∴AD=DE.(2)∵∠ADC=90°,∠AEC=120°,∠DAE=60°,∴∠DCE=360°-∠ADC-∠AEC-∠DAE=90°.(3)∵△ADE为等边三角形,∴∠ADE=60°,∴∠CDE=∠ADC-∠ADE=30°.又∵∠DCE=90°,∴DE=2CE=2BD=2.∴AD=DE=2.在Rt△DCE中,CD=DE2-CE2=22-12= 3.12.解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A. ∴AP′=PC=1,BP′=PB= 2.连接PP′,如图.在Rt△BP′P中,∵PB=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,PA=5,∵12+22=(5)2,即AP′2+PP′2=PA2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形,∴∠EP′B=45°.又∵BP′=2,∴EP′=BE=1,∴AE=2.在Rt△ABE中,∵BE=1,AE=2,∴由勾股定理,得AB= 5.综上可得,∠BPC=135°,正方形ABCD的边长为 5.。
人教版九年级上册数学第二十三章 旋转含答案【及含答案】

人教版九年级上册数学第二十三章旋转含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠BAC=55°,∠C=20°,将△ABC绕点A逆时针旋转α角度(0 α 180°)得到△ADE,若DE AB,则α的值为()A.65°B.75°C.85°D.130°2、观察下列图形,是中心对称图形的是()A. B. C. D.3、如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E在同一条直线上.∠BAC=20°. 则∠ADC 的度数为()A.20°B.30°C.50°D.60°4、如图所示的图形绕虚线旋转一周,所形成的几何体是()A. B. C. D.5、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)7、如下图所示,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1, A1B交AC于A点E,A1C1分别交AC,BC于点D、F,下列结论:①∠CDF=a,②DF=FC,③A1E=CF,④AD=CE,⑤A1F=CE.其中一定正确的有( )A.①②④B.①③⑤C.②③⑤D.③④⑤8、以下国产新能源电动车的车标图案不是轴对称图形的是()A. 北汽新能源B. 长城新能源C.东风新能源 D. 江淮新能源9、如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A. B.13π C.25π D.2510、在平面直角坐标系中,点的坐标为,以原点为中心,将点顺时针旋转得到点,则点的坐标为()A. B. C. D.11、下列轴对称图形中,对称轴的条数四条的有()个.A.1B.2C.3D.412、下面四个图案是某种衣物的洗涤说明标识.其中没有用到图形的平移,旋转或轴对称设计的是()A. B. C. D.13、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形正六边形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是()A. B. C. D.114、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()A.平移变换B.轴对称变换C.旋转变换D.相似变换15、在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在中,,将绕点A顺时针旋转后得到(点B的对应点是,点的对应点是),连接.若,则________ .17、如图,在梯形ABCD中,AD∥BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于________度.18、如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.19、已知点A(﹣2,3),则点A关于x轴的对称点A1的坐标为________;关于y轴对称点A2的坐标为________,关于原点的对称点A3的坐标为________.20、如图所示直线y= x+ 与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为________.21、如图,三角形ABC绕点A逆时针旋转90°到三角形AB'C'的位置.已知∠BAC=36°,则∠B'AC=________度。
部编版人教初中数学九年级上册《第二十三章(旋转)全章每课拓展提高(含答案解析)》最新精品优秀实用
部编版人教初中数学九年级上册第23章(旋转)拓展提高(含答案解析)前言:该拓展提高由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的拓展提高助力考生查漏补缺,在原有基础上更进一步。
(最新精品拓展提高)23.1 图形的旋转基础闯关全练拓展训练1.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.32.如图,△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,下列说法中不正确的是( )A.线段AB与线段CD互相垂直B.线段AC与线段CE互相垂直C.点A与点E是两个三角形的对应点D.线段BC与线段DE互相垂直3.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB'C',过点B'作B'D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为( )A.2B.3C.2D.34.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA',则点A'的坐标是.能力提升全练拓展训练1.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为( )A.4B.C.5D.2.(2016安徽合肥模拟)如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC',连接BC',E为BC'的中点,连接CE,则CE的最大值为( )A. B.+1 C.+1 D.+13.(2018江西南昌东湖期中)如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM=,ON=8,则OM= .4.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.三年模拟全练拓展训练1.(2017福建厦门同安六校联考期中,8,★★☆)如图,在正方形ABCD 中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是( )A.BE=CEB.FM=MCC.AM⊥FCD.BF⊥CF2.(2017山东枣庄薛城期中,12,★★☆)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ,若PA=6,PB=8,PC=10,则四边形APBQ的面积为( )A.24B.12+6C.24+9D.12+93.(2017天津滨海新区期中,16,★★☆)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CFE,则DF与AC的数量关系是.4.(2018广西柳州期中,18,★★☆)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上).五年中考全练拓展训练1.(2016江苏无锡中考,10,★★☆)如图,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A. B.2 C.3 D.22.(2017广西贺州中考,18,★★☆)如图,在正方形ABCD内作∠EAF=45°,AE 交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A 顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.3.如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC的中点,将△ABC绕点D= .逆时针旋转45°,得到△A'B'C',B'C'与AB交于点E,则S四边形ACDE4.(2017四川南充中考,16,★★☆)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2.其中正确的结论是(填序号).核心素养全练拓展训练1.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P',且AP'=3,则∠BP'C的度数为( )A.105°B.112.5°C.120°D.135°2.(2016山东德州庆云期中)如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为.23.1 图形的旋转基础闯关全练拓展训练1.答案 D ∵等边△ABC绕点C顺时针旋转120°得到△EDC,2.∴AC=BC=DC=EC,∠BCD=120°,∵∠ACB=60°,∴∠ACD=60°,∴△ACD为等边三角形,∴AC=AD,∴①正确;∵AB=AC=EC=ED=AD,∴四边形ACED是菱形,∴③正确;由AB=BC,得B在AC的垂直平分线上,由AD=CD,得D在AC的垂直平分线上,∴BD垂直平分AC,∴②正确.2.答案 C 由于△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,则线段AB与CD垂直,线段AC与CE垂直,点A与点C为对应点,线段BC与DE垂直.故选C.3.答案 D 在等腰直角△ABC中,AB===6,由旋转的性质知AB'=AB=6,∠BAB'=75°.在直角△B'AD中,∠B'AD=180°-∠BAC-∠BAB' =180°-45°-75°=60°,则AD=6×=3.故选D.4.答案(-4,3)解析如图,过点A作AB⊥x轴于点B,过点A'作A'B'⊥x轴于点B',由题意知OA=OA',∠AOA'=90°,∴∠A'OB'+∠AOB=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠A'OB',在△AOB和△OA'B'中,∴△AOB≌△OA'B'(AAS),∴OB'=AB=4,A'B'=OB=3,∴点A'的坐标为(-4,3).能力提升全练拓展训练1.答案 B 如图,作EF⊥AE,且EF=DE,连接AF、DF,因为∠AEF=90°,所以∠DEF=90°-30°=60°,又因为DE=EF,所以△DEF是等边三角形,所以∠EDF=60°,∠ADF=∠BDE,又因为AD=BD,DE=DF,所以△BDE≌△ADF,所以BE=AF==.故选B.2.答案 B 取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大,∵将直角边AC绕A点逆时针旋转至AC',∴AC'=AC=2.∵E为BC'的中点,∴EM=AC'=1,∵∠ACB=90°,AC=BC=2,∴AB=2,∴CM=AB=,∴CE的取大值为CM+EM=+1.故选B.3.答案4+2解析如图,连接MN,过N作NH⊥OA于H,∵线段PM绕P点逆时针旋转90°,M 点恰好落在OB上的N点,∴∠MPN=90°,PN=PM=,∴△PMN为等腰直角三角形,∴MN===2,在Rt△OHN 中,∵∠NOH=30°,ON=8,∴NH=ON=4,OH===4.在Rt△MNH中,∵NH=4,MN=2,∴MH==2,∴OM=OH+MH=4+2.4.答案 1.5解析如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°.又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE.∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG.又∵CE旋转到CF,∴CE=CF,∴△DCF≌△GCE,∴DF=EG,根据垂线段最短知EG⊥AD时,EG最短,即DF最短,此时,∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.三年模拟全练拓展训练1.答案 C 因为E不一定是BC的中点,故A错误;根据旋转的性质可得△ABE≌△CBF,则∠AEB=∠F,又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE+∠F=90°,∴∠AMF=90°,∴AM⊥FC,故C正确;连接AC,因为E是BC 上任意一点,BF=BE,所以AC和AF不一定相等,则M不一定是FC的中点,故B错误;∵BF⊥BC,∴BF⊥CF一定错误,故D错误.故选C.2.答案 C 如图,连接PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6.∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ.在△APC和△AQB中,AC=AB,∠CAP=∠BAQ,AP=AQ,∴△APC≌△AQB(SAS),∴PC=QB=10.在△BPQ中,∵PB2=82=64,PQ2=62=36,BQ2=102=100,又64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ =S△BPQ+S△APQ=×6×8+×62=24+9.故选C.3.答案DF=AC解析∵AC=BC,点D、E分别是边AB、AC的中点,∴DE=BC,AE=AC,∵AC=BC,∴AE=DE.∵将△ADE绕点E旋转180°得△CFE,∴△ADE≌△CFE,∴AE=CE,DE=FE,∴AE=CE=DE=FE,∴DF=AC.4.答案①③④解析∵△ABC为等边三角形,∴BA=BC=AC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠C=60°,∴∠BAE=∠ABC,∴AE∥BC,故①正确;∵△BCD绕点B 逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,故③正确;∵∠BDE=60°,又∠BDC=∠BAC+∠ABD>60°,∴∠ADE<60°,∴∠ADE≠∠BDC,故②错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,故④正确.故答案为①③④.五年中考全练拓展训练1.答案A∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=2,。
九年级数学上册第二十三章旋转经典大题例题(带答案)
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
九年级数学上册第二十三章旋转知识点归纳总结(精华版)(带答案)
九年级数学上册第二十三章旋转知识点归纳总结(精华版)单选题1、如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE答案:C分析:利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD =180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.小提示:本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.当GC=GB时,下列针对α值的说法正确的是()A.60°或300°B.60°或330°C.30°D.60°答案:A分析:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=1AD,2∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG =60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=360°-60°=300°,故选:A .小提示:本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.3、已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =96cm ,则AC 的长为( )A .36cm 或64cmB .60cm 或80cmC .80cmD .60cm答案:B分析:分两种情况讨论,根据题意画出图形,根据垂径定理求出AM 的长,连接OA ,由勾股定理求出OM 的长,进而可得出结论.解:连接AC ,AO ,∵⊙O 的直径CD =100cm ,AB ⊥CD ,AB =96cm ,∴AM =12AB =12×96=48(cm ),OD =OC =50(cm ),如图1,∵OA =50cm ,AM =48cm ,CD ⊥AB ,∴OM =√OA 2−AM 2=√502−482=14(cm ),∴CM =OC +OM =50+14=64(cm ),∴AC=√AM2+CM2=√642+482=80(cm);如图2,同理可得,OM=14cm,∵OC=50cm,∴MC=50−14=36(cm),在Rt△AMC中,AC=√AM2+CM2=60(cm);综上所述,AC的长为80cm或60cm,故选:B.小提示:本题考查的是垂径定理、勾股定理的应用,根据题意画出图形、利用垂径定理和勾股定理求解是解答此题的关键.4、已知点A(−2,3)与点B关于原点对称,则点B的坐标()A.(−3,2)B.(2,−3)C.(3,2)D.(−2,−3)答案:B分析:根据关于原点对称点的坐标变化特征直接判断即可.解:点A(−2,3)与点B关于原点对称,则点B的坐标为(2,−3),故选:B.小提示:本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数.5、已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.√14B.4C.√23D.5答案:DAB=5,然后在分析:连接OA,过点O作OC⊥AB于点C,如图所示,先利用垂径定理求得AC=BC=12RtΔAOC中求得OC=2√6,再在RtΔPOC中,利用勾股定理即可求解.解:连接OA,过点O作OC⊥AB于点C,如图所示,则AC=BC=1AB,OA=7,2∵PA=4,PB=6,∴AB=PA+PB=4+6=10,∴AC=BC=1AB=5,2∴PC=AC−PA=5−4=1,在RtΔAOC中,OC=√OA2−AC2=√72−52=2√6,在RtΔPOC中,OP=√OC2+PC2=√(2√6)2+12=5,故选:D小提示:本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键.6、如图,在△ABC中,∠ACB=90∘,点D是AB的中点,将△ACD沿CD对折得△A′CD.连接BA′,连接AA′交CD于点E,若AB=14cm,BA′=4cm,则CE的长为()A.4cmB.5cmC.6cmD.7cm答案:B分析:由折叠性质得AA′⊥CD,AD=A′D,根据直角三角形斜边上的中线性质可证得CD=AD=BD=A′D,可证得A、C、A′、B共圆且AB为直径,利用垂径定理的推论和三角形的中位线性质证得DE=1A′B,进而可求解CE的长.2解:由折叠性质得AA′⊥CD,AD=A′D,∵∠ACB=90∘,点D是AB的中点,∴CD=AD=BD=A′D=1AB,2∴A、C、A′、B共圆且AB为直径,又A A′⊥CD,∴AE=A′E,又AD=BD,∴DE是△AB A′的中位线,∴DE=1A′B,2∵AB=14cm,BA′=4cm,∴CD=7cm,DE=2cm,∴CE=CD-DE=7-2=5cm,故选B.小提示:本题考查直角三角形斜边上的中线性质、三角形的中位线性质、折叠性质、垂径定理的推论,熟练掌握相关知识的联系与运用是解答的关键.7、围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGoi进行围棋人机大战截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.答案:A分析:根据中心对称图形的定义:一个平面图形,绕一点旋转180°,与自身重合,这样的图形叫做中心对称图形.逐一进行判断即可.解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选A.小提示:本题考查中心对称.熟练掌握中心对称的定义是解题的关键.8、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.答案:C分析:根据旋转的定义进行分析即可解答解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是C.故选:C.小提示:本题考查了图纸旋转的性质,熟练掌握是解题的关键.9、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.10、下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形答案:B分析:根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B.小提示:本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.填空题11、如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °答案:55分析:根据旋转的性质可得∠ACA ′=35°,∠A =∠A ′,再由直角三角形两锐角互余,即可求解. 解:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A ′B ′C∴∠ACA ′=35°,∠A =∠A ′,∵∠A ′DC =90°,∴∠A ′=55°∴∠A =55°.所以答案是:55小提示:本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键.12、在平面直角坐标系xOy 中,直线y =−√33x +2分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部.(1)△BCD 周长的最小值是____________________;(2)当△BCD 的周长取得最小值,且BD =53√2时,△BCD 的面积为__________.答案: 4√2 43分析:(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 2=(5√23)2,因为CB +CD =4√2﹣5√23,可推出CB •CD 的值,进而求出三角形的面积.(1)∵直线y =−√33x +2与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x =2√3,把x =0代入,解得y =2,∴点C 的坐标为(2√3,0),点A 的坐标为(0,2).∴AC =√22+(2√3)2=4.作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.由轴对称的性质,可知CD =C 1D ,CB =C 2B . ∴CB +BD +CD =C 2B +BD +C 1D =C 1C 2连接AC 1、AC 2,可得∠C 1AD =∠CAD ,∠C 2AB =∠CAB ,AC 1=AC 2=AC =4.∵∠DAB =45°,∴∠C 1AC 2=90°.连接C 1C 2.C 1C 2=√42+42=4√2,∵两点之间线段最短,∴当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长. ∴△BCD 的周长的最小值为4√2.所以答案是:4√2.(2)根据(1)的作图可知四边形AECF 的对角互补,其中∠DAB =45°,因此,∠C 2CC 1=135°. 即∠BCC 2+∠DCC 1+∠BCD =135°,∴2∠BCC 2+2∠DCC 1+2∠BCD =270°①,∵∠BC 2C =∠BCC 2,∠DCC 1=∠DC 1C ,∠BC 2C +∠DC 1C +∠BCC 2+∠DCC 1+∠BCD =180°, ∴2∠BCC 2+2∠DCC 1+∠BCD =180°②,①-②得,∠BCD =90°.∴CB 2+CD 2=BD 2=(5√23)2=509,∵CB +CD =4√2﹣5√23=7√23,(CB +CD )2=CB 2+CD 2+2CB •CD ,∴2CB •CD =(CB +CD )2-(CB 2+CD 2)= (7√23)2−509=163∴S=12⋅CB⋅CD=43.所以答案是:43小提示:本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.13、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.14、如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.答案:7√2;分析:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四边形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,{∠AOC=∠FOBAO=FO∠ACO=∠FBO,∴△AOC≌△FOB(ASA),∴AO=FO,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×√22=7√2.故答案为7√2.小提示:本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.15、如图,在正方形网格中,格点ΔABC绕某点顺时针旋转角α(0<α<180°)得到格点ΔA1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=_____度.答案:90°分析:先连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,再由题意得到旋转中心,由旋转的性质即可得到答案.如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,∵CC1,AA1的垂直平分线交于点E,∴点E是旋转中心,∵∠AEA1=90°,∴旋转角α=90°.故答案为90°.小提示:本题考查旋转,解题的关键是掌握旋转的性质.解答题16、如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;(2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2、B2的坐标.答案:(1)图见解析,A1(0,﹣4),B1(2,﹣4)(2)图见解析,A2(﹣4,0),B2(﹣4,﹣2)分析:(1)根据旋转先找到找到A1,B1点,再进行连线即可;(2)根据关于原点对称的点特征,找到A2,B2点,再进行连线即可;(1)如图所示,△OA1B1即为所求,由图知,A1(0,﹣4),B1(2,﹣4);(2)如图所示,△OA2B2即为所求,A2(﹣4,0),B2(﹣4,﹣2).小提示:本题考查坐标系下图形的旋转,对称作图,根据找点,描点,连线的方法进行作图即可.17、已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若△ABC为等边三角形,在不添加辅助线的情况下,请你直接写出所有是轴对称但不是中心对称的图形.答案:(1)证明见解析(2)等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF分析:(1)由角平分线可知∠ABD=∠CBD,由平行可知∠BDE=∠ABD,可得∠CBD=∠BDE,DE=BE= AF,进而结论得证;(2)由题意可得四边形ADEF是菱形,D,E,F是等边三角形的中点,然后根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对图中的三角形与四边形的对称性进行判断即可.(1)证明:∵BD是△ABC的角平分线∴∠ABD=∠CBD∵DE∥AB∴∠BDE=∠ABD∴∠CBD=∠BDE∴DE=BE=AF∵DE∥AF,DE=AF∴四边形ADEF是平行四边形.(2)解:由(1)知四边形ADEF是平行四边形∴EF∥AC∵△ABC是等边三角形∴∠EFB=∠C=∠B=60°∴BE=EF=DE∴四边形ADEF是菱形∴AF=BF,BE=CE,CD=AD∴D,E,F是等边三角形的中点∴BG⊥EF,BD⊥EF∴由轴对称图形与中心对称图形的定义可知,是轴对称图形但不是中心对称图形的有:等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF.小提示:本题考查了角平分线,等腰三角形的判定与性质,等边三角形的判定性质,平行四边形的判定与性质,菱形的判定与性质,轴对称图形,中心对称图形等知识.解题的关键在于对知识的熟练掌握与灵活运用.18、如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.答案:(1)16°(2)DL=EN+GM,见解析分析:(1)根据题意易求出∠BDC=53°.在图②中连接BD.根据旋转结合正方形性质即得出BD=DE= DG,∠DCB=90°.根据等腰三角形三线合一的性质即可得出∠BDC=∠CDG=53°,从而可求出∠CDE的大小,进而即可求出∠BDE的大小,即旋转角.(2)在图③中,过点G作GK//BM,交DE于K,由正方形的性质可得出∠DEF=∠GDE,DE=DG.又易证GK⊥DN,即得出∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,从而得出∠EDN=∠DGK,由此可证明△DKG≌△END(ASA),得出EN=DK.由GK//ML,KL//GM,可判定四边形KLMG是平行四边形,得出结论GM=KL,从而即可证明DL=EN+GM.(1)由图①知,∠BDC=90°−∠CDG=90°−37°=53°,如图②,连接BD,根据旋转和正方形性质可知BD=DE=DG,∠DCB=90°.∴∠BDC=∠CDG=53°,∴∠CDE=90°−∠CDG=90°−53°=37°,∴∠BDE=∠BDC−∠CDE=53°−37°=16°,∴旋转角为16°;(2)DL=EN+GM,理由如下:如图③,过点G作GK//BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG.∵GK//BM,DN⊥BM,∴GK⊥DN,∴∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK//ML,KL//GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=DK+KL=EN+GM.小提示:本题考查正方形的性质,旋转的性质,平行线的判定和性质,三角形全等的判定和性质以及平行四边形的判定和性质,综合性较强.正确的做出辅助线以及利用数形结合的思想是解题关键.。
人教版九年级数学上册:第二十三章 旋转 复习题(含答案)
人教版九年级数学上册:第二十三章 旋转 复习题(含答案)班级:_____________姓名:__________________组号:_________ 一、知识梳理 (一)旋转图形绕着某一定点转动一定的角度。
旋转的三要素:旋转中心、旋转角、旋转方向。
旋转改变图形位置不改变大小、形状。
旋转的基本性质:答:1)旋转不改变图形的大小与形状,只改变图形的性质。
也就是旋转前后图形全等 2)对应点与旋转中心所连线段间的夹角为旋转角。
练习:1.如图,四边形ABCD 是正方形,△ADE 经顺时针旋转后与△ABF 重合。
(1)旋转中心是哪一点?(2)旋转了多少度?(3)连结EF ,△AEF 是怎样的三角形?2.右图至少旋转 后能与自身重合?(二)中心对称图形中心对称图形绕着中心点旋转180°后能与自身重合。
中心叫做对称中心。
把一个图形绕着某一点旋转180°,能够和另一个图形重合,就说这两个图形成中心对称。
成中心对称两图形具有的性质: ①中心对称的两个图形是全等图形;②中心对称的两个图形,对称点的连线经过对称中心,而且被对称中心平分。
(三)关于原点对称的点:点P (x ,y )关于原点对称点P′的坐标为(-x,-y )。
练习:3.如图,与点A 关于原点对称的点的坐标是 。
4.下列哪个函数的图象关于原点对称?( )A .y=x2B .y= x 1C .y=2xD .y=x+15.若点M (x+1,y-1)关于原点对称的点为P′(3,-6),则x-y= 。
(四)相关作图练习:6.画出三角形ABC绕顶点C逆时针旋转90°后的三角形。
7.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。
二、综合运用1.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学能力提高题第二十三章旋转【课标要求】
考
点课标要求
知识与技能目标
了
解
理
解
掌
握
灵
活
应
用
图形的旋转认识旋转,探索它的基本性质∨
对应点到旋转中心的距离相等,
对应点与旋转中心连线所成的角
彼此相等的性质
∨平行四边形,圆是中心对称图形∨
按要求作出简单平面图形旋转后
的图形
∨探索图形之间的变换关系(轴对
称、平移、旋转及组合)
∨
【知识梳理】
掌握这部分内容,首先弄明白平移,旋转的特征,及平移、旋转的决定因素,明确什么样的图形是旋转对称图形。
【能力训练】
1.如图所示,将A B C '∆沿着XY 方向平移一定的距离成为△MNL ,就得到M N L ∆,则下列结论中正确的是( )
①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNL A .1个 B .2个 C .3个 D .4个
3.如图,在这四个图案中都是某种衣物的洗涤说明,请指出不是
利用图形的平移、旋转和反射(轴对称)设计的是
( )
4.如图,一块等边三角形木板ABC 的边长为1,现将木板沿水平线翻转(绕一个点旋转),那么A 点从开始到结束所走的路径长度为( )
A
B
C
D
(A )4 (B )2π (C )23
π (D )43
π
5.P 是等边A B C ∆内部一点,APB ∠、B P C ∠、
C P A ∠的大小之比是
5:6:7,所以PA 、PB 、PC 的长为
边的三角形的三个角的大小之比是( )
(A )2:3:4 (B )3:4:5 (C )4:5:6 (D )不能确定
6.一个数字在镜子里看是“1208”,且这个数字图像垂直对着镜子,则实际上这个数字是 .
7.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案,请推算(1)第4个
图案中有白色地面砖 块;(2)第n 个图案中白色的地面砖 块.
8.如图,请你用三种方法把左边的 小正方形分别平移到右边三个图形中,使 它成为轴对称图形.
方法
方法
方法
第1个
第2个 第3个
9.如图是某设计师设计的方桌布图案的一部 分,请你运用旋转变换的方法,在坐标纸上将该图 形绕原点顺时针依次旋转90°、180°、270°并 画出它在各象限内的图形,你会得到一个美丽的“ 立体图形”,你来试一试吧!但是涂阴影...时要注意 利用旋转变换的特点,不要涂错了位置,否则不会 出现理想的效果,你来试一试吧!
10.现有如图所示的6种瓷砖,请用其中的4块瓷砖(允许有相同的)设计出美丽的图案.
11.如图,把一个正方形纸片三次对折后沿虚线剪下,然后展开,则所得图形是( ).
12.下列图形中,是中心对称图形的是( ).
13.如图是经过改造的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球
可以经过多次被反射),那么该球最后将落入的入球孔是( ).
A .l 号孔
B .2号孔
C .3号孔
D .4号孔
14.如图,把边长为1的正方形ABCD 的对角线AC 分成n 段,以每一段为对角线作正方形,所有小
正方形的周长之和为.
15.如图,矩形ABCD中,AB=4cm,BC=2cm,E是以A为圆心、AD为半径所作圆周与BA延长线的交点,则图中阴影部分的
面积是 cm2.。