2014年中考数学专题训练:网格问题(含答案)

合集下载

中考数学网格问题

中考数学网格问题

中考网格问题1.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) A 30° B 45°C 90°D 135°2.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A 点(0,3)B 点(2,3)C 点(5,1)D 点(6,1)3.如图,在方格纸中的△AB C 经过变换得到△DEF,正确的变换是( ) A 把△ABC 向右平移6格,B 把△ABC 向右平移4格,再向上平移1格C 把△ABC 绕着点A 顺时针方向90º旋转,再右平移6格D 把△ABC 绕着点A 逆时针方向90º旋转,再右平移6格4.在边长为1的小正方形组成的网格中,有如图所示的A 、B 两点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率为( ) A3 25 B4 25 C 1 5 D 6255.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是 ( )6.如图是5×5的正方形网络,以点D 、E 为两个顶点作位置不同的格点三角形, 使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( ) A 、2个 B 、4个 C 、6个 D 、8个7.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置, 先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长 到丙位置,则小花顶点A 在丙位置中的对应点A′的坐标为( ) A (3,1)B (1,3)C (3,﹣1)D (1,1)9.如图,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有 ( )A 4个B 6个C 7个D 9个10.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 ( ) A 2B 3C 4D 511.如图,已知点A(1,1)、B(3,2),且P 为x 轴上一动点,则△ABP 的周长的最小值为 . 12.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4). 将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是 . 13.如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是 线段AC 上任意一点.如果AD=1,那么当AE= 时, 以点A 、D 、E 为顶点的三角形与△ABC 相似. 14.分别按下列要求解答(1)在图1中.作出⊙O 关于直线l 成轴对称的图形 (2)在图2中.作出△ABC 关于点P 成中心对称的图形15.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置. (3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1. (2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; 16.如图,在边长为1的小正方形组成的网格,直角梯形ABEF 的顶点均在格点上,请按要求完成下列各题:(1)请在图中拼上一个直角梯形,使它与梯形ABEF 构成一个等腰梯形ABCD ; (2)将等腰梯形ABCD 绕点C 按顺时针方向旋转90°,画出相应的图形A 1B 1CD 1; (3)求点A 旋转到点A 1时,点A 所经过的路线长.(结果保留π)17.在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为格点A ,其余顶点从格点B 、C 、D 、E 、F 、G 、H 中选取,并且所画的两个三角形不全等.18. 图l 、图2是两张形状、大小完全相}同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上、(1)在图1中画出△ABC(点C 在小正方形的顶点上),△ABC 的面积为5.且△ABC 中有一个角为450(画一个即可)(2)在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 的面积为5,且∠ ADB=900(画一个即可).19.如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示。

辽宁省大连市2014年中考数学真题试题(解析版)

辽宁省大连市2014年中考数学真题试题(解析版)

辽宁省大连市2014年中考数学真题试题(解析版)一、选择题(共8小题,每小题3分,共24分)1.3的相反数是()A. 3 B.-3 C.13D.132.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()【考点】简单组合体的三视图.3.《2013年大连市海洋环境状况公报》显示,2013年大连市管辖海域总面积为29000平方公里,29000用科学记数法表示为()A. 2.9×103 B.2.9×104 C.29×103 D. 0.29×105【考点】科学记数法—表示较大的数.4.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)【考点】坐标与图形变化-平移.5.下列计算正确的是()A. a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a2•a3=a5【考点】1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.不等式组1324xx x+-⎧⎨⎩>>的解集是()A. x>-2 B.x<-2 C.x>3 D. x<3【考点】解一元一次不等式组.7.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A.16B.13C.12D.56【考点】列表法与树状图法.8.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A. 12πcm2 B.15πcm2 C.20πcm2 D.30πcm2【考点】圆锥的计算.二、填空题(共8小题,每小题3分,共24分)9.分解因式:x2-4=10.函数y=(x-1)2+3的最小值为【答案】3.【解析】【考点】1.因式分解-运用公式法;2.代数式求值.12.如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE= cm.【考点】三角形中位线定理.13.如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO= .【答案】35°.【解析】【考点】菱形的性质.14.如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)【答案】59.【解析】试题分析:根据灯塔顶部B的仰角为35°,BC=41m,可得tan∠BAC=BCAC,代入数据即可求出观测点A到灯塔BC的距离AC的长度.试题解析:在Rt△ABC中,∵∠BAC=35°,BC=41m,∴tan∠BAC=BC AC,∴AC=4159tan350.7BC=≈︒(m).【考点】解直角三角形的应用-仰角俯角问题.15.如表是某校女子排球队队员的年龄分布:3则该校女子排球队队员的平均年龄为 岁.【考点】加权平均数.16.点A (x1,y 1)、B (x 2,y 2)分别在双曲线y=1x的两支上,若y 1+y 2>0,则x 1+x 2的范围是 .∵y 1+y 2>0,y 1y 2<0, ∴-2112y y y y >0,即x 1+x 2>0.【考点】反比例函数图象上点的坐标特征.三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分) ((13)-1.18.解方程:31122xx x=+++.【考点】解分式方程.19.如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.【答案】证明见解析.【解析】试题分析:根据两直线平行,同位角相等可得∠A=∠FBD,∠D=∠ACE,再求出AC=BD,然后利用“角边角”证明△ACE和△BDF全等,根据全等三角形对应边相等证明即可.【考点】全等三角形的判定与性质.20.某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.根据以上信息解答下列问题:(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为天,占这个月总天数的百分比为%,这个月共有天;(2)统计表中的a= ,这个月中行12时的气温在范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.【答案】(1)6,20,30;(2)3,12≤x<16;(3)40%.【解析】【考点】1.频数(率)分布表;2.扇形统计图.四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?答:2013年到2015年这种产品产量的年增长率10%.(2)2014年这种产品的产量为:100(1+0.1)=110(万件).答:2014年这种产品的产量应达到110万件.【考点】一元二次方程的应用.22.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a= ,b= ;(2)求小明的爸爸下山所用的时间.【答案】(1)a=8,b=280;(2) 14分.【解析】【考点】一次函数的应用.23.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= °,理由是;(2)⊙O的半径为3,AC=4,求CD的长.【答案】(1)90;圆的切线垂直于经过切点的半径;(3). 【解析】∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,==∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠OCD,∴△ABC∽△CDB,∴CD BC AB AC=,∴6CD =, 解得:CD=.【考点】切线的性质.五、解答题(共3题,其中24题11分,25.26各12分,共35分)24.如图,矩形纸片ABCD 中,AB=6,BC=8.折叠纸片使点B 落在AD 上,落点为B ′.点B ′从点A 开始沿AD 移动,折痕所在直线l 的位置也随之改变,当直线l 经过点A 时,点B ′停止移动,连接BB ′.设直线l 与AB 相交于点E ,与CD 所在直线相交于点F ,点B ′的移动距离为x ,点F 与点C 的距离为y .(1)求证:∠BEF=∠AB ′B ;(2)求y 与x 的函数关系式,并直接写出x 的取值范围.【答案】(1)证明见解析;(2)y=220886143(123143(123x x x x x x ≤≤⎧-+⎪⎪⎨⎪-+-⎪⎩<﹣﹣). 【解析】∴在等腰△BEB ′中,EF 是角平分线,∴EF ⊥BB ′,∠BOE=90°, ∴∠ABB ′+∠BEF=90°,∵∠ABB ′+∠AB ′B=90°,∴∠BEF=∠AB ′B ;∵由(1)知∠BEF=∠AB ′B , ∴26836612x x y =---,化简,得y=112x 2-x+3,(0<x≤8) ②当点F 在点C 下方时,如图2所示.设直线EF 与BC 交于点K设∠ABB ′=∠BKE=∠CKF=θ,则tan θ=AB AB '=6x . BK=tan BE θ,CK=BC-BK=8-tan BE θ. ∴CF=CK•tan θ=(8-tan BE θ)•tan θ=8tan θ-BE=x-BE .【考点】1.翻折变换(折叠问题);2.矩形的性质.25.如图1,△ABC 中,AB=AC ,点D 在BA 的延长线上,点E 在BC 上,DE=DC ,点F 是DE 与AC 的交点,且DF =FE .(1)图1中是否存在与∠BDE 相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC ;(3)若将“点D 在BA 的延长线上,点E 在BC 上”和“点F 是DE 与AC 的交点,且DF=FE”分别改为“点D 在AB 上,点E 在CB 的延长线上”和“点F 是ED 的延长线与AC 的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a 时,求BE 的长(用含k 、a 的式子表示).【答案】(1)存在,证明见解析;(2)证明见解析;(3)2cos 1k kα-. 【解析】∴∠BDE=∠DEC-∠DBC=∠DCE-∠ACB=∠DCA .(2)过点E 作EG ∥AC ,交AB 于点G ,如图1,则有∠DAC=∠DGE .在△DCA 和△EDG 中,DCA GDE DAC DGE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EDG (AAS ).∴DA=EG ,CA=DG .∴DG=AB .∴DA=BG .∵AF ∥EG ,DF=EF ,∴DA=AG .∴AG=BG .∵EG ∥AC ,DCA GDE DAC DGE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EDG (AAS ).∴DA=EG ,CA=DG∴DG=AB=1.∵AF ∥EG ,∴△ADF ∽△G DE . ∴AD DF DG DE=. ∵DF=kFE ,∴DE=EF-DF=(1-k )EF . ∴1(1)AD kEF k EF=-. ∴AD=1k k-. ∴GE=AD=1k k -. 过点A 作AH ⊥BC ,垂足为H ,如图2,∵AB=AC ,AH ⊥BC ,∴BH=CH .【考点】相似形综合题.26.如图,抛物线y=a (x-m )2+2m-2(其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m-1).连接并延长PA 、PO ,与x 轴、抛物线分别相交于点B 、C ,连接BC .点C 关于直线l 的对称点为C ′,连接PC ′,即有PC ′=PC .将△PBC 绕点P 逆时针旋转,使点C 与点C ′重合,得到△PB ′C ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)求证:BC ∥y 轴;(3)若点B ′恰好落在线段BC ′上,求此时m 的值.【答案】(1) y=21m m(x-m )2+2m-2.(2)证明见解析;(3). 【解析】试题分析:(1)只需将A 点坐标(0,m-1)代入y=a (x-m )2+2m-2,即可求出a 值,从而得到抛物线的解析式.(2)证明:如图1,设直线PA的解析式为y=kx+b,∵点P(m,2m-2),点A(0,m-1).∴22 01mk b mb m+=-⎧⎨+=-⎩.∴直线OP 的解析式是y=22m m-x . 联立22221()22m y x m m y x m m m -⎧=⎪⎪⎨-⎪=-+-⎪⎩解得:22x m y m =⎧⎨=-⎩或22x m y m =-⎧⎨=-⎩. ∵点C 在第三象限,且m >1,∴点C 的横坐标是-m .∴BC ∥y 轴.(3)解:若点B ′恰好落在线段BC ′上,设对称轴l 与x 轴的交点为D ,连接CC ′,如图2,则有∠PB'C'+∠PB'B=180°.∵△PB′C′是由△PBC绕点P逆时针旋转所得,∴∠PBC=∠PB'C',PB=PB′,∠BPB′=∠CPC′.∴∠PBC+∠PB'B=180°.∵BC∥AO,∴∠ABC+∠BAO=180°.∴∠PB'B=∠BAO.∵PB=PB′,PC=PC′,∴∠PB′B=∠PBB′=1802BPB'︒-∠,∴∠PCC′=∠PC′C=1802CPC'︒-∠.。

中考数学总复习训练-网格型问题

中考数学总复习训练-网格型问题

网格型问题一、选择题1.在正方形网格中,△ABC 的位置如图所示,则cos B 的值为(B ) A.12 B.22 C.32 D.33【解析】 过点A 作AD ⊥BC 于点D ,则AD =BD =4,∴AB =42,∴cos B =442=22.(第1题)(第2题)2.如图,在方格纸上,△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上点A 的位置,(1,2)表示点B 的位置,那么点P 的位置为(A )A .(5,2)B .(2,5)C .(2,1)D .(1,2)【解析】 提示:连结BE ,AD ,分别作BE 和AD 的中垂线,其交点即为点P 的位置.3.在5×5方格纸中,将图①中的图形N 平移后的位置如图②所示,那么下面平移中正确的是(C )(第3题)A .先向下平移1格,再向左平移1格B .先向下平移1格,再向左平移2格C .先向下平移2格,再向左平移1格D .先向下平移2格,再向左平移2格4.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为(B )(第4题)A.12B.22C. 2 D .2 2【解析】 展开图的圆心角=r l ×360°=r 22×360°=90°,∴r =22.5.如图,点A ,B ,C ,D ,E ,F ,G ,H ,K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F ,G ,H ,K 四点中的(C )(第5题)A .点FB .点GC .点HD .点K【解析】 ∵△DEM ∽△ABC ,∴DE DM =AB AC =46=23. ∵DE =2,∴DM =3,即点M 应是点H .6.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是(C )(第6题)A .6B .7C .8D .9【解析】 如解图,作AB 的中垂线过4个格点,分别以A ,B 为圆心,AB 长为半径作圆过4个格点,共8个.(第6题解)二、填空题7.如图,∠1的正切值等于13.【解析】 提示:∠1和以(2,3)为顶点的角相等.(第7题)(第8题)8.如图,网格中每个小正方形的边长均为1,连结其中的三个顶点得△ABC ,则AC 边上的高是355.【解析】 ∵AC =22+12=5,S △ABC =2×2-12×1×1-12×2×1×2=32,∴12×5·h =32,解得h =355.9.二次函数y =-(x -2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个(提示:可利用备用图画出图象来分析).(第9题)【解析】 可画出草图如解图.(第9题解)图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为点(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1).10.如图,在一单位长度为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,-1),A 3(0,0),则依图中所示规律,A 2016的坐标为(2,1008).(第10题)【解析】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,点A2(1,-1),A4(2,2),A6(-1,-3),A8(2,4),A10(-1,-5),A12(2,6),…,得到规律:当字母下标是2,6,10,…时,横坐标为1,纵坐标为字母下标的一半的相反数;当字母下标是4,8,12,…时,横坐标是2,纵坐标为字母下标的一半.∵2016÷4=504,∴点A2016在第一象限,横坐标是2,纵坐标是2016÷2=1008,∴点A2016的坐标为(2,1008).三、解答题11.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.(第11题)【解析】(1)如解图①所示,△CDE即为所求.(第11题解)(2)如解图②所示,▱ABFG即为所求.12.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.(第12题)【解析】(1)O(0,0),90°.(2)如解图.(第12题解)(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形. ∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC , ∴(a +b )2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab , ∴a 2+b 2=c 2.13.如图①,在矩形MNPQ 中,点E ,F ,G ,H 分别在NP ,PQ ,QM ,MN 上.若∠1=∠2=∠3=∠4,则称四边形EFGH 为矩形MNPQ 的反射四边形.图②,图③,图④中,四边形ABCD 为矩形,且AB =4,BC =8.理解与作图:(1)在图②,图③中,点E ,F 分别在BC ,CD 边上,试利用正方形网格在图上作出矩形ABCD 的反射四边形EFGH .(第13题)计算与猜想:(2)求图②,图③中反射四边形EFGH 的周长,并猜想:矩形ABCD 的反射四边形的周长是否为定值?启发与证明:(3)如图④,为了证明上述猜想,小华同学尝试延长GF 交BC 的延长线于点M ,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)作图如下(如解图①,解图②).(第13题解)(2)在解图①中,EF=FG=GH=HE=22+42=20=25,∴四边形EFGH的周长为8 5.在解图②中,EF=GH=22+12=5,FG=HE=32+62=45=35,∴四边形EFGH的周长为2×5+2×35=8 5.猜想:矩形ABCD的反射四边形的周长为定值.(3)证法一:如解图③,延长GH交CB的延长线于点N.(第13题解③)∵∠1=∠2,∠1=∠5,∴∠2=∠5.又∵FC=FC,∠FCE=∠FCM=90°,∴△FCE≌△FCM(ASA),∴EF=MF,EC=MC.同理,NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90°-∠5=90°-∠1,∠N=90°-∠3,∴∠M=∠N,∴GM=GN.过点G作GK⊥BC于点K,则GK=AB=4,KM=12MN=8.∴GM=GK2+KM2=42+82=4 5.∴四边形EFGH的周长=GH+HE+GF+EF=GH+HN+GF+FM=GN+GM=2GM=8 5.证法二:∵∠1=∠2,∠1=∠5,∴∠2=∠5.又∵FC=FC,∠FCE=∠FCM=90°,∴△FCE≌△FCM(ASA),∴EF=MF,EC=MC.∵∠M=90°-∠5=90°-∠1,∠HEB=90°-∠4,∠1=∠4,∴∠M=∠HEB,∴HE∥GF.同理,GH∥EF.∴四边形EFGH是平行四边形,∴FG=HE.又∵∠1=∠4,∠FDG=∠HBE=90°,∴△FDG≌△HBE,∴DG=BE.过点G作GK⊥BC于点K,则GK=AB=4,KM=KC+CM=GD+CM=BE+EC =8.∴GM=GK2+KM2=42+82=4 5.∴四边形EFGH的周长=2(GF+EF)=2(GF+FM)=2GM=8 5.。

2014年河北省中考数学试卷(附答案与解析)

2014年河北省中考数学试卷(附答案与解析)

绝密★启用前河北省2014年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-是2的()A.倒数B.相反数C.绝对值D.平方根2.如图,ABC△中,D,E分别是边AB,AC的中点.若2DE=,则BC=( )A.2B.3C.4D.53.计算:228515-= ()A.70B.700C.4900D.70004.如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是( )A.20B.30C.70D.805.a,b是两个连续整数,若7a b<<,则a,b分别是()A.2,3B.3,2C.3,4D.6,86.如下右图,直线l经过第二、三、四象限,l的解析式是(2)y m x n=-+,则m的取值范围在数轴上表示为()A BC D7.化简:2x=11xx x---( )A.0B.1C.x D.1xx-8.如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠( )A.2B.3C.4D.59.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当3x=时,18y=,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米10.如图1是边长为1的六个小正方形组成的图形,它可以围成如图2的正方体,则图1中正方形顶点A,B在围成的正方体上的距离是()图1图2A.0B.1C.2D.311.某小组作“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷第4页(共26页)C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.如下右图,已知()ABC AC BC△<,用尺规在BC上确定一点P,使PA PC BC+=,则符合要求的作图痕迹是( )A BC D13.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图1乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图2对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.定义新运算:(0),=(0).abba babb⎧⎪⎪⊕⎨⎪-⎪⎩><例如:445=5⊕,44(5)5⊕-=,则函数2(0)y x x=⊕≠的图象大致是( )A B C D15.如图,边长为a的正六边形内有两个三角形,(数据如图),则SS=阴影空白( )A.3B.4C.5D.616.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是( )A.20B.28C.30D.31第Ⅱ卷(非选择题共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上)17.计算:18=2⨯.18.若实数m,n满足2|2|(2014)0m n-+-=,则10m n-+=.19.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,则=S扇形.数学试卷第3页(共26页)数学试卷 第5页(共26页) 数学试卷 第6页(共26页)20.如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为1M ,2M …,99M ; 再将线段1OM 分成100等份,其分点由左向右依次为1N ,2N …,99N ; 继续将线段1ON 分成100等份,其分点由左向右依次为1P ,2P …,99P , 则点37P 所表示的数用科学记数法表示为 .三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程20(0)ax bx c a ++=≠的求根公式时,对于2(1)嘉淇的解法从第 步开始出现错误;事实上,当240b ac ->时,方程20(0)ax bx c a ++=≠的求根公式是 ;(2)用配方法解方程:22240x x --=.22.(本小题满分10分)如图1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,100AC =米.四人分别测得的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2、图3:各点垃圾量条形统计图 各点垃圾量扇形统计图图1图2 图3(1)求表中C ∠度数的平均数x ;(2)求A 处的垃圾量,并将图2补充完整;(3)用(1)中的x 作为C ∠的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用. (注:sin37=0.6,cos37=0.8,tan37=0.75)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)23.(本小题满分11分)如图,ABC △中,AB AC =,40BAC ∠=,将ABC △绕点A 按逆时针方向旋转100得到ADE △,连接BD ,CE 交于点F . (1)求证:ABD ACE △≌△; (2)求ACE ∠的度数;(3)求证:四边形ABFE 是菱形.24.(本小题满分11分)如图,22⨯网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点.抛物线l 的解析式为2(1)n y x bx c =-++(n 为整数).(1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.数学试卷 第9页(共26页) 数学试卷 第10页(共26页)25.(本小题满分11分)图1和图2中,优弧AB 所在O 的半径为2,AB =点P 为优弧AB 上一点(点P 不与A ,B 重合),将图形沿BP 折叠,得到点A 的对称点A '.图1图2(1)点O 到弦AB 的距离是 ,当BP 经过点O 时,ABA '∠= ; (2)当BA '与O 相切时,如图2,求折痕BP 的长;(3)若线段BA '与优弧AB 只有一个公共点B ,设ABP α∠=,确定α的取值范围.26.(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD ,如图1和图2.现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分.图1图2探究 设行驶时间为t 分.(1)当08t ≤≤时,分别写出1号车、2号车在左半环线离出口A 的路程1y ,2y (米)与t (分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?,并直接写出这一段时间内它与2号车相遇过的次数.发现 如图2,游客甲在BC 上一点K (不与点B ,C 重合)处候车,准备乘车到出口A .设CK x =米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车; 情况二:若他刚好错过1号车,便搭乘即将到来的2号车. 比较哪种情况用时较多?(含候车时间)决策 已知游客乙在DA 上从D 向出口A 走去,步行的速度是50米/分.当行进到DA 上一点P (不与D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由;(2)设(0800)PA s s =<<米.若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?数学试卷 第11页(共26页)数学试卷 第12页(共26页)河北省2014年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】只有符号不同的两个数互为相反数,故选B 。

中考数学专题复习(三)网格作图题(含答案)

中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试题一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 53.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 70004.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,86.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 616.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=cm2.形.则S扇形20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?2014年河北省中考数学试题参考答案与试题解析一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、考点:作图—复杂作图分析:要使P A+PC=BC,必有P A=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴P A=PB,∵PB+PC=BC,∴P A+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出P A=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 6考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,=a•a=a2,∴S空白∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=4cm2.形.则S扇形考点:扇形面积的计算.=×弧长×半径求出即可.分析:根据扇形的面积公式S扇形解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是1,当BP经过点O时,∠ABA′=60°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.。

初中数学专题复习网格问题

初中数学专题复习网格问题

网 格 问 题1. 已知图1和图2中的每个小正方形的边长都是1个单位. (1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2. 如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.DCBA图(一) 图(二)3. 如图,在55 的正方形网格中,每个小正 方形的边长都为1.请在所给网格中按下列要求画 出图形.(1)从点A 出发的一条线段AB ,使它的另一个端点落在格点(即小正方形的顶点)上, 且长度为22;(2)以(1)中的AB 为边的一个等腰三角形ABC ,使点C 在格点上,且另两边的长 都是无理数;(3)以(1)中的AB 为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点都 在格点上,各边长都是无理数.图2 F E A B C 图1 (第3题图)4. 下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).5. 图(1)是一个10×10格点正方形组成的网格. △ABC 是格点三角形(顶点在网格交点处),请你完成下面两个问题:(1) 在图(1)中画出与△ABC 相似的格点△A 1B 1C 1和△A 2B 2C 2, 且△A 1B 1C 1与△ABC 的相似比是2, △A 2B 2C 2与△ABC 的相似比是22.(2) 在图(2)中用与△ABC 、△A 1B 1C 1、△A 2B 2C 2全等的格点三角形(每个三角形至少使用一次), 拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【解说词】6. 如图,有一条小船,(1) 若把小船平移,使点A 平移到点B ,请你在图中画出平移后的小船;(5分) (2) 若该小船先从点A 航行到达岸边L 的点P 处补给后,再航行到点B ,但要求航程最短,EC D GB FA试在图中画出点P 的位置(3分)7. ⑴如图6,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B ,再由图形B 得到图形C (对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);⑵如图6,如果点P 、P 3的坐标分别为(0,0)、(2,1),写出点P 2的坐标; ⑶图7是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!注:方格纸中的小正方形的边长为1个单位长度.图7图68. 在如图10所示的平面直角坐标系中,已知△ABC 。

2014年山西省中考数学试卷(附答案与解析)

2014年山西省中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014中考数学专题训练:网格专题
1. (2012宁夏)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【B 】
A .24.0
B .62.8
C .74.2
D .113.0
2. (2012湖北)如图,△ABC 在平面直角坐标系中的第二象限内,顶点A
的坐标是(-2,3)
,先把△ABC 向右平移
4个单位长度得到△A 1B 1
C 1,再作△A
1B 1C 1关于x 轴的对称图形△A 2B 2C 2,
则顶点A 2的坐标是【 B 。


A .(-3,2)
B .(2,-D .(3,-1)
3. (2012湖北)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是【 B 】
A .
B .
C .
D .
4. (2012
聊城)如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是【 B 】
A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格
B .把△AB
C 绕点C 顺时针方向旋转90°,再向下平移5格
C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°
D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°
5. (2012浙江)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A ,使得这四个点构成的四边形是轴对称图形,并且点A 的横坐标仍是整数,则移动后点A 的坐标为 ▲ .(﹣1,1),(﹣2,﹣2)。

6. (2012泰州)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这 些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ▲ .2
7. (2012广东)如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2)、B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(直接填写答案)
(1)点A 关于点O 中心对称的点的坐标为 ; (2)点A 1的坐标为 ;
(3)在旋转过程中,点B 经过的路径为弧BB 1,那么弧BB 1的长为 .
(2).点C 的坐标是(-2,-2)或(2,2)。

11. (2012四川)如图,梯形ABCD 是直角梯形.
(1)直接写出点A 、B 、C 、D 的坐标;
(2)画出直角梯形ABCD 关于y 轴的对称图形,使它与梯形ABCD 构成一个等腰梯形. (3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)
【答案】解:(1)如图所示,根据A ,B ,C ,D ,位置得出点A 、B 、C 、D 的坐标分别为:
(-2,-1),(-4,-4),(0,-4)
,(0,-1)。

(2)根据A ,B 两点关于y 轴对称点分别为:A ′(2,-1),B ′(4,-4),
在坐标系中找出A ′,B ′,连接DA ′,A ′B ′,B ′C ,即可得等腰梯形AA ′B ′B ,即为所
求,如下图所示:
(3)将对应点分别向上移动4个单位,可得等腰梯形EFGH ,即为所求,如上图所示。

12. (2012辽宁)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,
每个小正方形的边长是1个单位长度)
(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;
(2)以点B 为位似中心,在网格中...
画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直接写出C 2点的坐标及△A 2BC 2的面积.
【答案】解:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)。

(2)如图,△A 2BC 2即为所求,C 2(1,0),△A 2BC 2的面积:10
C′是由格点△ABC向右平移7个单位长度得到的;
【答案】解:(1)
12
;。

(2)如图,点D ,连接
DE 、DF ,则△ABC ≌△EFD 。

证明:过点C 作CG ⊥AB 的延长线于点G ,过点D 作DM ⊥
EF
的延长线于点M ,
由(1)得AC =,
在Rt △BCG 中,BG =2,CG =2,根据勾股定理得BC = ∴△ABC 的三边长为AB =2,BC =AC = 在Rt △EMD 中,EM =4,MD =2,根据勾股定理得ED = 在Rt △FDM 中,FM =2,MD =2FD =
∴△ABC 的三边长为EF =2,。

在△ABC 和△EFD 中,∵AB =EF =2, BC = FD =AC =ED = ∴△ABC ≌△EFD (SSS )。

相关文档
最新文档