c均值聚类matlab
kmeans和cmeans matlab代码

K-means和c-means算法是聚类分析中常用的两种算法,在MATLAB软件中可以通过编写相应的代码来实现这两种算法。
下面将分别介绍K-means算法和c-means算法的原理以及在MATLAB中的实现代码。
一、K-means算法原理及MATLAB代码实现K-means算法是一种基于距离的聚类算法,其原理主要包括初始化聚类中心、计算样本点到各个聚类中心的距离、更新聚类中心和迭代等步骤。
以下是K-means算法在MATLAB中的实现代码:1. 初始化聚类中心```matlabfunction [centers] = initCenters(data, k)centers = data(randperm(size(data, 1), k), :);end```2. 计算样本点到各个聚类中心的距离```matlabfunction [distances] = calculateDistances(data, centers)distances = pdist2(data, centers, 'euclidean');end```3. 更新聚类中心```matlabfunction [newCenters] = updateCenters(data, labels, k) newCenters = zeros(k, size(data, 2));for i = 1:knewCenters(i, :) = mean(data(labels == i, :));endend```4. 迭代```matlabfunction [labels, centers] = kMeans(data, k, maxIter) centers = initCenters(data, k);for iter = 1:maxIterdistances = calculateDistances(data, centers);[~, labels] = min(distances, [], 2);newCenters = updateCenters(data, labels, k);if isequal(newCenters, centers)break;endcenters = newCenters;endend```以上即是K-means算法在MATLAB中的实现代码,可以根据实际需求调用相应的函数来进行聚类分析。
30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。
C-均值聚类

试验二 C 均值聚类实验一、 实验目的:用C 均值聚类算法(或模糊C 均值)聚类算法对离散样本进行聚类二、 实验条件:.PC 微机一台和MATLAB 软件。
三、试验原理聚类分析是指事先不知样本的类别,而利用样本的先验知识来构造分类器(无监督学习)聚类准则函数在样本相似性度量的基础上,聚类分析还需要一定的准则函数,才能把真正属于同一类的样本聚合成一个类的子集,而把不同类的样本分离开来。
如果聚类准则函数选得好,聚类质量就会高。
同时,聚类准则函数还可以用来评价一种聚类结果的质量,如果聚类质量不满足要求,就要重复执行聚类过程,以优化结果。
在重复优化中,可以改变相似性度量,也可以选用新的聚类准则。
误差平方和准则(最常用的)假定有混合样本集,采用某种相似性度量 被聚合成c 个分离开的子集 ,每个子集是一个类, 它们分别包含个 样本 。
为了衡量聚类的质量,采用误差平方和聚类准则函数式中为类中样本的均值:是c 个子集合的中心,可以用来代表c 个类。
误差平方和 聚类准则函数是样本与集合中心的函数。
在样本集X 给定的情况下, 其取值取决于c 个集合“中心”。
它描述n 个试验样本聚合成c 个类时,所产生的总误差平方和 越小越好。
误差平方和准则适用于各类样本比较密集且样本数目悬殊不大的样本分布。
12{,,...,}n X x x x =X cX X X ,.....,,21c n n n ,......,,21c J ∑∑==-=cj n k j k c jm x J 112||||j m ∑==jn j jjj xn m 11cj ,....,2,1=jmc J c JC-均值聚类算法的核心思想是通过迭代把数据对象划分到不同的簇中,以求目标数最小化,从而使生成的簇尽可能地紧凑和独立。
首先,随机选取k 个对象作为初始的k 个簇的质心;然后,将其余对象根据其与各个簇质心的距离分配到最近的簇;再求新形成的簇的质心。
在Matlab中如何进行数据聚类分析

在Matlab中如何进行数据聚类分析数据聚类分析是一种常用的数据处理方法,在各个领域都有广泛的应用。
在Matlab中,数据聚类分析相对简单且易于实现。
本文将介绍在Matlab中如何进行数据聚类分析的基本步骤和常用的聚类算法,并通过实例演示其具体操作。
一、数据预处理在进行数据聚类分析之前,通常需要对原始数据进行预处理以保证聚类的准确性。
首先,要对数据进行标准化,使得不同维度的特征具有相同的范围和重要性。
常见的标准化方法有z-score标准化和min-max标准化。
其次,要对数据进行降维处理,以便对高维数据进行分析。
常见的降维方法有主成分分析(PCA)和线性判别分析(LDA)等。
最后,要对数据进行异常值处理,去除可能对聚类结果产生干扰的异常值。
二、选择聚类算法在Matlab中,有多种聚类算法可供选择,如K-means聚类、层次聚类、密度聚类等。
不同的聚类算法适用于不同的数据情况和分析目的。
在选择聚类算法时,应根据数据的特点、分析目的和算法的优缺点进行综合考虑。
下面将以K-means聚类算法为例进行演示。
三、K-means聚类算法实例演示K-means聚类算法是一种简单且常用的聚类算法。
其基本思想是通过迭代计算,将数据样本划分为K个簇,使得同一簇内的样本相似度较高,不同簇之间的相似度较低。
现假设有一组二维数据集,要对其进行聚类分析。
```matlab% 生成随机数据X = [randn(100,2)+ones(100,2); randn(100,2)-ones(100,2)];% K-means聚类K = 2; % 设置簇的个数[idx, C] = kmeans(X, K); % 进行聚类分析% 绘制聚类结果figure;plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12);hold on;plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12);plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3);legend('Cluster 1','Cluster 2','Centroids','Location','NW');title 'Cluster Assignments and Centroids';hold off;```上述代码中,通过`randn`函数生成了一个含有200个样本的二维数据集X,然后利用`kmeans`函数进行聚类计算,得到了每个样本属于的簇的索引`idx`和簇的中心点坐标`C`。
MATLAB·设计论文葡萄酒质量评价的数学建模

MATLAB·设计论⽂葡萄酒质量评价的数学建模葡萄酒质量评价的数学建模摘要:关于葡萄酒质量的评价,通常是通过评酒员的打分来确定的。
本论⽂通过对酿酒葡萄与葡萄酒的理化指标之间的相关关系和评酒员打分进⾏了深⼊系统地分析,给出了葡萄酒质量评价的量化研究。
基于相关数据,利⽤配对的t(α=0.05)检验、克隆巴赫系数信度分析、主成分分析、模糊C均值聚类、多元回归等⽅法,对酿酒葡萄质量评级模型,酿酒葡萄与葡萄酒之间的典型性相关分析关系模型等,并通过图像与数据分析研究了酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
对于问题⼀,利⽤配对数据的t检验,我们得出两组评酒员的评价结果没有显著性差异,并应⽤克伦巴赫系数信度分析法分别求出两组评酒员评价结果的可信度,通过数据⽐较和分析得到第⼀组评酒员的评价结果更可信,更符合实际。
对于问题⼆,基于数据,本⽂⾸先根据第⼀问中确定的的可信的⼀组(第⼀组评酒员)根据附表⼀对葡萄酒品尝后得出的总分,确定葡萄酒的质量,从⽽相应的给酿酒葡萄进⾏⼀个初步的排名。
然后对附表⼆中的酿酒葡萄的理化指标进⾏标准化处理后,进⾏主成分分析,根据新变量进⾏排名。
最后采⽤模糊C均值聚类⽅法对酿酒葡萄的理化指标进⾏了聚类分析,同时结合葡萄酒的质量得分,我们最终确定了酿酒葡萄的三级评判⽅案。
对于问题三,我们将酿酒葡萄与葡萄酒的理化指标做了多元回归,将酿酒葡萄与葡萄酒的主要指标做了典型相关系数的检验,结果表明:酿酒红葡萄中氨基酸总量、花⾊苷、苹果酸、褐变度、DPPH⾃由基、总酚、单宁、葡萄总黄酮、还原糖、PH值、果⽪颜⾊等对红葡萄酒中主要成分有显著影响;酿酒⽩葡萄中氨基酸总量、单宁、葡萄总黄酮、黄酮醇、⼲物质含量、出汁率,对⽩葡萄酒中主要成分有显著影响。
对于问题四,我们把葡萄的理化参数、葡萄酒的理化参数作为⾃变量,对酒的评价作为因变量,通过⽤MATLAB中plot作图,分析了酿酒葡萄与葡萄的理化指标之间的关系,得出结论:葡萄酒与葡萄酒的理化指数存在关系,但是葡萄酒的质量与其⾊泽、品味、环境以及⼝感有关系,所以并不能⽤葡萄和葡萄酒的理化指数指标来评价葡萄酒的质量。
在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。
通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。
本文将介绍在Matlab中使用FCM进行图像分析的技巧。
首先,让我们简要了解一下FCM算法。
FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。
与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。
在Matlab中使用FCM进行图像分析的第一步是加载图像。
可以使用imread函数将图像加载到Matlab的工作区中。
例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。
这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。
这是因为FCM算法通常用于灰度图像分析。
可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。
预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。
常用的图像预处理方法包括平滑、锐化和边缘检测等。
Matlab中提供了许多图像预处理函数。
例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。
常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。
模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];[center, U, obj_fcn] = FCMClust(Data,N_cluster,options)data=[94.4304 98 60 0 8592.8068 70 70 0 75.286.3522 100 75 24.87 91.580.5512 50 90 0 65.480.494 76 100 0 9888.1528 100 60 80 78.484.567 55 80 0 8587.722 30 60 0 4988.0056 95 70 46.459 45.885.948 100 60 0 55.683.9578 10 90 0 78.490.0822 5 60 0 58.876.7448 10 60 0 39.295.062 100 70 62.37 94.8];N_cluster=4;options(1)=[2];options(2)=[100];options(3)=[1e-5];options(4)=[1];。
matlab模糊c均值聚类算法

matlab模糊c均值聚类算法matlab模糊c均值聚类算法模糊C均值聚类算法是一种广泛应用于数据挖掘、图像分割等领域的聚类算法。
相比于传统的C均值聚类算法,模糊C均值聚类算法能够更好地处理噪声数据和模糊边界。
模糊C均值聚类算法的基本思想是将样本集合分为K个聚类集合,使得每个样本点属于某个聚类集合的概率最大。
同时,每个聚类集合的中心点被计算为该聚类集合中所有样本的均值。
具体实现中,模糊C均值聚类算法引入了模糊化权重向量来描述每个样本点属于各个聚类集合的程度。
这些权重值在每次迭代中被更新,直至达到预设的收敛精度为止。
模糊C均值聚类算法的目标函数可以表示为:J = ∑i∑j(wij)q||xi-cj||2其中,xi表示样本集合中的第i个样本,cj表示第j个聚类集合的中心点,wij表示第i个样本点属于第j个聚类集合的权重,q是模糊指数,通常取2。
不同于C均值聚类算法,模糊C均值聚类算法对每个样本点都考虑了其属于某个聚类集合的概率,因此能够更好地处理模糊边界和噪声数据。
同时,模糊C均值聚类算法可以自适应地确定聚类的数量,从而避免了事先设定聚类数量所带来的限制。
在MATLAB中,可以使用fcm函数实现模糊C均值聚类算法。
具体来说,fcm函数的使用方法如下:[idx,center] = fcm(data,k,[options]);其中,data表示样本矩阵,k表示聚类数量,options是一个包含算法参数的结构体。
fcm函数的输出包括聚类标签idx和聚类中心center。
MATLAB中的fcm函数还提供了其他参数和选项,例如模糊权重阈值、最大迭代次数和收敛精度等。
可以根据具体应用需求来设置这些参数和选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c均值聚类matlab
在MATLAB中,使用c均值聚类(C-means clustering)可以通
过以下步骤实现:
1. 导入数据,首先,你需要准备你的数据集并将其导入MATLAB中。
你可以使用`csvread`或`xlsread`函数来从CSV文件或Excel文件中读取数据,或者直接创建一个数据矩阵。
2. 数据预处理,在进行聚类之前,通常需要对数据进行预处理,例如归一化或标准化,以确保各个特征对聚类结果的影响是均衡的。
3. 调用c均值聚类函数:MATLAB提供了`fcm`函数来实现c均
值聚类。
你可以使用以下语法来调用该函数:
[centers, U] = fcm(data, clusterNum);
其中,`data`是你的数据矩阵,`clusterNum`是你想要得到
的聚类中心的数量。
`centers`包含了每个聚类中心的坐标,`U`是
一个隶属度矩阵,描述了每个数据点属于每个聚类的概率。
4. 可视化结果,你可以使用MATLAB的绘图函数,如`scatter`或`plot`来可视化聚类结果,以及聚类中心的位置。
5. 结果分析,最后,对聚类结果进行分析和解释,可以使用各种统计工具和可视化手段来理解不同聚类之间的差异和相似性。
需要注意的是,c均值聚类的结果可能受初始聚类中心的选择和随机性影响,因此通常需要多次运行算法并比较结果,以确保得到稳健的聚类结果。
希望这些信息能够帮助到你在MATLAB中实现c 均值聚类。