湖北省八校2012届高三12月第一次联考数学文试题(WORD版)
2012年高考文科数学湖北卷(含详细答案)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,共22题.满分150分.考试用时120分钟.★祝考试顺利★考生注意:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合23 20,|} {A x x x x -+=∈R ,05 {|}B x x x =∈<<,N ,则满足条件A CB ⊆⊆的集合C 的个数为( ) A .1B .2C .3D .42.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( )A .0.35B .0.45C .0.55D .0.65 3.函数s ()co 2f x x x =在区间[0,2π]上的零点的个数为 ( ) A .2B .3C .4D .54.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 5.过点)(1,1P 的直线,将圆形区域22{()|+4}x y x y ,≤分为两部分,使得这两部分的面积差最大,则该直线的方程为( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=6.已知定义在区间[0,2]上的函数()y f x =的图象如图所示,则()2y f x =--的图象为( )ABCD7.定义在()(),00,-∞+∞上的函数)(f x ,如果对于任意给定的等比数列{}n a ,{)(}n f a 仍是等比数列,则称)(f x 为“保等比数列函数”.现有定义在()(),00,-∞+∞上的如下函数:①2()f x x =;②()2x f x =;③()f x =;④()ln ||f x x =.则其中是“保等比数列函数”的)(f x 的序号为( ) A .①②B .③④C .①③D .②④8.设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整 数,且A B C >>,320b acosA =,则sin :sin :sin A B C 为 ( ) A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶49.设a b c ∈,,R ,则“1abc =++a b c ”的()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共26页) 数学试卷 第4页(共26页)A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π-B .1πC .21π-D .2π二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.12.若3+i=+i 1ib a b -(a ,b 为实数,i 为虚数单位),则a b += . 13.已知向量0)(1,=a ,1)(1,=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量3-b a 与向量a 夹角的余弦值为 .14.若变量x ,y 满足约束条件1,1,33,x y x y x y --⎧⎪+⎨⎪-⎩≥≥≤则目标函数23z x y =+的最小值是 .15.已知某几何体的三视图如图所示,则该几何体的体积为 .16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b .可以推测: (Ⅰ)2012b 是数列{}n a 中的第 项; (Ⅱ)21k b =- .(用k 表示)三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos ()f x x x x x x ωωωωλ-∈++=R 的图象关于直线π=x 对称,其中ω,λ为常数,且)11(2ω∈,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π()40,,求函数()f x 的值域. 19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -. (Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理.已知10=AB ,1120=A B ,20=3A ,113=AA (单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元? 20.(本小题满分13分)已知等差数列{}n a 前三项的和为,前三项的积为.(Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|(|)|01DM m DA m m ≠=>,且.当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;3-8数学试卷 第5页(共26页) 数学试卷 第6页(共26页)(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题满分14分)设函数()(1)()0n f x ax x b x =-+>,n 为正整数,a ,b 为常数.曲线()y f x =在(1)(1)f ,处的切线方程为1x y +=.(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <.数学试卷第7页(共26页)数学试卷第8页(共26页)5 / 13数学试卷 第11页(共26页)数学试卷 第12页(共26页)3S ,4S 。
湖北省八校联考高三上学期第一次联考(12月)数学(理)试题-含答案

鄂南高中 华师一附中 黄冈中学 黄石二中 荆州中学 孝感高中 襄阳四中 襄阳五中高三第一次联考数学试题(理)一、选择题 (本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知集合1{,},(),3x M y y x x x R N y y x R ⎧⎫==-∈==∈⎨⎬⎩⎭,则(。
)A .M N =B .N M ⊆C .R M C N =D .R C N M Ø 2. 复数(12)(2)z i i =++的共轭复数为( )A .-5iB .5iC .15i +D .15i - 3. 将函数()3sin(2)3f x x π=-的图像向右平移(0)m m >个单位后得到的图像关于原点对称,则m 的最小值是( )A .6π B .3πC .23πD .56π4. 已知函数22()log f x x x =+,则不等式(1)(2)0f x f +-<的解集为( )A .(,1)(3,)-∞-+∞ B .(,3)(1,)-∞-+∞ C .(3,1)(1,1)--- D .(1,1)(1,3)-5. 已知命题:,p a b R ∃∈, a b >且11a b >,命题:q x R ∀∈,3sin cos 2x x +<.下列命题是真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝6. 将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为( )7. 下列说法错误的是( )A .“函数()f x 的奇函数”是“(0)0f =”的充分不必要条件.B .已知A BC 、、不共线,若0PA PB PC ++=则P 是△ABC 的重心. C .命题“0x R ∃∈,0sin 1x ≥”的否定是:“x R ∀∈,sin 1x <”.D .命题“若3πα=,则1cos 2α=”的逆否命题是:“若1cos 2α≠,则3πα≠”. 8. 已知等比数列{}n a 的前n 项和为n S ,已知103010,130S S ==,则40S =( ) A .-510 B .400 C . 400或-510 D .30或409. 南宋数学家秦九韶在《数书九章》中提出的秦九韶,算法至今仍是多项式求值比较先进的算法.已知2172()2018201721f x xx =+++,下列程序框图设计的是求0()f x 的值,在“ )A .n i =B .1n i =+C .n =2018i -D .n =2017i - 10. 已知34πθπ≤≤+=θ=( )A .101133ππ或 B .37471212ππ或 C .131544ππ或 D . 192366ππ或11. 已知△ABC 中,,,a b c 为角,,A B C 的对边,(62)(62)0aBC bCA c AB +-++=,则△ABC 的形状为( )A. 锐角三角形 B . 直角三角形 C. 钝角三角形 D . 无法确定12. 我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆; 3:P 圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+; 4:P 圆的太极函数均是中心对称图形; 5:P 奇函数都是太极函数; 6:P 偶函数不可能是太极函数.A. 2B. 3C.4D.5 二、填空题(本大题共4小题,每小题5分,共20分)13.已知平面向量(2,1),(2,).a b x ==若a 与b 的夹角为θ,且(2)()a b a b +⊥-,则x = ________ .14.曲线2y x =与直线2y x =所围成的封闭图形的面积为 .15.已知等差数列{}n a 是递增数列,且1233a a a ++≤,7338a a -≤,则4a 的取值范围为 .16.()f x 是R 上可导的奇函数,()f x '是()f x 的导函数.已知0x >时()(),(1)f x f x f e '<=不等式()l n )0l n ()x f x e<+≤的解集为M ,则在M 上()sin6g x x =的零点的个数为 .三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤。
2012年普通高等学校招生全国统一考试(湖北卷)文科数学及答案

2012年普通高等学校招生全国统一考试(湖北卷)数 学(供文科考生使用)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}2|320,,|05,A x x x x R B x x x R =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C的个数为( )A.1B.2C.3D.4A. 0.35B. 0.45C. 0.55D. 0.65 3.函数()cos2f x x x =在区间[]0,2π上的零点的个数为( )A.2B.3C.4D.5 4.命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数 5.过点()1,1P 的直线,将圆形区域(){}22,|4x y xy +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A.20x y +-=B.10y -=C.0x y -=D.340x y +-=6.已知定义在区间[]0,2上的函数()y fx =的图象如图所示,则()2y f x =--的图象为( )7.定义在()(),00,-∞+∞U 上的函数()f x ,如果对于任意给定的等比数列{}(){},n n a f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义()(),00,-∞+∞U 在上的如下函数: ①()2f x x =②()2x f x =③()f x④()ln ||f x x =则其中是“保等比数列函数”的()f x 的序号为( )A .①②B ③④ C.①③ D.②④8.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且,320cos A B C b a A >>=,则sin :sin :sin A B C 为( )A.4:3:2B.5:6:7C.5:4:3D.6:5:49.设,,a b c R ∈,则"1"abc =是"a b c ≤++的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.112π-B.1πC.21π- D.2π二、填空题(本大题共7小题,每小题5分,共35分)11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有__________人12.若31bi a bi i+=+-(,a b 为实数,i 为虚数单位),则a b +=________13.已知向量()()1,0,1,1==a b ,则(1)与2+a b 同向的单位向量的坐标表示为____(2)向量3-b a 与向量a 夹角的余弦值为____14.若变量,x y 满足约束条件11,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩则目标函数23z x y =+的最小值为________15.已知某几何体的三视图如图所示,则该几何体的体积为________ 16.阅读如图所示的程序框图,运行相应的程序,输出的结果________ 17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数,他们研究过如图所示的三角形数:...10631将三角形数1,3,6,10,⋅⋅⋅记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b ,可以推测:(1)2012b 是数列{}n a 中的第_________项;(2)21k b -=______(用k 表示)三、解答题(本大题共5小题,共65分.解答题应写出文字说明,证明过程或演算步骤.)18.(本小题12分)设函数()()22sin cos cos f x x x x x x R ωωωωλ=+⋅-+∈的图象关于直线πx =对称.其中,ωλ为常数,且1(,1)2ω=.(1)求函数()f x 的最小正周期;(2)若()y f x=的图象经过点π(,0)4,求函数()f x 的值域.BAO 俯视图侧视图正视图22114419.(本小题12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -.(1)证明:直线11B D ⊥平面22ACC A ;(2)现需要对该零部件表面进行防腐处理.已知112110,20,30,13AB A B AA AA ====(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.(本小题13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8.(1)求等差数列{}n a 的通项公式;(2)若231,,a a a 成等比数列,求数列{}||n a 的前n 项和.21.(本小题14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足()||||0,1DM m DA m m =>≠且.当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k 的直线交曲线C 于,P Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题14分)设函数()()()10,n f x ax x b x n =-+>为正整数,,a b 为常数.曲线()y f x =在()()1,1f 处的切线方程为1x y +=.(1)求,a b 的值;(2)求函数()f x 的最大值; (3)证明:()1f x ne<A 2B 2D 2C 2C 1D 1B 1A 1D C B A2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:A 卷:1.D 2.B 3.D 4.B 5.A 6.B 7.C 8.D 9.A 10.C 二、填空题:11. 6 12. 3 13.(Ⅰ);(Ⅱ) 14. 2 15.12π 16. 9 17.(Ⅰ)5030;(Ⅱ)()5512k k -三、解答题:18.解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z .又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=.故5π()2sin()36f x x =-()f x的值域为[22-.19.解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A = ,所以2AA ⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥.因为底面ABCD 是正方形,所以AC BD ⊥. 根据棱台的定义可知,BD 与B 1 D 1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D 平面ABCD BD =, 平面11BB D D 平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,11AC B D ⊥. 又因为2AA AC A = ,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-. (Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件. 故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时,234||||||n n S S a a a =++++ 5(337)(347)(37)n =+⨯-+⨯-++-2(2)[2(37)]311510222n n n n -+-=+=-+. 当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩21.解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由||||(0,1)DM m DA m m =>≠且,可得0x x =,0||||y m y =,所以0x x =,01||||y y m=. ①因为A 点在单位圆上运动,所以22001x y +=. ②将①式代入②式即得所求曲线C 的方程为222 1 (0,1)y x m m m+=>≠且.因为(0,1)(1,)m ∈+∞ ,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,,(0,.(Ⅱ)解法1:如图2、3,0k ∀>,设11(,)P x kx ,22(,)H x y ,则11(,)Q x kx --,1(0,)N kx ,直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得 222222211(4)40m k x k x x k x m +++-=.依题意可知此方程的两根为1x -,2x ,于是由韦达定理可得 21122244k x x x m k -+=-+,即212224m x x m k =+.因为点H 在直线QN 上,所以2121222224km x y kx kx m k -==+.于是11(2,2)PQ x kx =-- ,22112121222242(,)(,)44k x km x PH x x y kx m k m k =--=-++ . 而PQ PH ⊥等价于2221224(2)04m k x PQ PH m k -⋅==+ , 即220m -=,又0m >,得m故存在m =2212y x +=上,对任意的0k >,都有PQ PH ⊥.解法2:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得 212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+.于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PH k k ⋅=-,即212m -=-,又0m >,得m =故存在m =2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.解:(Ⅰ)因为(1)f b =,由点(1,)b 在1x y +=上,可得11b +=,即0b =.因为1()(1)n n f x anx a n x -'=-+,所以(1)f a '=-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =. (Ⅱ)由(Ⅰ)知,1()(1)n n n f x x x x x +=-=-,1()(1)()1n nf x n x x n -'=+-+. 令()0f x '=,解得1n x n =+,即()f x '在(0,)+∞上有唯一零点01n x n =+. 在(0,)1nn +上,()0f x '>,故()f x 单调递增;图2 (01)m <<图3 (1)m >图1 第21题解答图而在(,)1nn +∞+上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (Ⅲ)令1()ln 1+(0)t t t t ϕ=->,则22111()= (0)t t t t t tϕ-'=->. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t >->.令11t n =+,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()e n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,11()(1)en n n f x n n +≤<+,故所证不等式成立.。
2012年湖北省第一次八校联考文科综合试卷参考答案

2012年湖北省第一次八校联考文科综合试卷参考答案36. 1.①纬度低,气温高,②瀑布水气形成的潮湿小气候(2)2.差异:瀑布以上河段河床宽而浅,电站大坝以下河段河床窄而深(4)原因:瀑布以上河段岩层坚硬(或水流速度慢),流水下切侵蚀作用相对较弱,侧蚀作用强。
电站大坝以下河段水流湍急(或岩层较松软),流水下切侵蚀作用强烈。
(8分)3. 每年的12月—2月(或该地夏半年,湿季)原因:该地属于南半球热带草原气候,12月—2月为湿季;此时河流水量大,瀑布景观壮观;湿季植被茂盛,景观美丽。
(8分)4.充足的水源;廉价的水电;非凡的旅游资源;便捷的交通运输。
(4分)37、1、甲地:深居内陆(1分),且位于夏季风贺兰山的背风坡(1分),降水稀少(年降水量在200mm以下)(2分),以风力的侵蚀和沉积为主(2分)。
乙地:断裂上升,形成山地(1分)丙地:断裂下陷,黄河携带泥沙沉积和贺兰山的洪积平原(3分)丁地:断裂上升,风力携带黄土沉积(2分)2、该地区大部分属于半干旱地区(年降水量在400mm以下)(1分),蒸发量大于降水量(2分),土壤中盐分富积大于淋溶(2分)。
人类长期的有灌不排(1分),导致地下水位上升,加剧了盐分的富积速度(1分)。
对策:灌区的下流开挖排水沟,降低地下水水位;植树造林,调节气候。
(合理可得2分)38、(12分)(1)遵守联合国宪章和国际法公约,发挥国际组织在国际社会中的交流、合作、协调作用;(3分)坚持主权国家权利和义务的统一,尤其是发达国家在享有全球经济发展带来的利益同时,也要勇于承担减排的义务(3分);坚持科学发展观,统筹兼顾,协调发展;(3分)建立国际经济政治新秩序,相互帮助、协力推进,共同呵护人类赖以生存的地球家园;(3分)(2)(12分)制定正确的经营战略;(2分)诚信经营,树立良好的信誉和形象;(2分)提高自主创新能力,依靠技术进步、科学管理等手段,形成自己的竞争优势;(2分)实现产业结构优化升级,提高资源利用效率,提高企业经济效益(3分);勇于承担社会责任,实现企业经济效益与社会效益、生态效益的统一,推动绿色经济、循环经济的发展。
新版湖北省八校高三12月第一次联考文科数学试卷及答案

1 A. a≤
2
B. a ≤ 2
C. a ≥ 2
1 D. a≥
2
9.已知集合 M (x, y) | y f ( x) ,若对于任意 (x1, y1) M ,存在 ( x2, y2) M ,使得 x1x2 y1y2 0 成
立, 则称集合 M 是“理想集合” , 则下列集合是“理想集合”的是(
)
A . M {( x , y) | y 1 } x
1.D 2. C 3. B 4. A 5. C 6. A 二、填空题(每小题 5 分,共 7 小题 ,).
7. B
8. D
9.B 10. C
11. 3 12. 15 13.2 14. 1 三、解答题(共 5 小题,共 65 分)
15. 33
3 16. [ , 1]
4
4 17. ( ,
2);6
3
18. 解析: (I) f ( x) 2cos2 x 2 3 sin x cos x
本试卷分第Ⅰ卷 (选择题) 和第Ⅱ卷 (非选择题) 两部分, 共4 页。全卷满分 150 分,考试时间 120 分钟.
注意事项:
★ 祝考试顺利 ★
1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.
2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡
h( x) ln x (x 0), ( x) x3 ( x 0) 的 “新驻点 ”分别为 a ,b ,c ,则 a ,b ,c 的大小关系为 (
)
A. a b c
B. c b a
C. a c b
D. b a c
8.若 x, y (0 , 2] 且 xy 2 ,使不等式 a(2x y)≥ (2 x)(4 y) 恒成立, 则实数 a 的 取值范围为 ( )
2012届高三湖北省第一次八校联考数学(理)试卷

2012届高三第一次八校联考数学(理科)试题一、选择题1.设}20|N {≤∈=x x U ,x x A |N {∈=是偶数},x x B |N {∈=是质数},则=)(B A C U A .φB .{1}C .{1, 9, 15}D .{3, 5, 7, 11, 13, 17, 19}2.已知)2cos(tan x x +=π,则=x sinA .215- B .1- C .0 D .13.函数333)(-=xx f 的值域为 A .)1,(--∞ B .),0()0,1(+∞-C .),1(+∞-D .),0()1,(+∞--∞4.设}{n a 是等比数列,则“321a a a >>”是“数列}{n a 是递减数列”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.函数)24sin(2ππ-=x y 的部分图象如右图所示,则=⋅+)(A .6B .4C .4-D .6-6.⎰-230249dx x 可看作成A .半径为3的圆的面积的二分之一B .半径为23的圆的面积的二分之一 C .半径为3的圆的面积的四分之一D .半径为23的圆的面积的四分之一 7.设P 是椭圆192522=+y x 上一点,M 、N 分别是两圆1)4(22=++y x 与1)4(22=+-y x 上的点,则||||PN PM +的最小值,最大值分别为A .3,7B .4,8C .8,12D .10,128.已知命题1p :函数0(>-=-m m m y x x 且)1≠m 在R 上为增函数,命题0:2≤ac p 是方程02=++c bx ax 有实根的充分不必要条件,则在命题211:p p q ∨,212:p p q ∧,)(:213p p q ⌝∧,)()(:214p p q ⌝∧⌝中真命题 的个数为 A .0B .1C .2D .39.定义在R 上的函数)(x f 满足)5()(x f x f -=,且0)(')25(<-x f x ,已知21x x <,521<+x x ,则A .)()(21x f x f <B .)()(21x f x f >C .0)()(21<+x f x fD .0)()(21>+x f x f10.定义在R 上的函数)(x f 满足:对于任意的x , ∈y R ,都有2011)()()(-+=+y f x f y x f 。
湖北省八市2012届高三联考数学试题及答案(文科)
2012年湖北省八市高三三月联考试卷数 学(文科)本试卷共4页.全卷满分150分,考试时间120分钟.★ 祝考试顺利 ★注意事项:1.考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3.填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内。
答在试题卷上无效.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.i 是虚数单位,复数31ii-等于A .1i --B .1i -C .1i -+D .1i +2.若集合{}21,A m =,集合{}2,4B =,则“m =2”是“{}4A B = ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知向量(4,2)AB = ,(6,)CD y = ,且AB ∥CD,则y 等于 A .-3B .-2C .3D .24.已知变量x ,y 满足约束条件1,0,20,y x y x y -⎧⎪+⎨⎪--⎩≤0≥≤则24x y z = 的最大值为A .16B .32 C5则输出的结果是A BC .D .0第5题图6.从1,2,3,4,5中随机取出二个不同的数,其和为奇数的概率为A .15B .25C .35D .457.在正方体ABCD -A 1B 1C 1D 1中,点M 、N 分别在AB 1、BC 1上,且AM =13AB 1,BN =13BC 1,则下列结论:①AA 1⊥M N ; ②A 1C 1// MN ;③MN //平面A 1B 1C 1D 1;④B 1D 1⊥MN ,其中, 正确命题的个数是 A .1B .2C .3D .48.已知直线1:(3)(4)10l k x k y -+-+=,与2:2(3)230l k x y --+=平行,则k 的值是 A .1或3 B .1或5 C .3或5 D .1或29.下列函数中,最小值为2的函数是A.y =B .21x y x+=C.)(0y x x x =<<D.2y =10.定义在R 上的函数()f x 满足(2)2()f x f x +=,当x ∈[0,2]时,()(31)(39)x x f x =--.若()f x 在[2,22]n n --+()n N *∈上的最小值为-1,则n =A .5B .4C .3D .2二、填空题(本大题共7个小题,每小题5分,满35分,把答案填在答题卡上对应题号后的横线上)11.某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是 ▲ .12.设抛物线的顶点在原点,其焦点F 在y 轴上,抛物线上的点(,2)P k -与点F 的距离为4,则抛物线方程为 ▲ .A BCC 1DD 1A 1B 1NM第7题图第11题图13.如果数列1a ,21a a ,32a a ,…,1n n a a -,…是首项为1,公比为则5a 等于 ▲14.一个与球心距离为1的平面截球所得的圆面面积为2π15.如图,曲线()y f x =在点(5,(5))P f处的切线方程是8y x =-+,则(5)f +(5)f '= ▲. 16.若将函数5πsin()(0)6y x ωω=+>的图象 向右平移π3个单位长度后,与函数πsin()4y x ω=+的图象重合,则ω的最小值为 ▲ .17.如图所示:有三根针和套在一根针上的n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上. (1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n 个金属片从1号针 移到3号针最少需要移动的次数记为()f n ; 则:(Ⅰ)(3)f = ▲ (Ⅱ) ()f n = ▲三、解答题(本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知函数π()sin()(0,0,||,2f x A x A x ωϕωϕ=+>><的图象的一部分如下图所示.(I )求函数()f x 的解析式; (II )求函数()(2)y f x f x =++19.(本小题满分12分)一个多面体的直观图和三视图如图所示:(I )求证:P A ⊥BD ; (II )连接AC 、BD 交于点O ,在线段PD 上是否存在一点Q ,使直线OQ 与平面ABCD所成的角为30o ?若存在,求DQDP的值;若不存在,说明理由.第15题图第17题图 第19题图20.(本小题满分13分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(m ,n 均小于25”的概率;(II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程ˆˆˆy bx a =+;(III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(II )所得的线性回归方程是否可靠?(参考公式:回归直线方程式ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii n i i x ynx yb ay bx x nx==-==--∑∑)21.(本小题满分14分)设椭圆C :2221(0)2x y a a +=>的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,2120AF F F = ,坐标原点O 到直线AF 1的距离为113OF .(Ⅰ)求椭圆C 的方程;(Ⅱ)设Q 是椭圆C 上的一点,过点Q 的直线l 交 x 轴于点(1,0)F -,交 y 轴于点M ,若||2||MQ QF =,求直线l 的斜率.22.(本小题满分14分)已知函数()ln 3()f x a x ax a R =--∈. (I )当1a =时,求函数()f x 的单调区间;(II )若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45o ,问:m 在什么范围取值时,对于任意的[1,2]t ∈,函数32()[()]2mg x x x f x '=++在区间(,3)t 上总存在极值?2012年湖北省八市高三三月联考数学(文科)参考答案及评分标准一、选择题(每小题5分,10小题共50分)1.D2.A3.C4.B5.A6.C7.B8.C9.D 10.B 二、填空题(每小题5分,满35分)11.600 12.28x y =- 13.32 14.12π 15.2 16.7417.(1)7(3分) (2)21n -(2分) 三、解答题(本大题共5小题,共65分) 18.(I )由图象,知A =2,2π8ω=.∴π4ω=,得π()2sin()4f x x ϕ=+.……………………………………………2分 当1x =时,有ππ142ϕ⨯+=.∴π4ϕ=. ………………………………………………………………4分∴ππ()2sin()44f x x =+. …………………………………………… 5分(II )ππππ2sin()2sin[(2)]4444y x x =++++ππππ2sin()2cos()4444x x =+++ ……………………………7分ππsin()42x =+π4x = …………………………………………………10分∴max y =min y =-.………………………………………12分19.(I )由三视图可知P -ABCD 为四棱锥,底面ABCD 为正方形,且P A =PB =PC =PD , 连接AC 、BD 交于点O ,连接PO . ………………………………………2分 因为BD ⊥AC ,BD ⊥PO ,所以BD ⊥平面P AC ,………………………………4分 即BD ⊥P A . ………………………………………………………………6分(II )由三视图可知,BC =2,P A =Q ,因为AC ⊥OQ ,AC ⊥OD ,所以∠DOQ 为直线OQ 与平面ABCD 所成的角 ……8分在△POD 中,PD =OD ,则∠PDO =60o ,在△DQO 中,∠PDO =60o ,且∠QOD =30o .所以DP ⊥OQ . ……10分所以OD QD 所以14DQ DP =. ……………………………………………………………12分 20.(I )m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.………………………………………………………………2分其中“m ,n 均小于25”的有1个,其概率为110. ………………………4分 (II )∵12,27,x y ==∴22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. ………………………6分于是,5271232a =-⨯=-. ……………………………………………8分故所求线性回归方程为5ˆ32y x =-. …………………………………………9分 (III )由(2)知5ˆ32y x =-, 当x =10时,y =22;当x =8时,y =17. ………………………………………11分与检验数据的误差均为1,满足题意.故认为得到的线性回归方程是可靠的. …………………………13分21.(Ⅰ)由题意知1(F ,2F ,其中a >由于2120AF F F = ,则有212AF F F ⊥ ,所以点A 的坐标为12)F a, ……………………………………… 2分 故AF 1所在的直线方程为1)y a=±+,所以坐标原点O 到直线AF 1 ……………………………… 4分又1||OF =21a =-2a =.故所求椭圆C 的方程为22142x y += ………………………………………… 7分(Ⅱ) 由题意知直线l 的斜率存在.设直线l 的斜率为k , 直线l 的方程为(1)y k x =+, ……………………… 8分 则有M (0,k ),设11(,)Q x y ,由于Q , F ,M 三点共线,且||2||MQ QF =,根据题意,得1111(,)2(1,)x y k x y -=±+,解得11112,2,33x x y k ky ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩或 ………………………………………………… 10分 又点Q 在椭圆上,所以22222()()(2)()33114242kk ---+=+=或 ………………………… 13分解得0,4k k ==±.综上,直线l 的斜率为0,4k k ==±. ………………… 14分 22.()(0)af x a x x'=-> (I )当1a =时,11()1xf x x x-'=-=, …………………………………2分 令()0f x '>时,解得01x <<,所以()f x 在(0,1)上单调递增; ……4分 令()0f x '<时,解得1x >,所以()f x 在(1,+∞)上单调递减. ………6分 (II )因为函数()y f x =的图象在点(2,(2)f )处的切线的倾斜角为45o , 所以(2)1f '=.所以2a =-,2()2f x x-'=+. ………………………………………………8分 322()[2]2m g x x x x =++- 32(2)22mx x x =++-,2()3(4)2g x x m x '=++-, ……………………………………………10分 因为任意的[1,2]t ∈,函数32()[()]2mg x x x f x '=++在区间(,3)t 上总存在极值, 所以只需(2)0,(3)0,g g '<⎧⎨'>⎩……………………………………………………12分解得3793m -<<-. ………………………………………………………14分命题:天门市教研室 刘兵华 仙桃市教研室 曹时武黄石市教研室 孙建伟 黄石二中 叶济宇 黄石四中 彭 强审校:荆门市教研室 方延伟 荆门市龙泉中学 杨后宝 袁 海。
2012高考湖北文科数学试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)本试卷共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C ⊆B的集合C的个数为()A.1 B.2 C.3 D.42A.0.35 B.0.45 C.0.55 D.0.653.函数f(x)=x cos2x在区间[0,2π]上的零点的个数为()A.2 B.3 C.4 D.54.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数5.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为()A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=06.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A .①②B .③④C .①③D .②④ 8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶49.设a ,b ,c ∈R ,则“abc =1111≤a +b +c ”的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .21π- B .112π-C .2πD .1π二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人.12.若3i 1ib +-=a +b i(a ,b 为实数,i 为虚数单位),则a +b =______.13.已知向量a =(1,0),b =(1,1),则(1)与2a +b 同向的单位向量的坐标表示为______; (2)向量b -3a 与向量a 夹角的余弦值为______.14.若变量x ,y 满足约束条件1133x y x y x y ≥⎧⎪≥⎨⎪≤⎩--,+,-,则目标函数z =2x +3y 的最小值是______.15.已知某几何体的三视图如图所示,则该几何体的体积为______.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s =________.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n}.可以推测:(1)b2 012是数列{a n}中的第______项;(2)b2k-1=______.(用k表示)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.18.设函数f(x)=sin2ωx+ωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(π4,0),求函数f(x)的值域.19.某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.21.设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.22.设函数f (x )=ax n(1-x )+b (x >0),n 为正整数,a ,b 为常数.曲线y =f (x )在(1,f (1))处的切线方程为x +y =1.(1)求a ,b 的值;(2)求函数f (x )的最大值;(3)证明:1()ef x n <.1. D 由题意可得,A ={1,2},B ={1,2,3,4}.又∵A ⊆C ⊆B ,∴C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D 项.2. B 样本数据落在区间[10,40)的频数为2+3+4=9,故所求的频率为90.4520=.3. D 令f (x )=x cos2x =0,得x =0或cos2x =0,故x =0或2x =k π+π2,k ∈Z ,即x=0或ππ24k x =+,k ∈Z .又x ∈[0,2π],故k 可取0,1,2,3,故零点的个数有5个.4. B 该特称命题的否定为“任意一个无理数,它的平方不是有理数”.5. A 当OP 与该直线垂直时,符合题意;此时k OP =1,故所求直线斜率k =-1.又已知直线过点P (1,1),因此,直线方程为y -1=-(x -1),即x +y -2=0.6. B y =f (x)y =f (-x )y =f [-(x -2)]=f (2-x)y =-f (2-x ),故选B 项.7.C 设等比数列{a n }的公比为q ,则对于f (x )=x 2,f (a n )=2n a ,由等比数列得,222211()nn n n a a q a a --==,符合题意;而对于f (x )=2x和f (x )=ln|x |,则f (a n )=2a n 和f (a n )=ln|a n |.由等比数列定义得,122n n a a -=2a n -a n -1.1ln ||ln ||n n a a -都不是定值,故不符合题意;而对于f (x )=则f (a n ),==,为定值,符合题意.故选C 项.8.D 由题意可设a =b +1,c =b -1.又∵3b =20a ·cos A ,∴3b =20(b +1)·222(1)(1)2(1)b b b b b +--+-,整理得,7b 2-27b -40=0,解得b =5,故a =6,b =5,c =4,即sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.9. A111222b c a c a b a b c+++++==≤++=++(当且仅当“a =b =c ”时,“=”成立),反之,则不成立(譬如a =1,b =2,c =3时,满足a b c≤++,但abc ≠1). 10. A 设OA =OB =2R ,连接AB ,如图所示.由对称性可得,阴影的面积等于直角扇形拱形的面积,S 阴=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=14π(2R )2=πR 2,故所求的概率是22(π2)21ππRR-=-.11.答案:6解析:设抽取的女运动员有x 人,由题意可得,85642x =,解得x =6.12.答案:3解析:由题意可得,3+b i =(a +b i)(1-i)=(a +b )+(b -a )i ,故a +b =3.13.答案:(1)(1010 (2)5-解析:(1)由题意可得,2a +b =(3,1),故|2a +b |2a +b 同向的单位向量为,即(1010;(2)由题意可得b -3a =(-2,1),故(b -3a )·a =-2.又∵|b-3a |=|a |=1,∴cos 〈b -3a ,a 〉=(3)|3|||5-⋅=--b a a b a a .14.答案:2解析:作出可行域如图所示,由l 0:23y x =-平移知过点A (1,0)时,目标函数取到最小值,代入可得z =2.15.答案:12π解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π. 16.答案:9解析:由程序框图依次可得, s =1,a =3;n =2,s =4,a =5; n =3,s =9,a =7; 结束,输出s =9. 17.答案:(1)5 030 (2)5(51)2k k -解析:(1)由题意可得,a1=1,a2=3,a3=6,a4=10,…,a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n.以上各式相加得,a n-a1=2+3+…+n=(1)(2)2n n-+,故(1)2nn na+=.因此,b1=a4=10,b2=a5=15,b3=a9=45,b4=a10=55,…,由此归纳出b2 012=a5 030.(2)b1=a4=452⨯,b3=a9=9102⨯,b5=a14=14152⨯,…,归纳出b2k-1=5(51)2k k-.18.解:(1)因为f(x)=sin2ωx-cos2ωx+ωx·cosωx+λ=-cos2ωx sin2ωx+λ=2sin(2ωx-π6)+λ,由直线x=π是y=f(x)图象的一条对称轴,可得sin(2ωπ-π6)=±1.所以2ωπ-π6=kπ+π2(k∈Z),即123kω=+(k∈Z).又ω∈(12,1),k∈Z,所以56ω=.所以f(x)的最小正周期是6π5.(2)由y=f(x)的图象过点(π4,0),得f(π4)=0,即5πππ2sin()2sin6264λ=-⨯-=-=λ=.故5π()2sin()36f x x=--f(x)的值域为[22---.19.解:(1)因为四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,所以AA2⊥AB,AA2⊥AD.又因为AB∩AD=A,所以AA2⊥平面ABCD.连接BD,因为BD⊂平面ABCD,所以AA2⊥BD.因为底面ABCD是正方形,所以AC⊥BD.根据棱台的定义可知,BD与B1D1共面又已知平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,所以B1D1∥BD.于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1.又因为AA2∩AC=A,所以B1D1⊥平面ACC2A2.(2)因为四棱柱ABCD-A2B2C2D2的底面是正方形,侧面是全等的矩形,所以S1=S四棱柱上底面+S四棱柱侧面=(A2B2)2+4AB·AA2=102+4×10×30=1 300(cm2).又因为四棱台A1B1C1D1-ABCD的上、下底面均是正方形,侧面是全等的等腰梯形,所以S2=S四棱台下底面+S四棱台侧面=(A1B1)2+4×12(AB+A1B1)h等腰梯形的高=202+4×12(10+=1 120(cm2).于是该实心零部件的表面积为S=S1+S2=1 300+1 120=2 420(cm2),故所需加工处理费为0.2S=0.2×2 420=484(元).20.解:(1)设等差数列{|a n |}的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得1111333()(2)8.a d a a d a d ⎧⎨⎩+=-,++=解得123a d ⎧⎨⎩==-或14,3.a d -⎧⎨⎩==所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不满足条件; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=371,237 3.n n n n ⎧⎨≥⎩-+,=,-,记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =2(2)[2(37)]311510222n n n n -+-+=-+.当n =2时,满足此式.综上,241,31110 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩,,21.解:(1)如图1,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 02+y 02=1.② 将①式代入②式即得所求曲线C 的方程为x 2+22y m=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(0),,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,,(0.(2)方法一:如图2,3,k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1), 直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得 (m 2+4k 2)x 2+4k 2x 1x +k 2x 12-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=212244k x m k-+,即212224m x x m k=+.因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=212224km x m k+. 于是P Q =(-2x 1,-2kx 1),PH=(x 2-x 1,y 2-kx 1)=(212244k x m k-+,212224km x m k+).而PQ ⊥PH 等价于2221224(2)04m k x PQ PH m k-⋅==+ , 即2-m 2=0.又m >0,所以m =,故存在m=,使得在其对应的椭圆x2+22y=1上,对任意的k>0,都有PQ⊥PH.图1 图2(0<m<1) 图3(m>1)方法二:如图2,3,x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(-x1,-y1),N(0,y1).因为P,H两点在椭圆C上,所以222211222222,m x y mm x y m⎧+=⎪⎨+=⎪⎩,两式相减可得m2(x12-x22)+(y12-y22)=0.③依题意,由点P在第一象限可知,点H也在第一象限,且P,H不重合.故(x1-x2)(x1+x2)≠0,于是由③式可得212121212()()()()y y y ymx x x x-+=--+.④又Q,N,H三点共线,所以k QN=k QH,即1121122y y yx x x+=+.于是由④式可得211212121121212()()12()()2P Q P Hy y y y y y y mk kx x x x x x x--+⋅=⋅=⋅=---+.而PQ⊥PH等价于k PQ·k PH=-1,即212m-=-.又m>0,得m=.故存在m=,使得在其对应的椭圆x2+22y=1上,对任意的k>0,都有PQ⊥PH. 22.解:(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n-1-a(n+1)x n,所以f′(1)=-a.又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.(2)由(1)知,f(x)=x n(1-x)=x n-x n+1,f′(x)=(n+1)·x n-1()1nxn-+.令f′(x)=0,解得1nxn=+,即f′(x)在(0,+∞)上有唯一零点01nxn=+.在(0,1nn+)上,f′(x)>0,故f(x)单调递增;而在(1nn+,+∞)上,f′(x)<0,f(x)单调递减.故f(x)在(0,+∞)上的最大值为1()()(1)111(1)nnnn n n nfn n n n+=-=++++.(3)令φ(t)=ln t-1+1t(t>0),则22111()t'tt t tϕ-=-=(t>0).在(0,1)上,φ′(t )<0, 故φ(t )单调递减;而在(1,+∞)上,φ′(t )>0, 故φ(t )单调递增,故φ(t )在(0,+∞)上的最小值为φ(1)=0, 所以φ(t )>0(t >1), 即ln t >1-1t (t >1).令t =1+1n,得11ln1n nn +>+,即11ln()ln e n n n ++>, 所以11()e n n n++>,即11(1)en n nn n +<+.由(2)知,()11(1)enn nf x n n +≤<+,故所证不等式成立.。
2012年高考真题试卷数学文(湖北卷)详细答案解析
2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.9.A 【解析】当1abc ==+=,而()()()()2a b c a b b c c a ++=+++++≥a b c ==,且1abc =,即a b c ==时等号成立),a b c+=≤++;但当取2a b c ===,显然有a b c≤++,但1abc ≠,即由a b c≤++不可以推得1abc =;综上,1abc =是a b c≤++的充分不必要条件.应选A. 【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①, 而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 12. 3【解析】因为31bia bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查.13.(Ⅰ)1010⎛ ⎝⎭;(Ⅱ)5- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,1010x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 35θ--===-- b a a b a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y =+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412Vπππ=⨯⨯⨯+⨯⨯=.【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环;第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s的值.综上,输出的s值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k-【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2nn na+=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数), 2151(51)(511)5(51)22k k k k k k b a ----+-===, 故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查.20.同理18【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】七彩教育网 免费提供W ord 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.。
2012年高考真题——数学文(湖北卷)详细解析
2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos 20=x ;其中,由cos 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===是常数,故③符合条件;对于④,11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等.8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20b A a =②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc+-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.9.A 【解析】当1abc ==++= 而()()()()2a b c a b b c c a ++=+++++≥(当且仅当a b c ==,且1abc =,即a b c ==时等号成立),a b c =++;但当取2a b c ===,显然有a b c +≤++,但1abc ≠,即由a b c ≤++不可以推得1abc =;综上,1abc =a b c ≤++的充分不必要条件.应选A. 【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,形OAB=221(2)4a a ππ=①,则S 1+S 2+S 3+S 4=S 扇而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3+S 2+S 32a π=②.①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影. 由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形. 【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用. 11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人.【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查.12. 3【解析】因为31bia bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查. 13.(Ⅰ)1010⎛⎝⎭;(Ⅱ)5- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得10x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为1010⎛⎫⎪ ⎪⎝⎭. (Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 3θ--===- b a a b a a【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y=+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值. 来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412V πππ=⨯⨯⨯+⨯⨯=. 【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积. 16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环; 第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s 的值. 综上,输出的s 值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k -【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2n n n a +=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======. 从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数), 2151(51)(511)5(51)22k k k k k k b a ----+-===,故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查. 19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查.20.同理18【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln x e x 等的函数求导的运算及其应用考查.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省八校2012届高三第一次联考数学试题(文)考试时间:2011年12月15日下午15:00—17:00注意事项: 1.答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如要改动,用豫皮擦干净后。
再选涂其它答案标号,答在试题卷上无效.3.非选择题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知i 为虚数单位,若{|(),},{|cos ,},n M x x i n Z N x x k k R M N π==-∈==∈⋂=则( ) A .[-1,1] B .{-1,0,1} C .{-1,1} D .{1}2.若p 是真命题,q 是假命题,则( ) A .p q ∨是假命题 B .p q ∧⌝是假命题 C .p q ⌝∨⌝是真命题D .p q ⌝∧是真命题3.设数列{}n a 是等差数列,且2158,5,n a a S =-=是数列{}n a 前n 项的和,则有( )A .910S S <B .910S S =C .1110S S <D .1110S S =4.要得到函数()cos f x x =的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移6π个单位 B .向左平移6π个单位C .向右平移2π个单位D .向左平移2π个单位5.已知平面上不共线的四点O ,A ,B ,C ,若||43,||AB O A O B O C O AC -+==则 ( )鄂南高中、华师一附中、黄冈中学、黄石二中、荆州中学、襄 阳 四中、襄阳五中、孝感高中A .43B .12C .2D .346.下列命题正确的个数是( ) ①平行于同一个平面的两条直线可以相交 ②直线l 与平面α不垂直,则直线l 与平面α内的有直线都不垂直 ③若平面α内存在不共线的三点到平面β的距离相等,则//αβ ④对直线,m n 和平面,,,//m m n n ααα⊥⊥若则A .1B .2C .3D .47.已知函数31()log z f x e x-=+,若实数0x 是方程()0f x =的解,且101,()x x f x >则的值( )A .等于0B .不大于0C .恒为正值D .恒为负值8.已知直线1(0)y kx k =->与抛物线2:4C x y =交于A 、B 两点,F 为C 的焦点,若||3|,|FB FA k ==则( )A .43B .33C .32D .29.已知指数函数(01)x y a a a =>≠且图像上任意一点00(,)P x y 处导数值均小于0,则函数log |23|a y x =-的大致图像为( )10.记号[()f x ]表示不大于()f x 的最大整数,已知1()21xx ef x e =-+,则函数[()][()]f x f x +-的值域为( ) A .(-1,1) B .{1,0,-1} C .{0,-1} D .{0} 二、填空题:(本大题5个小题,每小题5分,共25分,将答案填在答题卷相应位置上)11.若“2280x x -->”是“x m <”的必要不充分条件,则m 最大值为 。
12.一个正三棱柱的三视图如下图所示,则这个正三棱柱侧视图的面积是 cm 2。
13.直线22(1)14440y m x x y x y =-++--+=与圆相交于A 、B 两点,则弦长|AB|的最小值为 。
14.已知函数()f x 是定义在(,1]-∞上的减函数,且对一切x R ∈,不等式22(sin )(sin )f k x f k x -≥-恒成立,则k 的值为 。
15.函数y kx b =+,其中,k b 是常数,其图像是一条直线,称这个函娄为线性函数,而对于非线性可导函数()f x ,在已知点0x 附近一点x 的函数值()f x 可以用下面方法求其近似代替值,000()()()()f x f x f x x x '≈+-,利用这一方法,对于实数m =取0x 的值为4,则m 的近似代替值是 。
三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
) 16.(本小题满分12分)设2,sin ),(1,cos )a x x b x ωωω==(其中0ω>),已知()2f x a b =⋅-且()f x 最小正周期为2.π(1)求ω的值及()y f x =的表达式; (2)设2534(,),(,),(),().cos()636355f f ππππαβαβαβ∈∈--==--求的值。
17.(本小题满分12分)四棱锥S —ABCD 底面是正方形,SD ⊥平面ABCD ,SD=AD=a ,点E 是SD 上的点,且(01)D E D S λλ=<≤(1)求证:对任意的(0,1]λ∈都有A C B E ⊥; (2)若二面角C —AE —D 的大小为60︒,求λ的值。
18.(本小题满分12分) 某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数21()10002g t t t =-+,其中t 是产品售出的数量,且01000t ≤≤。
(利润=销售收入—成本)(1)若x 为年产量,y 表示利润,求()y f x =的解析式; (2)当年产量为多少时,工厂的利润最大,最大值为多少? 19.(本小题满分12分)在数列{}n a 中,21a +是13a a 与的等差中项,设1(1,2),(,)n n x y a a +== ,且满足//.x y(1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项的和为n S ,若数列{}n b 满足2log (2)n n n b a s =+,试求数列{}n b 的前n 项的和.n T20.(本小题满分13分)如图,椭圆2222:1(0)x y C a b ab+=>>的顶点为A 1,A 2,B 1,B 2。
焦点为1212,,||2F F F F c =,向量11A B 在向量12A A上的投影为2,且椭圆上的点到焦点距离的最小值为1。
(1)求椭圆C 的方程;(2)是否存在同时满足以下条件的直线: ①与椭圆相交于M ,N 两点,以线段MN 为直径的圆过原点; ②与圆心在原点,半径为c 的圆相切;若存在,求出直线l 的方程;若不存在,请说明理由。
21.(本小题满分14分)已知二次函数()f x对任意实数x均满足2(2)(2)284,(1)0.f x f x x x f-+-=-+-=且(1)求()f x的表达式;(2)若关于x的方程()3lnf x x b=+在[1,2]上有两个不同实数解,求实数b的取值范围;(3)设119()ln228g x m x f x⎛⎫=+++⎪⎝⎭,若0,()0x g x∃>≤使成立,求实数m的取值范围。
数学文科卷参考答案命题:湖北省荆州中学审题:湖北省荆州中学一、选择题(50分)二、填空题(25分)三、解答题()sin(2)23f x a b w x π∴=⋅-=+又0w > 222T wππ== 12w ∴= 5分()sin()3f x x π∴=+6分4()5f β=-4s i n ()35πβ∴+=-,又5(,)63ππβ∈--,∴(,0)32ππβ+∈-3c o s ()35πβ∴+= 10分17. (1)证明: SD ⊥平面A B C D ∴SD A C ⊥又A B C D 为正方形 B D A C ∴⊥,又SD BD D =A C ∴⊥平面S D B(2)过点D 作D F AE ⊥交A E 于点F ,连结C F ,C D ⊥平面S A D ,则D F C ∠即为二面角C A ED --的平面角8分2λ∴=12分18.解.(1)当01000x ≤≤时,t x =,22110001000200001002y x =-⨯+--480000100x =-4分 ()2190020000(01000)2480000100(1000)x x x f x x x ⎧-+-≤≤⎪∴=⎨⎪->⎩6分∴()480000100100f x <-⨯,即()380000f x < 11分∴当年产量为900件时,工厂的利润最大,最大值为385000元. 12分即1222n n n a -=⋅= 6分(2) 由2nn a = 12(12)2212nn n S +⨯-∴==-- 7分122n n S +∴+=123122222(1)2nn n T n +∴-=⨯++++-+⋅1212(222)(1)2n n n +=++++-+⋅112(12)2(1)2212nn n n n ++⨯-=+-+⋅=-⋅-12n n T n +∴=⋅12分2a ∴= 2分又1a c -= 1c ∴=,2223b a c =-=∴椭圆方程为22143xy+= 5分又以M N 为直径的圆过原点O M O N ∴⊥ 12120x x y y ∴+= 7分将(Ⅰ)代入上式可得222222(1)(412)8(34)0k m k m m k +--++= (Ⅱ)将221m k =+代入(Ⅱ)可得25(1)0k -+=,即不存在这样的实数k ,∴ 此直线l 不存在. 10分②当l 垂直于x 轴时 ∴直线l 的方程为1x =或1x =- 当1x =时,直线l 与椭圆的交点为3(1,)2和3(1,)2-9104O M O N ⋅=-≠ 11分13分21.解:(1)设2()(0)f x ax bx c a =++≠第 10 页 共 11 页 金太阳新课标资源网(2)()3ln f x x b =+,23ln 2b x x x ∴=---设()23ln 2h x x x x =---,则∴()h x 的最小值为3533ln 242h ⎛⎫=-- ⎪⎝⎭,又()()12,23ln 2h h =-=-23ln 2->-①当0m >时,()g x 在为增函数,显然0x ∃>,如1m x e -=,使得()0g x ≤成立,所以0m >符合题意;9分∴()g x在(为减函数,在)+∞为增函数;金太阳新课标资源网 第 11 页 共 11 页金太阳新课标资源网 ()m in ln 2m g x gm ==-+ln 02m m -+≤,∴。