水工建筑物重力坝课程设计

合集下载

水工建筑物重力坝课程设计(交大水利2012级).

水工建筑物重力坝课程设计(交大水利2012级).

第一章工程综合说明1.1工程等别及建筑物级别水电站装机容量20万千瓦,平均发电量5.09亿度。

工程建成后,可增加保灌面积50万亩。

根据工程的效益、库容、灌溉面积、防洪标准及重要程度等综合因素确定本工程属于Ⅲ等工程,其主要建筑物为3级,次要建筑物为4级,临时建筑为5级。

1.2 枢纽总体布置本枢纽河谷底宽100米左右,主厂房平面尺寸81×18㎡,根据初步布置,溢流坝段与主厂房并列布置。

厂房坝段布置在偏左岸。

由于坝址上游30公里处有铁路干线另有公路相通,所以进厂公路布置在左岸便于运送设备。

开关站布置在进厂公路一侧。

过木筏道布置在右岸,与厂方隔开,以防筏道运行时木材滑落,影响进厂交通。

第二章坝型及主要建筑物的型式选择2.1坝型选择坝址地形地质条件:河谷断面比较宽浅,近似梯形。

坝基为花岗斑岩,风化较浅,岩性均一,岩层新鲜坚硬完整。

筑坝材料:坝区大部分为花岗斑岩,基岩埋深浅,极易开采,在坝址下游勘探有6个沙料场,储量丰富,符合规范要求。

但坝址处缺乏筑坝土料。

根据以上情况分析如下:拱坝方案:此处河谷断面呈梯形状,不是v字形。

没有适宜的地形条件,故该方案不可取。

土石坝方案:由于当地缺乏土料,故该方案也不可取。

重力坝方案:混凝土重力坝和浆砌石重力坝都能充分利用当地的地形地质条件,泄洪问题容易解决,施工导流容易。

浆砌石重力坝虽可以节约水泥用量,但不能实现机械化施工,施工速度慢,施工质量难以控制,故此方案也不可取。

混凝土重力坝采用机械化施工,施工方便,施工速度快,工期短。

综合以上方案:本工程坝型宜用混凝土重力坝。

2.2 枢纽组成建筑物(1)挡水建筑物:混凝土重力坝(2)泄水建筑物:坝身泄水(3)水电站建筑物:坝后式厂房、引水管道及开关站等(4)其他建筑物:过木筏道等第三章、非溢流坝面设计3.1 剖面拟定3.1.1 剖面设计原则1、设计断面要满足稳定和强度要求;2、力求剖面较小;3、外形轮廓简单;4、工程量小,运用方便,便于施工。

07水工建筑物课程设计指导书-龙泉溪重力坝

07水工建筑物课程设计指导书-龙泉溪重力坝

《水工建筑物》课程设计指导书适用专业: 水利水电工程课程代码: 8512100学时: 2周学分: 2.0编写单位: 西华大学能源与环境学院水电系编写人: 张焕敏系(部)主任:分管院长:批准时间: 年月日1、课程设计的目的本课程设计是本科水利水电工程专业最重要的实践教学环节之一,其目的是:(1)、巩固和加深学生已掌握的专业知识。

(2)、培养学生运用所学知识解决实际工程问题的能力。

(3)、训练学生计算、绘图等基本技能。

(4)、培养学生严肃认真、实事求是和刻苦钻研的作风。

2、课程设计组织形式由课程设计指导教师给每个学生提供不同的工程参数,每个学生根据课程设计任务书的要求并结合自己的工程参数按时、按质、按量和独立完成设计。

3、课程设计步骤(1)、熟悉资料。

(2)、根据教师提供的水文资料、地质资料、地形资料确定堰高和坝高。

(3)、根据稳定条件和应力条件选择合理的非溢流坝剖面。

(4)、溢流坝剖面设计(孔口布置设计与堰面曲线设计)。

(5)、消能设计与验算。

(6)、细部构造设计(坝顶交通布置、坝内廊道布置、防渗排水措施等)。

(7)、设计说明书的编写。

(8)、设计图纸的绘制。

(9)、成果整理,上交设计全部成果并答辩。

4、课程设计要点(1)、确定工程等级。

(2)、在已知设计洪水位、设计泄洪量、校核洪水位、校核泄洪量的前提下,确定堰顶高程和坝顶高程。

(3)、非溢流坝基本剖面的拟订。

(4)、溢流坝剖面及消能方式的拟订。

(5)、非溢流坝实用剖面和溢流坝实用剖面的设计和静力校核:1)非溢流坝实用剖面设计。

2)确定正常和非常情况的荷载组合及荷载计算。

3)正常和非常工况下分别对非溢流坝和溢流坝进行整体稳定计算,校核其安全性。

要求采用极限状态设计法进行稳定验算。

4)正常和非常工况下分别对非溢流坝和溢流坝的坝趾进行承载能力极限状态计算,坝踵则进行正常使用极限状态验算。

若不满足承载能力极限状态或正常使用极限状态的要求,原则上要修正剖面重新设计!(6)、消能设计:1)选择闸墩型式及尺寸;2)用水力学方法决定消能结构的各部分尺寸;3)估算消能效果及应采取的消能措施。

水工建筑课程课程设计-混凝土重力坝设计

水工建筑课程课程设计-混凝土重力坝设计
2、防浪墙顶高程的确定
设计防浪墙顶高程H设=70.8+3.25=74.05m,校核防浪墙顶高程H校=72.1+1.90=74m。
防浪墙顶高程取以上两者中的最大值,故四舍五入取大值,将防浪墙顶高程取为74.10m,完全符合“高出静水位最小超高1m”的要求。在现场条件允许的情况下,为了安全起见,本坝的坝基考虑下到微风化层顶部,故本坝的最大坝高为50.1m。
微风化岩顶面:150—160Mpa
3、坝体混凝土与岩基的摩擦系数
坝体混凝土与弱风化岩的抗剪断摩擦系数:0.85;抗剪断粘聚力1.0Mpa。
坝体混凝土与微风化岩的抗剪断摩擦系数:1.05;抗剪断粘聚力1.3Mpa。
二、水库特征
表1水库特征值
正常高水位
死水位
淤积高程
总库容
正常设计吹程
校核水位吹程
70.0m
为防止波浪漫过坝顶,防浪墙顶在各种水位以上还应有相应的超高
1、安全超高:
Δh正=hl+hz+hc(m)
式中:
hL——波浪高度,坝顶部上游面多为竖直方向,垂直方向传来的波浪在此坝面产生的驻波,浪顶高出波浪中心线的高度是其余波浪的两倍。
hz——波浪中心线至静水位的高度。
hc——安全加高,参照《水工建筑物》坝顶安全加高选取表,选坝的设计安全加高为0.5m,校核安全加高为0.4m。
47.0m
42.0m
9.21×108m3
4km
4.5km
表2各种频率下的水位和流量
频率(%)
5
1
0.1
0.05
上游水位(m)
70.0
70.8
72.1
72.8
下游水位(m)
35.0

重力坝课程设计

重力坝课程设计

1. 课程设计目的混凝土坝电算课程设计是水工建筑物教学计划中一个重要的实践性教学环节,对培养和提高学生的水工结构设计基本技能,启发学生对实际结构工作情况的认识和巩固所学的理论知识具有重要作用。

课程设计包括重力坝设计的主要理论与计算问题,通过课程设计可以达到综合训练的目的。

1).学会融会贯通“水工建筑物”课程所学专业理论知识,完成重力坝较完整的设计计算过程,以加深对所学理论的理解与应用。

培养综合运用已学的基础理论知识和专业知识来解决基本工程设计问题的初步技能,全面分析考虑问题的思想方法、工作方法。

2).培养设计计算、绘图、编写设计文件、使用规范手册和应用计算机的能力。

提高查阅和应用参考文献和资料的能力。

2. 课程设计题目描述和要求1).设计标准:某水库位于某河道的上游,库区所在位置属高山峡谷地区。

根据当地的经济发展要求需修建水库,该工程以发电、灌溉、防洪为主。

拟建的水库总库容 1.33亿立方米,电站装机容量9600kw 。

工程等级、建筑物级别以及各项控制标准、指标按SL252-2000水利水电工程等级划分及洪水标准可得,本设计的工程规模为大(2)型,工程等级为Ⅱ级,永久建筑物的主要建筑物级别为2级。

2).坝基地质条件①开挖标准:本工程坝体在河床部分的基岩设计高程原定在827.7m 。

②力学指标:坝体与坝基面接触面的抗剪断摩擦系数f '=0.9~1.1,粘结力系数c '=700~800kPa 。

本设计抗剪断摩擦系数f '=1.07,粘结力系数c '=850kPa③基岩抗压强度:15002/cm kg 3).特征水位经水库规划计算,坝址上、下游特征水位如下:P=0.1%校核洪水位为909.92m ,相应下游水位为861.15m ;P=1% 设计洪水位为907.32m ,相应下游水位为859.80m ; 正常挡水位为905.70m ;相应下游水位为855.70m ;淤沙高程为842.70m ;4).荷载及荷载组合荷载应按实际情况进行分析,决定计算内容。

(完整word版)重力坝课程设计

(完整word版)重力坝课程设计

目录一、基本资料................................... - 1 -1.1工程概况................................... - 1 -1。

2设计基本资料.............................. - 4 -1。

3水库特征表................................ - 6 -1。

4电站建筑物基本数据........................ - 7 -二、剖面设计..................................... - 8 -2。

1坝顶高程: ................................. - 8 -2。

2波浪要素.................................. - 8 -2.3坝顶宽度.................................. - 13 -2。

4坝坡的确定。

............................. - 13 -2。

5坝体的防渗排水。

......................... - 13 -2。

6拟定非溢流坝基本剖面如图所示............. - 14 -2.7荷载计算及组合............................ - 14 -三、挡水坝稳定计算.............................. - 16 -3.1荷载计算.................................. - 16 -3.2稳定计算.................................. - 20 -四、挡水坝应力计算:............................ - 21 -4。

1坝址抗压强度极限状态计算: ................ - 21 -4.2坝体上下游面拉应力正常使用极限状态计算.... - 24 -五、重力坝的地基处理............................ - 25 -5。

水工建筑物课程设计(重力坝)

水工建筑物课程设计(重力坝)

水工建筑物课程设计(重力坝)1000字一、前言重力坝是水利工程中广泛应用的水工建筑物之一,具有简单、稳定、可靠等特点。

为了能够更好地学习和理解重力坝的设计与施工,本文将结合实际工程案例,介绍重力坝的基本概念、设计要点、施工过程以及安全措施。

二、概述重力坝是指靠坝体自身的重力抵抗水压力,并使坝体能够保持在平衡状态的坝。

重力坝通常具有比较宽的顶宽、大坝底宽,以及垂直或近垂直的坝面。

三、设计要点1. 坝体稳定性重力坝的稳定性是设计的重点之一,因此坝体的自重和坝前水柱作用所产生的水压力必须能够平衡。

为了保证坝体的稳定性,需要进行相应的坝体截面优化和稳定分析。

2. 溢洪道设计溢洪道是重力坝防洪的主要措施之一,需要根据坝址洪水特征和设计洪水确定相应的溢洪道参数。

一般来说,溢洪道的设计应该充分考虑坝上游的泄洪需求,同时确保洪水能够安全地通过坝址,避免发生洪水冲毁等事故。

3. 切尾设计切尾是指将河床河岸的土质挖出,以便于坝底的施工和加强重力坝的水密性。

在切尾的设计中应该充分考虑河床河岸土质的稳定性,避免在切尾过程中发生坍塌和滑坡等不安全情况。

四、工程案例以南岸水库为例,该水库位于河南省某市,总库容为 3.3亿立方米,控制流域面积为1117.1平方千米,最大蓄水位为265.5米。

该水库为一座重力坝,具体参数如下:1. 坝址基础岩层接触深度: -76米2. 坝顶标高: 277.5米3. 坝顶长度: 534.75米4. 坝顶宽度: 10.5米5. 坝脚标高: 206米6. 坝脚长度: 342米7. 坝脚宽度: 42米8. 坝高: 71.5米五、施工过程1. 剥离坝址土层:将坝址表土和浮石剥离至基岩层,同时进行基岩凿打和清理。

2. 贴面铺垫:在坝址的基础岩层上进行界板定位和方案确认,贴面铺垫,同时进行模板安装。

3. 混凝土浇筑:进行混凝土浇筑之前,需要对混凝土原材料进行检测和质量监控,保证混凝土强度和性能符合设计要求。

重力坝课程设计任务书

重力坝课程设计任务书

水工建筑物课程设计(重力坝枢纽任务书及指导书)水工教研室2015.01一、课程设计目的与要求通过设计,使学生初步掌握重力坝设计的一般原则、方法和步骤,加深和巩固基础理论知识,培养学生综合运用已学的基础理论知识和专业知识来解决基本工程设计问题的初步技能,全面分析考虑问题的思想方法以及查阅参考文献、计算、绘图和编写设计文件的能力。

设计过程中,学生必须发挥独立思考能力,在老师的指导下按时独立完成设计任务。

设计时应采用最新设计技术规范。

二、设计任务1、根据地质、地形条件和枢纽建筑物的作用,进行枢纽布置方案比较,通过定性分析确定最优枢纽布置方案。

并绘制下游立视图。

2、进行挡水坝的剖面设计,内容包括:拟定挡水坝剖面尺寸,然后进行稳定及应力校核,确定安全合理的剖面。

并绘制挡水坝断面图。

3、进行细部构造设计,包括:标号分区、分缝、止水、廊道、排水等。

4、成果包括:设计计算说明书1份,图纸2张。

三、基本资料德山水库位于河北省唐山、承德两地区交界处,坝址位于迁西县扬岔子村的滦河干流上,控制流域面积33700km2,总库容25.5亿m3。

水库枢纽为混凝土重力坝,由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供天津市和唐山地区工农业及城市人民生活用水,结合引水发电,并兼顾防洪要求。

根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为I级建筑物,其它建筑物按II级建筑物考虑。

1、工程地质资料(1)地貌坝址为低谷丘陵地区,两岸相对高差不大,河谷开阔,宽约600m,上下游两公里范围内河道顺直,主河槽位于右岸。

河床高程137m左右。

枯水期河床宽约100m,由于受河流侧向的侵蚀,两岸地形不对称。

右岸坡度较陡约60°左右,左岸较缓约20°,河床中除漫滩外,左岸还有三级阶地发育,一、二级阶地高程自140m~160m,三级阶地与缓坡相接直达山顶。

覆盖层为7~12m厚的砂砾卵石冲积层。

(2)岩性坝基主要岩性为太古界拉马沟片麻岩,第四大岩层(Ar,Ⅰ4)为角闪斜长片麻岩,具有粗粒至中间细粒纤状花岗变晶结构,主要矿物为斜长石、石英及角闪石,本层岩体呈厚层块状,质地均一、岩性坚硬、抗风化力强、工程地质条件较好,总厚度185m左右。

水工建筑物重力坝课程设计【精品毕业设计(论文)】[管理资料]

水工建筑物重力坝课程设计【精品毕业设计(论文)】[管理资料]

《水工建筑物》(2011——2012学年第二学期)重力坝课程设计目录第一章基本资料 (2)1、重力坝课程设计任务书 (2)2、基本资料 (4)第二章计算书 (7)1、确定校核洪水位 (7) (7) (7)2、确定工程等级及坝型 (7)3、确定坝顶高程 (7)的计算 (7) (9)4、非溢流坝实用剖面的设计和静力校核 (10) (10)确定设计水位和校核水位下的荷载组合及荷载计算 (12)对两种工况进行非溢流坝的抗滑稳定计算,校核其安全性 (14)对非溢流坝坝底水平截面的边缘应力以及底部截面的内部应力计算,校核其强度 (15)用材料力学法计算边缘应力 (15)坝基面应力计算 (16)5、溢流坝剖面的拟定和消能设计 (19)泄水方式的选择 (19)溢流坝剖面拟定 (19)消能防冲设计 (23)6、细部构造设计 (25)坝基的连接、灌浆和排水 (25)坝基固结灌浆 (25)坝基防渗帷幕灌浆 (26)坝基排水 (27)坝身廊道和排水 (27)纵横缝构造及止水 (28)坝顶布置 (29)第一章基本资料1、重力坝课程设计任务书一、设计目的及要求课程设计是为了加强和巩固学生对理论知识的掌握,培养学生运用理论知识解决实际问题能力,是水工建筑物课程实践教学的必要环节,其目的和要求是:1、巩固和加深学生的基本理论和专业知识2、培养学生运用所学知识解决实际问题的能力;3、培养学生计算、绘图等基本技能的训练;培养学生实事求是和刻苦钻研的工作作风;在指导教师的指导下,学生必须按计划独立完成设计,成果完整,并要答辩。

二、设计内容1、确定工程等级;2、在已知设计洪水位、设计泄洪流量和校核泄洪流量的前提下,确定堰顶高程,计算校核洪水位和坝顶高程;3、非溢流坝基本剖面的拟定;4、溢流坝剖面及消能方式的拟定;5、非溢流坝实用剖面的设计和静力计算;(1)非溢流坝实用剖面设计(2)确定正常和非常情况的荷载组合及荷载计算;(3)对以上两种情况进行非溢流坝的整体稳定计算,校核安全性;(4)对以上两种情况的坝底面的边缘应力计算,校核其强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 工程总体布置工程等别及建筑物级别根据《水利水电工程等级划分及洪水标准(SL252-2000)》,确定工程规模、工程等别、防洪标准及设计标准。

灌溉农田在50万亩以上,属于Ⅱ等中型工程。

发电在20万千瓦。

根据规范,按各指标中最高等级确定工程等别:综合取水库工程等级为Ⅱ等中型工程。

根据《水利水电工程等级划分及洪水标准(SL252-2000)》中“水库大坝提级指标”表中的规定,混凝土和浆砌石重力坝大坝高度超过了100m,按提高一级的规定,大坝的建筑物级别提高为1 级。

其余永久性水工建筑物中的主要建筑物为2级,次要建筑物和临时建筑物为2 级,而洪水标准不提高。

2 非溢流坝坝体设计2.1 剖面拟定2.1.1 剖面设计原则1、设计断面要满足稳定和强度要求;2、力求剖面较小;3、外形轮廓简单;4、工程量小,运用方便,便于施工。

2.1.2 拟定基本剖面重力坝的基本剖面是指在自重、静水压力(水位与坝顶齐平)和扬压力三项主要荷载作用下,满足稳定和强度要求,并使工程量最小的三角形剖面,如图3—1,在已知坝高H、水压力P、抗剪强度参数f、c 和扬压力U 的条件下,根据抗滑稳定和强度要求,可以求得工程量最小的三角形剖面尺寸。

根据工程经验,一般情况下,上游坝坡坡率n=0~0.2,常做成铅直或上铅直下部倾向上游;下游坝坡坡率m=0.6~0.8;底宽约为坝高的0.7~0.9 倍。

图3-1 重力坝的基本剖面图示2.1.3 拟定实用剖面一、确定坝顶高程1、超高值Δh 的计算(1)基本公式坝顶高程应高于校核洪水位,坝顶上游防浪墙顶高程应高于波浪顶高程,防浪墙顶至设计洪水位或校核洪水位的高差Δh,可由式(3-1)计算。

Δh = h1% + h z + h c(3-1)Δh—防浪墙顶与设计洪水位或校核洪水位的高差,m;H1%—累计频率为1%时的波浪高度,m;h z—波浪中心线至设计洪水位或校核洪水位的高差,m;h c—安全加高,按表3-1 采用,对于Ⅲ级工程,设计情况h c=0.4m,校核情况h c=0.3m。

表2-1 坝的安全加高h c运用情况坝的级别1 2 3设计情况(基本情况)0. 7 0. 5 0. 4校核情况(特殊情况)0. 5 0. 4 0. 3下面按官厅公式计算h1% , h z。

(适用于V0小于20m/s,D小于20km的峡谷水库)V0 为计算风速,m/s,设计洪水位和校核洪水位采用不同的计算风速值。

正常蓄水位和设计洪水位时,采用的最大风速17m/s,西北偏西;校核洪水位时,采用多年平均最大风速12m/s。

D 为吹程,km,按回水长度计算:正常蓄水位时回水长度为4.5km,设计洪水位时回水长度为4km,校核洪水位时回水长度为4km。

波高hl,当gD/V02=20~250 时,为累计频率5%的波高h5%;当gD/V02=250~1000 时,为累计频率10%的波高h10%。

规范规定应采用累计频率为1%时的波高,对应于5%波高,应乘以1.24;对应于10%波高,应乘以1.41。

首先计算波浪高度h l和波浪长度L 和波浪中心线超出静水面的高度h z。

(1)设计洪水位时Δh 计算风速采用的风速217m/s,吹程D=4.5km。

波浪三要素计算如下:波高hl=0.0166 V05/4 D1/3=0.0166×175/4×4.51/3=0.95m波长L=10.4(h1)0.8 =10.4×0.950.8=9.98m壅高h z=πh l2/L=3.14×0.952/9.98=0.28mgD/V02=9.8×4500/172=152.60<250;h1%=1.24h5%=1.24×0.95=1.18m ; h z = 0.28m ; h c = 0.7mΔh = h1% + h z + h c=1.18+0.28+0.7=2.16m(2)校核洪水位时Δh 计算风速采用多年平均风速12m/s,D=4km。

波浪三要素计算如下:波高h l=0.0166 V05/4 D1/3=0.0166×125/4×41/3=0.59m波长L=10.4(h1)0.8 =10.4×0.590.8=6.86m壅高h z=πh l2/L=3.14×0.592/6.86m=0.16mgD/V02=9.8×4000/122=272.22>250;h1%=1.41h10%=1.41×0.59=0.83m ; h z = 0.16m ; h c = 0.5mΔh = h1% + h z + h c=0.83+0.16+0.5=1.49m2、坝顶高程计算坝顶高程按式(3-5)计算,并选用其中较大值坝顶高程=设计洪水位+Δh 设坝顶高程=校核洪水位+Δh 校(3-5)根据以上两种水位时Δh 计算结果,得出两种状况下坝顶高程。

(1)设计洪水位时的坝顶高程:▽坝顶=设计洪水位+Δh=186.60+2.16 =188.76m(2)校核洪水位时的坝顶高程:▽坝顶=校核洪水位+Δh=189.60+1.49=191.09m为保证大坝的安全运行,应该选用其中的较大值▽坝顶=191.09m,且坝顶高程要高于校核洪水位,所以取坝顶高程为▽191.09m。

2.2、确定坝基高程河床高程100m,校核洪水位为191.09m,地基开挖时河床上的大块石、卵石必须清除5-6 m,所以开挖应按100m 以上坝高标准要求考虑。

根据规范,坝高超过100m 时,可建在新鲜下部基岩上,故挖6m。

坝基为花岗斑岩,风化较浅,岩性均一新鲜完整坚硬。

坝址的地质构造简单,无大的地质构造,缓倾角节理延伸短,整体滑动可能性小。

但倾角节理较发育,以节理构造为主,应结合基础开挖予以挖除7m。

通过立式图上确定的坝基开挖线定出建基面最低开挖高程为▽87m,因此,最大坝高为104m,属于高坝。

2.3、拟定坝顶宽度坝顶宽度应根据设备布置、运行、检修、施工和交通等需要确定并应满足抗震,特大洪水时维护等要求。

因无特殊要求,根据规范的规定,坝顶宽度可采用坝高的8%~10%取值,且不小于2m 并应满足交通和运行管理的需要。

按坝高的10%计算,即为10.4米,考虑到上游防浪墙、下游侧护栏、排水沟槽及两边人行道等,取坝顶宽为12m,以满足大坝维修作业通行需要。

2.4、拟定剖面尺寸根据规范SL319-2005规定,非溢流坝段的基本断面呈三角形,其顶点宜在坝顶附近。

基本断面上部设坝顶结构。

坝体的上游面可为铅直面、斜面或折面。

实体重力坝上游坝坡宜采用1∶0~1∶0.2,坝坡采用折面时,折坡点高程应结合电站进水口、泄水孔等布置,以及下游坝坡优选确定。

下游坝坡可采用一个或几个坡度,应根据稳定和应力要求并结合上游坝坡同时选定。

下游坝坡宜采用1∶0.6~1∶0.8;对横缝设有键槽进行灌浆的整体式重力坝,可考虑相邻坝段联合受力的作用选择坝坡。

拟定坝体形状为基本三角形。

坝的下游面为均一斜面,斜面的延长线与上游坝面相交于最高库水位处,为了便于布置进口控制设备,又可利用一部分水重帮助坝体维持稳定,本次设计采用上游坝面上部铅直,下部倾斜的形式。

该形式为实际工程中经常采用的一种形式,具有比较丰富的工程经验。

上游设置成折面可利用淤沙增加坝体自重,折点设置在淤沙水位以上,由资料可知,淤沙高程为115m,由于死水位为164m,折点取在高程为151m 的位置。

通过最优方案的比较,上游坝坡取1:0.18,下游坝坡取1:0.7。

2.5、坝底宽度拟定坝底宽度约为坝高的0.7~0.9 倍,本工程的坝高为104m,通过已经确定的上下游坝坡坡率,最终确定坝底宽度B=12+73=85m。

2.6、基础灌浆廊道尺寸拟定高、中坝内必须设置基础灌浆廊道,兼作灌浆、排水和检查之用。

基础灌浆廊道的断面尺寸,应根据浇灌机具尺寸即工作要求确定,一般宽为2.5~3m,高为3~4m,为了保证完成其功能且可以自由通行,本次设计基础灌浆廊道断面取3.0×3.5m,形状采用城门洞型。

廊道的上游壁离上游侧面的距离应满足防渗要求,在坝踵附近距上游坝面0.05~0.1 倍作用水头、且不小于4~5m 处设置,本次设计取8m,为满足压力灌浆,基础灌浆廊道距基岩面不宜小于1.5 倍廊道宽度,取5m。

3. 荷载计算及其组合重力坝的主要荷载主要有:自重、静水压力、浪压力、泥沙压力、扬压力、地震荷载等,常取1m坝长进行计算。

荷载组合可分为基本组合与特殊组合两类。

基本组合属于设计情况或正常情况,由同时出现的基本荷载组成。

特殊组合属校核情况或非常情况,由同时出现的基本荷载和一种或几种特殊荷载组成。

设计时应从这两类组合中选择几种最不利的、起控制作用的组合情况进行计算,使之满足规范中规定的要求。

本次设计考虑的基本荷载组合为正常蓄水位和设计洪水位;特殊组合为校核洪水位和地震情况,它们分别考虑的荷载如表3-1 所示。

表3-1 荷载组合2.分期施工的坝应按相应的荷载组合分期进行计算。

3.施工期的情况应作必要核算,作为特殊组合。

4.根据地质和其他条件,如考虑运用时排水设备,易于堵塞,须经常维修时,应考虑排水失效的情况,作为特殊组合。

5.地震情况的静水压力、扬压力、浪压力按正常蓄水位计算。

6.表中的“+”表示应考虑的荷载。

(1)自重W坝体自重的计算公式: W =Vγ c(kN)(3-6)式中 V——坝体体积,m3;由于取1m坝长,可以用断面面积代替γc——坝体混凝土的重度(本设计中混凝土的重度为24kN/m3)四种情况下自重相同。

W11=24×0.5×64×12=9216kNW12=24×12×104=29952kNW13=24×0.5×61×88.86=76089.36kNW1=W11+W12+W13=115257.36kN(2)静水压力P静水压力是作用在上下游坝面的主要荷载,计算时常分解为水平水压力P H和垂直水压力P V 两种。

计算各种情况下的上下游水深:根据水力学公式式中:根据相关规范,C=1,m=0.49,ε1=1,σs=1;溢流坝宽度10m,B=10m;表3-2 不同情况下上下游水深特征水位上游水深H1 (m)下游水深H2(m)上下游水位差H(m) 正常蓄水位184.25 103.5 80.75设计洪水位186.64 114.15 72.49校核洪水位189.60 115.50 74.1水平水压力PH 计算公式为:(3-8)式中:H—计算点处的作用水头,m;γw —水的重度,常取9.81 kN/m3;垂直水压力P V按水重计算。

a.正常蓄水位:上游水平水压力:P H1=P u=1/2×9.81×97.25×97.25=46389.34kN (→)下游水平水压力:PH2=P d=1/2×9.81×16.5×16.5=1335.39kN (←)上游垂直水压力:P V1=W2’=9.81×12×33.25=3914.19kNP V2=W2” =9.81×1/2×12×64=3767.04kN下游垂直水压力:P V3=W3=9.81×1/2×16.5×16.5×0.7=934.77kNb.设计洪水位:上游水平水压力:P H1=P u=1/2×9.81×99.64×99.64=48697.46kN (→)下游水平水压力:P H2=P d=1/2×9.81×27.15×27.15=3615.59kN (←)上游垂直水压力:P V1=W2’=9.81×35.64×12=4195.54kNP V2=W2”=9.81×1/2×12×64=3767.04kN下游垂直水压力:P V3=W3=9.81×1/2×27.15×19.01=2531.58kNc.校核洪水位:上游水平水压力:P H1=P u=1/2×9.81×102.6×102.6=51633.76kN (→)下游水平水压力:P H2=P d=1/2×9.81×28.5×28.5=3984.09kN (←)上游垂直水压力:P V1=W2’=9.81×12×38.6=4543.99kNP V2=W2”=9.81×1/2×12×64=3767.04kN下游垂直水压力:P V3=W3=9.81×1/2×28.5×19.95=2788.86kN(3) 扬压力U根据规范,排水处扬压力折减系数:α=0.25,将扬压力分成四部分,U1,U2,U3,U4。

相关文档
最新文档