重力坝设计毕业论文正稿

合集下载

毕业设计 重力坝设计

毕业设计 重力坝设计

毕业设计重力坝设计
1. 引言
重力坝是水利工程中常用的一种坝型,其主要特点是坝体厚重且体积大,具有重力作
用稳固坝体的特点。

在设计重力坝时,需要考虑到多种因素,如水文条件、地质条件、工
程造价等因素,以确保设计的坝体结构具有充分的安全性和经济性。

2. 水文条件
水文条件是设计重力坝时需要考虑的重要因素之一。

主要包括水文特征、水文历时和
频率以及预测值。

在设计重力坝时需要充分考虑降雨涝、暴雨及洪水等水文条件,预计出
各种水位的出现频率,并采用适当的控制水位高度的设计措施。

3. 地质条件
地质条件也是设计重力坝时需要充分考虑的一个因素。

主要包括地质构造、物理性质、地质力学性质和地质灾害等因素。

在设计重力坝时,需要对地质条件进行全面的地质勘测
及分析,并采取适当的加强坝体和基础的设计措施。

4. 坝体及基础的设计
重力坝的坝体具有良好的稳定性,是因为其坝体体积庞大且较宽厚,具有良好的抗滑性。

在设计坝体时需要注意选择坝体的材料及其强度,且坝体中的混凝土应加强措施,以
增强坝体的稳定性。

在基础设计方面,需要以地质灾害为基础,采取适当的加固措施以确
保重力坝的基础稳定性。

5. 结论
设计重力坝需要全面考虑水文条件、地质条件、坝体设计以及基础设计等多个因素。

仅仅注重单一因素,难以达到坝体的最佳安全和经济设计。

除上述因素外,设计过程中还
需要考虑成本和材料等多个因素,以确保设计出具有良好稳定性且经济性较高的坝体结
构。

[学士]重力坝毕业设计

[学士]重力坝毕业设计

第一部分重力坝毕业设计第一章基本资料设计洪水位(P = 5 %)上游:510.15m下游:480.12m校核洪水位(P = 1 %)上游:510.64m下游:481.10m正常蓄水位上游:509m死水位:488m可利用河底高程478.5m混凝土容重:24 KN/m3坝前淤沙高程:486m泥沙浮容重 10 KN/m3,内摩擦角为20°混凝土与基岩间抗剪断参数值:f `= 0.6c `= 0.3Mpa坝基基岩承载力:[f]=1000Kpa坝基垫层混凝土:C15坝体混凝土:C15= 22m/s50年一遇最大风速为:v`= 16m/s多年平均最大风速为:v吹程 D =1000m第二章重力坝的断面选取与荷载计算第一节流量-水位关系曲线计算流量-水位关系曲线计算表注:流量-水位关系曲线河谷断面图第二节重力坝坝体断面1.坝顶高程的确定①. 正常水位时gD/v2=9.81×1000/222=20.279.81h/222=0.0076×22-1/12×(9.81×1000/222)1/3h=0.79m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.98m9.81Lm/222=0.331×22-1/2.15×(9.81×1000/222)1/3.75Lm=8.65mh z =π×0.982/8.65×cth(2πH/ Lm)hz=0.35m△h=h1%+h z+h c=0.98+0.35+0.4=1.73m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δsεmB(2g)1/2]}2/3={66.18/[1×1×0.502×24×(2×9.81) 1/2]}2/3 =1.15m设计洪水位=509+1.15=510.15m坝顶高程=509+1.73=510.73m②校核洪水位时gD/v2=9.81×1000/162=38.329.81h/162=0.0076×16-1/12×(9.81×1000/162)1/3h=0.53m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.66m9.81Lm/162=0.331×16-1/2.15×(9.81×1000/162)1/3.75Lm=6.29mh z =π×0.662/6.29×cth(2πH/ Lm)hz=0.22m△h=h1%+hz+hc=0.66+0.22+0.3=1.18m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δεmB(2g)1/2]}2/3={112.56/[1×1×0.502×24×(2×9.81) 1/2]}2/3s=1.64m校核洪水位=509+1.64=510.64m坝顶高程=510.64+1.18=511.82m,故取坝顶高程为512m而该坝的开挖深度为1.5m ∴坝高=512-478.5=33.5m2.坝顶宽度的确定坝顶宽度取坝高的9%,则坝顶宽度=33.5×9%=3.015m,故坝顶宽度取3.5m3.坝面坡度的确定下游面的坡度采用1:0.84.坝基防渗与排水设施的拟订距距坝踵5m处设一个帷幕灌浆断面图如下:第三节荷载计算摩檫系数f 'Γk 、粘聚力C 'ΓK 的材料性能分项系数分别为1.3、3.0, 则相应的设计值:摩檫系数f 'Γ=0.6/1.3=0.46 粘聚力C 'Γ=300/3=100 Kpa选用砼为C15,抗压强度性能分项系数为1.5,则设计值 fc=15000/1.5=10000 Kpa 扬压力系数α为0.2(查表得出) 1.设计洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.98+0.35+8.65/2)×8.65/2=119.97 KNP 2=1/2γL m 2/4=1/2×9.81×8.652/4=91.75 KNP n = P 1+P 2 =119.97-91.75=28.22 KN P=1.2×P n =1.2×28.22=33.86 KNM 1n =-P 1×[1/3×(h 1%+h z +L m /2)+H 1-L m ]=-119.97×[1/3×(0.98+0.35+8.65/2)+31.65-8.65/2]=-3504.32 KN ·NM1=1.2M1n=1.2×(-3504.32)=-4205.18 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=91.75×(1/3×8.65/2+31.65-8.65/2)=2639.34 KNM2=1.2M2n=1.2×2639.34=3167.21 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×1.62×1.62×0.8=10.30 KNW=W1+W2+W3=10960.66 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8136.36×(26.8/2-3.5-23.3/2)=17357.57 KN·NM3=-W3L3=-10.30×(26.8/2-1/3×1.62×0.8)=-133.57 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×31.652=4913.45 KNM1=-P1L1=-4913.45×1/3×31.65=-51836.90 KN·N下游:P2=1/2γH22=1/2×9.81×1.622=12.87 KNM2=P2L2=12.87×1/3×1.62=6.95 KN·N⑸.浮托力P浮=γH2LB=9.81×1.62×26.8=425.91 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[31.65-1.62-0.2×(31.65-1.62)=589.19 KNW2=γA2=9.81×5×0.2×(31.65-1.62)=294.59 KNW3=γA3=9.81×1/2×(26.8-5)×0.2×(31.65-1.62)=642.22 KNWK =W1+W2+W3=1526 KNW=1.2×1526=1831.2 KNM 1K =-W 1L 1=-589.19×(26.8/2-5/3)=-6913.17 KN ·N M 1=1.2 M 1K =8160.35 KN ·NM 2K =-W 2L 2=-1.2×294.59×(26.8/2-5/2)=-3211.03 KN ·N M 2=1.2 M 2K =-3853.24 KN ·NM 3K =-W 3L 3=-1.2×642.22×[26.8/2-5-(26.8-5)/3] =-727.85 KN M 3=1.2 M 3K =-873.42 KN ∑P=5099.91 KN ∑W=8284.51 KN∑M=-16296.96 KN ·N 2.校核洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.66+0.22+6.29/2)×6.29/2=62.09 KN P 2=1/2γL m 2/4=1/2×9.81×6.292/4=48.52 KNP n = P 1+P 2 =62.09-48.52=13.57 KN P=1.2×P n =1.2×13.57=48.52 KNM1n =-P1×[1/3×(h1%+hz+Lm/2)+H1-Lm]=-62.09×[1/3×(0.66+0.22+6.29/2)+32.14-6.29/2]=-1883.60 KN·NM1=1.2M1n=1.2×(-1883.60)=-2260.32 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=48.52×(1/3×6.29/2+32.14-6.29/2)=1457.70KNM2=1.2M2n=1.2×1457.70=1749.24 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×2.6×2.6×0.8=26.53 KNW=W1+W2+W3=10976.89 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8555.4×(26.8/2-3.5-23.3/3)=17357.57 KN·NM3=-W3L3=-26.53×(26.8/2-1/3×2.6×0.8)=-337.11 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×32.142=5066.76 KNM1=-P1L1=-5066.76×1/3×32.14=-54281.89 KN·N下游:P2=1/2γH22=1/2×9.81×2.62=33.16 KNM2=P2L2=33.16×1/3×2.6=28.74 KN·N⑸.浮托力P浮=γH2LB=9.81×2.6×26.8=683.56 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[32.14-2.6-0.2×(32.14-2.6)=579.57 KNW2=γA2=9.81×5×0.2×(32.14-2.6)=289.79 KNW3=γA3=9.81×1/2×(26.5-5)×0.2×(32.14-2.6)=631.74 KNWK =W1+W2+W3=1501.1 KNW=1.2×1501.1=1801.32 KNM1=-1.2W1L1=-1.2×579.57×(26.8/2-5/3)=-8160.35 KN·NM2=-1.2W2L2=-1.2×289.79×(26.8/2-5/2)=-3790.45 KN·NM3=-1.2W3L3=-1.2×631.74×[26.8-5-(26.8-5)/3] =-859.17 KN∑P=5215.35 KN∑W=8072.97 KN∑M=-18184.32 KN·N3. 抗滑稳定极限状态⑴基本组合时,取持久状况对应的设计状况系数ψ=1.0,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×1.0×5099.91 =5099.91 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8284.51+100×26.8) =5409.06 KN∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,取偶然状况对应的设计状况系数ψ=0.85,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×0.85×5215.35 =4433.05 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8911.05+100×26.8) =6837.38 KN∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求4. 坝址抗压强度极限状态⑴基本组合时,设计状况系数ψ=1.0,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×1.0×[8284.51/26.8-6×(-16296.96)/26.82] ×(1+0.82) =730.23 Kpa≈0.73 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,设计状况系数ψ=0.85,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×0.85×[8072.97/26.8-6×(-18184.32)/26.82] ×(1+0.82) =631.68 Kpa≈0.63 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求5.上游坝踵不出现拉应力极限状态因上游坝踵不出现拉应力极限状态属正常使用极限状态,故设计状况系数,作用分项系数和材料性能分项系数均采用1.0,扬压力系数直接用0.2代入计算,此处,结构功能的极限值C=0。

BJ重力坝毕业设计毕业论文

BJ重力坝毕业设计毕业论文

BJ重力坝毕业设计毕业论文目录摘要 (1)前言 (2)第一部分设计说明书1 工程概况 (3)1.1 工程地理位置 (3)1.2 流域概况 (3)1.3 工程任务与规模 (3)2 基本资料 (4)2.1 水文气象 (4)2.2 坝址与地形情况 (11)2.3 工程枢纽任务与效益 (12)3 枢纽布置 (13)3.1 枢纽组成建筑物及其等级 (13)3.2 坝线、坝型选择 (14)3.3 枢纽布置 (17)4 洪水调节 (19)4.1 基本资料 (19)4.2 洪水调节基本原则 (22)4.3 调洪演算 (23)4.4 调洪计算结果 (27)5 非溢流坝剖面设计 (28)5.1 设计原则 (28)5.2 剖面拟订要素 (28)5.3 抗滑稳定分析与计算 (31)5.4 应力计算 (33)6 溢流坝段设计 (36)6.1 泄水建筑物方案比较 (36)6.2 工程布置 (37)6.3 溢流坝剖面设计 (38)6.4 消能设计与计算 (41)7 细部构造设计 (42)7.1 坝顶构造 (42)7.2 廊道系统 (43)7.3 坝体分缝 (44)7.4 坝体止水与排水 (45)7.5 基础处理 (46)7.6 混凝土重力坝的分区 (47)第二部分计算说明书1 洪水调节 (49)1.1 调洪演算 (49)1.2 调洪计算结果及分析 (63)2 非溢流坝段计算 (64)2.1 非溢流坝段经济剖面尺寸拟定 (64)2.2 重力坝非溢流坝段主要荷载 (68)2.3 抗滑稳定分析 (75)2.4 抗剪断强度计算 (78)2.5 应力分析计算 (80)3 溢流坝段设计 (84)3.1 顶部曲线 (84)3.2 反弧段 (86)4 消能防冲设计 (87)4.1 洪水标准和相关参数的选定 (88)4.2 水舌抛距计算 (89)4.3 最大冲坑水垫厚度及最大冲坑厚度 (90)致谢 (92)参考文献 (93)前言本次毕业设计是根据根据教学要求,对水利水电专业本科毕业生进行的最后一项教学环节。

重力坝设计设计范文

重力坝设计设计范文

重力坝设计设计范文重力坝是一种常见的水利工程建筑物,用于储存水资源和调节水流。

它通过巨大的自重来抵抗泄水和水压力,以及其他外力的作用。

重力坝设计是一个复杂而关键的过程,需要综合考虑地质、水文、结构、材料等多方面因素。

下面将介绍一般情况下重力坝设计的基本步骤和关键要点。

首先,进行地质勘察和分析是重力坝设计的基础。

地质条件直接影响着坝址的选取和坝体的稳定性。

因此,需要对岩石、土壤等地质特征进行详细的探测和评估。

同时还需要了解地震、滑坡等自然灾害的潜在风险,以及地下水、渗流等水文条件。

在地质勘察的基础上,确定坝址和坝型。

合适的坝址通常应在拦截流域的狭缩处或大曲率的地方,以减小水流的冲击力和侵蚀力。

而坝型的选择则根据地质条件、设计要求和施工技术等因素来决定。

常见的坝型包括重力坝、拱坝、混凝土面板堆石坝等。

接下来,进行水文和水力学分析。

基于历史水文数据、降雨模拟等方法,对设计洪水、最大汛期年径流量等参数进行计算和预测。

此外,还需要进行水库调度分析,确定不同季节和水位下的库容和泄洪设计。

根据水文和水力学的分析结果,进行坝体的尺寸、稳定性和安全性计算。

重力坝设计通常需要考虑坝顶宽度、坝高、坝底宽度、坝面坡度等参数。

为了确保坝体的稳定性,需要进行地基处理、防渗设计、静力分析、动力分析等工作。

在设计过程中,还需要充分考虑强震、波浪冲击等外力的影响。

最后,进行重力坝的设计计算和验算。

在设计计算过程中,需要按照相关的设计规范和标准,进行坝体结构和材料的强度计算、应力分析等工作。

同时,还需要进行施工方案的评估和优化,确保施工过程的安全性和高效性。

综上所述,重力坝设计是一个复杂而关键的工作。

它需要综合考虑地质、水文、水力学、结构、材料等多方面因素,以确保坝体的安全和稳定。

通过地质勘察、水文分析、结构设计等一系列步骤,可以得出合适的坝址、坝型和坝体参数。

最后,进行设计计算和验算,确保重力坝的可靠性和安全性。

水库重力坝优化设计论文

水库重力坝优化设计论文

水库重力坝优化设计论文水库重力坝优化设计论文1碾压混凝土重力坝优化设计1.1坝体布置大坝为碾压混凝土重力坝,坝轴线成直线布置,坝轴线方位角为NE53°,坝顶长113.83m。

右岸非溢流坝段由桩号坝0+000.00m~坝0+055.10m,左岸非溢流坝段由桩号坝0+063.10m~坝0+113.83m,两岸非溢流坝段坝顶总长105.83m,坝顶宽7.0m,坝顶高程1747.10m。

非溢流坝段上游面铅直,下游坝坡m=0.7,起坡点高程1737.10m。

坝体中部桩号坝0+055.10m~0+063.10m为溢流坝段,采用开敞式溢流表孔,堰顶高程1744.00m,溢流堰面按WES型剖面设计,下游面采用台阶式及底流联合消能,台阶高1.0m,宽0.7m,下游护坦长6m,护坦高程1711.76m。

放空底孔与取水口采用上下重叠式布置,位于右坝段0+052.60m桩号处,冲沙底孔进口高程1712.30m,喇叭型进口,设置2.0m×2.0m(宽×高)事故检修闸门孔及相应的启闭设备;取水口进口高程1716.40m,进口为喇叭型,并设置固定式拦污栅,其后为1.5m×1.5m(宽×高)事故检修闸门孔及相应的启闭设备,取水口后接压力管道,管道中心高程为1716.65m,直径为0.5m,管道外用C20钢筋混凝土包裹。

1.2坝体结构1.2.1坝顶结构坝顶高程1747.10m,顶宽7.0m,左右岸非溢流坝段分别长50.73、55.10m,上下游侧均设栏杆,溢流坝段设交通桥,右岸坝顶与顺龙公路连接。

1.2.2坝体材料工程区出露地层为峨眉山玄武岩,无可选料场,所选料场距坝址区约10km,由于运距远、人工费高、施工进度慢,故放弃了浆砌石筑坝方案。

经对C15常态混凝土和C15碾压混凝土进行比较,前者施工机械较少,后者具有工艺简单、上坝强度高、工期短、适应性强等优点,大坝填筑总量30408m3。

重力坝设计毕业论文

重力坝设计毕业论文

重力坝设计毕业论文目录1基本资料 (1)仁1.流域概况 (1)1.2水文气象特征 (1)1.3地质条件 (2)1.41程枢纽任务 (3)2枢纽布置 (4)2.1工程等级及建筑物级别确建 (4)2.2坝址、坝型选择 (5)2.2.1坝址地形地质条件 (5)2.2.2选址、选型原则 (5)2.2.3亭子口坝址概况 (6)2.2.4李家嘴坝址概况 (7)2.2.5坝址比较 (8)2.3枢纽布置 (9)2.3.1布置原则: (9)2.3.2枢纽的总体布置 (9)3洪水调节 (11)3.1基本资料 (11)3.1.1洪水过程线的确泄 (11)3.1.2相关曲线图 (13)3.1.3确定天然设计洪峰流量和天然校核洪峰流量 (13)3.1.4确定下泄设计洪峰流量标准(p=0.2%)和下泄校核洪峰流量标(p=0.1%) (14)3.2洪水调苗基本原则 (14)3.2.1确定工程等别和级别 (14)3.2.2水库防洪要求 (14)3.2.3水库的运用方式 (14)3.3调洪演算 (15)3.3.1堰顶高程 (15)3.3.2设计水头Hd (15)3.3.3流呈:系数加的确定 (15)3.3.4方案拟订 (16)3.3.5计算下泄流量 (16)3.3.6半图解法调洪演算 (17)4非溢流坝剖而设计 (22)4.1设计原则 (22)4.2剖面拟订要素 (22)4.2.1坝顶高程的拟订 (22)4.2.2坝顶宽度的拟订 (25)4.2.3坝坡的拟订 (26)4.2.4上、下游起坡点位宜的确定 (26) 4.2.5剖而设计 (26)4.3抗滑稳定分析与计算 (28)4.3.1分析的目的 (28)4.3.2滑动而的选择 (28)4.3.3对坝基面进行抗滑稳定计算 (29) 4.4应力计算 (30)4.4.1分析的目的 (30)4.4.2分析方法 (30)4.4.3材料力学法的基本假设 (30) 4.4.4荷载组合 (30)4.4.5应力计算 (30)5溢流坝段设计 (32)5.1泄水建筑物方案比较 (32)5.1.1布置原则 (32)5.1.2泄洪方案选择 (32)5.2溢流表孔布置 (32)5.3溢流坝剖而设计 (33)5.3.1顶部曲线 (33)5.3.2中间直线段的确定 (34) 5.3.3反弧段 (35)5.4消能设计与计算 (35)5.4.1闸墩的设计 (36)5.4.2消能形式选择 (37)5.4.3消力池的水力计算 (38) 5.4.4辅助消能工设计 (41) 5..4.5消力池护坦的设计 (42)6细部构造设计 (42)6.1坝顶构造 (42)6.2廊道系统 (43)6.2.1基础灌浆廊道 (43)6.2.2检査排水廊道 (44)6.2.3排水管 (44)6.3坝体分缝 (45)6.3.1横缝 (45)6.3.2纵缝 (45)6.3.3水平施工缝 (45)6.4坝体止水与排水 (45)6.4.1I 上水 (45)6.4.2坝体排水 (46)6.5基础处理 (46)6.5.1坝基开挖 (46)6.5.2固结灌浆 (47)6.5.3帷幕灌浆 (47)6.5.4坝基断层及破碎带处理 (48) 6.6混凝土重力坝的分区 (48)参考文献 (50)1基本资料流域概况嘉陵江是长江上游左岸的主要支流,发源于陕西凤县东北的秦岭山脉,流经陕西、、、重庆四省(直辖市),干流全长1120km,落差有2300m,平均比降2?05%。

珠江龙川混凝土重力坝设计(大连理工网络函授)

珠江龙川混凝土重力坝设计(大连理工网络函授)

网络教育学院本科生毕业论文(设计)题目:珠江龙川混凝土重力坝设计学习中心: xxxx奥鹏学习中心层次:专科起点本科专业:水利水电工程年级: 20xx年秋季学号: 1111111111111学生: xxx指导教师: xxx完成日期: 20xx年 x 月 x 日目录内容摘要...................................................................................................................... - 1 - 引言............................................................................................................................. - 2 - 1设计资料................................................................................................................... - 3 - 1.1重力坝基本资料..................................................................................................... - 3 -1.1.1流域概况..................................................................................................... - 3 -1.1.2地形、地质 ................................................................................................. - 3 -1.1.3水文地质..................................................................................................... - 3 -1.1.4气象资料..................................................................................................... - 3 -1.1.5淤泥............................................................................................................ - 3 -1.2重力坝工程综合说明....................................................................................... - 3 - 2坝型、坝址选择 ........................................................................................................ - 5 -2.1坝型选择 ........................................................................................................ - 5 -2.2坝址选择 ........................................................................................................ - 5 - 3重力坝非溢流坝段设计.............................................................................................. - 6 -3.1非溢流坝剖面设计 .......................................................................................... - 6 -3.2荷载组合计算 ................................................................................................. - 7 -3.3坝体抗滑稳定分析 (12)3.4应力分析 (12)4坝体细部构造 (14)4.1坝顶构造 (14)4.2坝内廊道 (14)4.3坝体分缝及止水 (14)4.4坝体坝基排水 (15)5地基处理 (16)5.1坝基开挖 (16)5.2帷幕灌浆 (16)5.3坝基排水 (16)5.4固结灌浆 (16)6结论 (18)内容摘要重力坝在各种坝型中往往占有较大的比重。

大华桥水利枢纽工程设计混凝土重力坝方案设计毕业论文

大华桥水利枢纽工程设计混凝土重力坝方案设计毕业论文
大华桥水利枢纽工程设计混凝土重力坝方案设计毕业论文
第一部分 设计说明书
1 概述
1.1工程地理位置
大华桥水电站位于云南省怒江州兰坪县兔峨乡境内澜沧江上游河段上,距兰坪县城77km,是澜沧江干流水电基地上游河段规划的八座梯级电站中的第六级,电站距黄登水电站约40km;下邻距苗尾水电站约60km。
1.2流域概况
22077.48
1430.17
1908.36
1473.39
22867.10
1434.96
2929.91
1475.07
24418.05
1440.20
4319.94
1476.37
25363.79
1445.12
6151.28
1479.28
27934.60
1450.00
8285.06
1480.25
28854.22
重要
500~100
200~60
150~50
重要
120~30

中型
1.0~0.10
中等
100~30
60~15
50~5
中等
30~5
IV
小(1)型
0.10~0.01
一般
30~5
15~3
5~0.5
一般
5~1
V
小(2)型
0.01~0.001
<5
<3
<0.5
<1
注: 1 、水库总库容指水库最高水位以下的静库容;
1.4坝址区地质构造资料
坝址处坝基岩体以中等坚硬的板岩和坚硬的石英砂岩互层为主,二者比例基本为1:1,层面闭合,结合紧密,微风化岩体完整性较好(RQD为50%~70%),从岩体强度、抗变形能力上石英砂岩较好,而板岩较差。河床坝基岩体质量以Ⅲ1类为主,两岸石英砂岩多为Ⅲ1~Ⅳ1、板岩多为Ⅲ2~Ⅳ1类,承载力总体能满足要求。坝基断裂构造不发育,两岸岩层层序对应关系正常,主要结构面为单一的横河向、陡角度略倾向下游的层面,且多为胶结较好的硬性结构面,对坝基稳定影响较小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1基本资料 (1)1.1.流域概况 (1)1.2水文气象特征 (1)1.3地质条件 (2)1.4工程枢纽任务 (3)2枢纽布置 (4)2.1工程等级及建筑物级别确定 (4)2.2坝址、坝型选择 (5)2.2.1坝址地形地质条件 (5)2.2.2选址、选型原则 (5)2.2.3亭子口坝址概况 (6)2.2.4家嘴坝址概况 (7)2.2.5坝址比较 (8)2.3枢纽布置 (9)2.3.1布置原则: (9)2.3.2枢纽的总体布置 (9)3洪水调节 (11)3.1基本资料 (11)3.1.1洪水过程线的确定 (11)3.1.2相关曲线图 (13)3.1.3确定天然设计洪峰流量和天然校核洪峰流量 (13)3.1.4确定下泄设计洪峰流量标准(p=0.2%)和下泄校核洪峰流量标(p=0.1%) (14)3.2洪水调节基本原则 (14)3.2.1确定工程等别和级别 (14)3.2.2水库防洪要求 (14)3.2.3水库的运用方式 (14)3.3调洪演算 (15)3.3.1堰顶高程 (15)H (15)3.3.2设计水头d3.3.3流量系数m的确定 (15)3.3.4方案拟订 (16)3.3.5计算下泄流量 (16)3.3.6半图解法调洪演算 (17)4非溢流坝剖面设计 (22)4.1设计原则 (22)4.2剖面拟订要素 (22)4.2.1坝顶高程的拟订 (22)4.2.2坝顶宽度的拟订 (25)4.2.3坝坡的拟订 (26)4.2.4上、下游起坡点位置的确定 (26)4.2.5剖面设计 (26)4.3抗滑稳定分析与计算 (28)4.3.1分析的目的 (28)4.3.2滑动面的选择 (28)4.3.3对坝基面进行抗滑稳定计算 (29)4.4应力计算 (30)4.4.1分析的目的 (30)4.4.2分析方法 (30)4.4.3 材料力学法的基本假设 (30)4.4.4荷载组合 (30)4.4.5应力计算 (30)5溢流坝段设计 (32)5.1泄水建筑物方案比较 (32)5.1.1布置原则 (32)5.1.2泄洪方案选择 (32)5.2溢流表孔布置 (32)5.3溢流坝剖面设计 (33)5.3.1顶部曲线 (33)5.3.2中间直线段的确定 (34)5.3.3反弧段 (35)5.4消能设计与计算 (35)5.4.1闸墩的设计 (36)5.4.2消能形式选择 (37)5.4.3消力池的水力计算 (38)5.4.4辅助消能工设计 (41)5..4.5消力池护坦的设计 (42)6细部构造设计 (42)6.1坝顶构造 (42)6.2廊道系统 (43)6.2.1基础灌浆廊道 (43)6.2.2检查排水廊道 (44)6.2.3排水管 (44)6.3坝体分缝 (45)6.3.1横缝 (45)6.3.2纵缝 (45)6.3.3水平施工缝 (45)6.4坝体止水与排水 (45)6.4.1止水 (45)6.4.2坝体排水 (46)6.5基础处理 (46)6.5.1坝基开挖 (46)6.5.2固结灌浆 (47)6.5.3帷幕灌浆 (47)6.5.4坝基断层及破碎带处理 (48)6.6混凝土重力坝的分区 (48)参考文献 (50)1基本资料1.1.流域概况嘉陵江是长江上游左岸的主要支流,发源于凤县东北的岭山脉,流经、、、四省(直辖市),干流全长1120km,落差有2300m,平均比降2.05‰,全流域面积为15.98万平方千米,占长江流域面积的9%。

嘉陵江水系发育,自上而下主要支流有西汉水、白龙江、东江、西河、渠江、涪江等。

嘉陵江流域大部分属亚热带湿润季风气候。

在中下段的盆地区,冬季温暖多雾,霜雪少见,上游段山区则冬季寒冷,霜雪较多,又多风暴,往往一雨成灾。

春夏时节,流域降雨自东向西移动,若遇季风弱而迟,则西部常形成春旱和初夏干旱天气。

流域年降水量在1000毫米以上,其中50%集中在7~9月。

而且降雨在区域上分布上很不均匀,一般聚集在盆地边缘的降水大于盆地中部。

中游至合川的年径流量为300~400mm;下游合川至为400~500mm;而至苍溪为川中径流量深低值区,仅300mm;中游苍溪以上至的大滩场,由300mm递增到600mm。

流域多年平均径流量为698.8亿立方米,主要集中在汛期5~10月,汛期干流水量占全年径流量的75%~83%,非汛期在11月到次年的4月,占17%~25%。

1.2水文气象特征坝址地区雨量丰沛,资料显示其多年平均降水量为995.8mm,多年平均流量598sm3,相应多年平均径流量189亿3m,径流深309mm。

多年平均气温16.6C ,多年平均风速1.9sm3,多年平均最大风速为13.2m3,多年平均地面温度19.2C ,多年平均水温15.5C [。

坝址区河段平直开阔河谷呈浅U形,谷底宽200~350m,在正常蓄水位458m高程处谷宽778m~856m,左侧为主河槽,枯水位370~371m,水面宽170~200m水深1.5~4.5m河床覆盖层最厚处约13.5m,基岩顶板高程352.9~364m [6]。

水库规划指标:水库正常蓄水位458m,设计洪水位461.3m,相应洪峰流量34500m3,校核洪水位463m,相应洪峰流量37610sm3,总库容40.67亿3m,防洪库容19.56亿3m,坝前淤沙高程373m。

表1-1 坝址各频率洪峰流量1.3地质条件(1)地形地貌嘉陵江由北北西向南南东流经坝址区,流向170°,河段平直开阔,呈浅“U”型河谷,谷底宽170~350m,高程458m处谷宽778~856m。

河床左侧为主河槽,枯水位370~371m、相应水面宽170~200m、水深1.1~4.5m。

河床覆盖层厚度一般6~10m,最厚处约13.5m,基岩顶板高程352.86~364m。

左岸山体宽厚,临江峰顶高程657.8m,岸坡中部高程480~400m间为缓坡平台,平台宽150~360m,长2500m,台面高程自上游至下游降低,斜坡段地形坡度20~25°。

右岸山体临江峰顶高程550m,岸坡中分布两级缓坡平台,下级高程390~410m,台地宽120~150m,长大于500m,上级缓坡平台高程445~460m,台地宽100~120m,长约500m,斜坡段地形坡度15~20°。

(2)地层岩性坝区出露地层为白垩系下统苍溪组(K1c)砂岩、粉砂岩、粘土岩,总厚度480m,为软硬相间不等厚的层状岩层。

主要层位有K1c 6-1、K1c4-2、K1c3-2、K1c2-3、K1c2-1等5层,除K1c4-2层为长石石英砂岩结构较疏松,为软岩外,其余4层均为较坚硬的岩屑砂岩,其中河床坝基下K1c2-1层砂岩厚23~28m。

坝区第四系分布较广,主要为河流冲积与崩滑堆积。

河床冲积砂砾石厚6~13.50m;左岸古滑体厚度一般20~40m,最大厚度63m。

(3)地质构造坝址处于九龙山背斜东南翼,岩层走向30~60°,微倾下游偏左岸,倾角1~5°,未见断层。

砂岩中两组陡倾角裂隙较发育,一组走向350~360°,倾向东或西,倾角70~90°;一组走向75~90°,倾向南或北,倾角70~90°。

(4)水文地质坝址地下水按赋存介质可分为孔隙水、裂隙水和孔隙~裂隙水。

地下水主要以井、泉形式排泄于地表,流量较小,季节性变化大,砂岩层间裂隙水局部微具承压性,地下水水力联系差。

地表水、地下水水质对砼均无侵蚀性。

岩体透水性具有较明显的层状特征与不均一性,两岸砂岩中等透水;K1c4-2长石石英砂岩中~强透水,粘土岩、粉砂岩和河床分布的砂岩为弱透水或微透水。

(5)岩体风化与卸荷岩体风化受岩性和环境制约,不同部位表现不同的风化特点。

河床及漫滩基本上是微风化带,厚度小于3m;谷坡地带全~强风化带厚度多小于2.0m,弱风化带厚度3~28m;左岸崩滑体平台下伏基岩全~强风化带厚度小于1.0m,弱风化带约4m左右。

岩体卸荷与岩性、微地貌相关。

江边岩体卸荷水平宽度较小,卸荷水平宽度一般小于20m,最大可达37m(平硐PD5);两岸岸坡中部(460m平台以下)卸荷带水平宽度25~66m,460m 平台以上岸坡卸荷带水平宽度左岸较大,卸荷水平宽度69~85m,右岸卸荷水平宽度43~52m;砂岩的卸荷宽度大于粉砂岩或粘土岩的卸荷宽度。

1.4工程枢纽任务本枢纽经过技术经济调查阶段,以及水利、水能计算,提出了如下参数,作为进行建筑物设计的依据。

正常蓄水位:458.0m设计洪水位461.3m校核洪水位463.0m死水位(淤积结果)438m最有利工作深度20m水库防洪限制水位 442m2枢纽布置2.1工程等级及建筑物级别确定根据规《水利水电工程等级划分及洪水标准》SL252-2000,亭子口水利枢纽工程等别确定为一等,工程规模为大(1)型,主要建筑物级别为1级,电站厂房级别为2级,次要建筑物为3级。

表2-1 水利水电枢纽工程的分等指标注: ①水库总库容指水库最高水位以下的静库容;②治涝面积和灌溉面积均指设计面积;表 2-2 水工建筑物级别2.2坝址、坝型选择2.2.1坝址地形地质条件河段规划等前期研究工作确定该枢纽工程有家嘴和亭子口两个坝址可供比较选择, 它们分别位于苍溪县城上游15km 和28 km 处。

两坝址间无大的水系汇入, 水文气象条件基本一致, 其主要特征洪水见表1, 两坝址的相对位置见图1。

图1 坝址相对位置表1 主要特征洪水洪峰流量两坝址区的出露地层均为白垩系下统苍溪组红色碎屑岩,总厚度约480 m。

根据岩性及其组合特性, 自下而上分为k11c至k81c共8 段, 其中k11c~ k41c为坝基岩体, 其主要持力层为位于河床部位的k21c层, 该层主要为巨厚层状浅灰色细粒岩屑砂岩,夹有浅色长石石英砂岩及少量粉砂岩和粘土岩等, 岩相较为稳定。

两坝址坝肩均为k31c~ k41c层岩体, 大多为粉砂岩、石英砂岩及粘土岩互层体, 岩性相变较大。

其中砂岩类岩体抗压强度较高, 饱和抗压强度在30-55 MPa 左右; 而粘土岩类抗压强度较低, 饱和抗压强度只有8-13. 5 MPa 左右, 属软岩类。

两坝址区均无大的断裂构造。

2.2.2选址、选型原则坝型、坝址选择是水利枢纽设计的重要容,二者相互联系,不同的坝址可以选用不同的坝型,同一个坝址也应考虑几种不同的枢纽布置方案并进行比较。

在选择坝型,坝址时,应研究枢纽附近的地形地质条件、水流条件和建筑材料、施工条件、枢纽布置等:(1)地质条件。

地质是坝址、坝型选择的主要依据之一。

拱坝、重力坝需建在岩基上;土石坝则岩基,土基均可修建。

坝址选择应该注意一下几个方面的问题:①对断层破碎带,软弱夹层要查明其产状、宽度(厚度)、充填物和胶结情况,对垂直水流方向的陡倾角断层应尽量避开,对具有规模较大的垂直水流方向的断层或是存在活断层的河岸,均不应选择坝址;②在顺向河谷(指岩层走向与河流方向一致)中,总有一岸指与岩层倾向一致的顺向坡,当岩层倾角小于地形坡角,岩层又有软弱结构面时,在地形上存在临空面,这种岸坡极易发生滑坡,应当注意;③对于岩溶地区,要掌握岩溶发育规律,特别要注意潜伏溶洞、暗河、溶沟和溶槽,必须查明岩溶对水库蓄水和对建筑物的影响;④对土石坝,应尽量避开细砂、软粘土、淤泥、分散性土、湿陷性黄土和膨胀土等土基。

相关文档
最新文档