数值分析思考题
数值分析思考题[综合]
![数值分析思考题[综合]](https://img.taocdn.com/s3/m/645849e408a1284ac85043b7.png)
1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。
2、相对误差在什么情况下可以用下式代替?3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。
4、 取,计算,不用计算而直接判断下列式子中哪种计算效果最好?为什么?(1)(33-,(2)(27-,(3)(313+,(4))611,(5)99-5. 应用梯形公式))()((2b f a f ab T +-=计算积分10x I e dx -=⎰的近似值,在整个计算过程中按四舍五入规则取五位小数。
计算中产生的误差的主要原因是截断误差还是舍入误差?为什么?6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。
(1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。
7. 下列公式如何计算才比较准确?(1) 212x e -,1x <<;(2)121N Ndx x ++⎰,1>>N ;(3) ,1x >>。
8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗?re x xe x x *****-==141.≈)611、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区间多少次?2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。
3、设0a >,应用牛顿法于方程30x a -=确定常数,p q 和r 使得迭代法2125k kk k qa ra x px x x +=++, 012,,,k =4、对于不动点方程()x x ϕ=,()x ϕ满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ϕ=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数1()ln()x x e ϕ=+在任何区间[],a b 上都是压缩的,但没有不动点。
数值分析思考题1

数值分析思考题11、 讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。
答:(1)绝对误差(限)与有效数字:若*120....10m n x ααα=⨯(a 1≠0,m 为整数) 绝对误差:*1*102m n e x x -=-≤⨯,那么*x 就有 n 个有效数字。
因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。
(2)相对误差限与有效数字:*120....10m n x ααα=⨯(a1≠0,m 为整数)相对误差限:*1111110*1210*102m n n r m x x e x αα--+-⨯-=≤=⨯⨯,*1*102m n e x x -=-≤⨯,11*10m x α-≥⨯可见*x 至少有n 位有效数字。
2、相对误差在什么情况下可以用下式代替?答:实际情况下真实值 x 是无法得到的,当测量值与真实值之间的误差可以忽略不计时,可用下式代替。
3、 查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。
r e x x e x x *****-==答:病态性:数学问题本身性质所决定的,与算法无关,却能引起问题真解很大变化。
同:都是输入数据的微小误差导致输出数据误差的增大。
异:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学模型本身的问题,与算法无关。
4、 取,计算,下列方法中哪种最好?为什么?(1)(33-,(2)(27-,(3)()313+,(4)()611,(5)99-答:)631 5.05110-≈⨯ (1)(()333332 1.41 5.83210--≈-⨯≈⨯(2)223(7(75 1.41) 2.510--≈-⨯=⨯(3331 5.07310(32 1.41)-≈≈⨯+⨯(4361 5.10410(1.411)-≈≈⨯+(5)9999700.3-≈-=方法3最好,误差最小141.≈)61。
数值分析第一章思考题

数值分析第一章思考题第一章思考题(2012级本科学生作品)1、什么样的算法被称为不稳定算法?试列举一个例子进行说明。
在算法执行过程中,舍入算法对计算结果影响大的一类算法被称为数值不稳定的一种算法。
例如,假设初始数据有一点微小误差,就会对一个算法的数据结构产生很大的影响,造成误差扩散。
用计算公式ln 1ln n n =-,构造出的递推算法是一个数值不稳定的算法;而另一公式ln 1(1ln)/n -=-则可以构造出一个数值稳定的算法。
2、我们都知道秦九韶算法能够减少运算次数,高中也学过他的具体过程,请举出一个例子并用秦九韶算法计算。
答;一般的,一元n 次多项式的求值需要经过(1)/2n n +次乘法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法。
具体的不太会了。
3、为什么要设立相对误差的概念?答:相对误差是近似值误差与精确值的比值,用来衡量近似值的近似程度。
x=10±1,y=1000±5。
虽然x 的误差比y 的误差小,但y 的近似程度比x 更好。
这单用误差无法表现出来,而相对误差可以解决这个问题。
4、误差在生活中有什么作用?答:误差的作用不仅仅体现在数学课题研究中,在生活中误差的作用也非常大,比如在建筑行业中,设计图纸时必须要达到一定的精确度才行。
5、有效数字以及计算规则答:有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
它的实际意义在于有效数字能反映出测量时的准确程度。
例如,用最小刻度为0.1cm 的直尺量出某物体的长度为11.23cm ,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,医|学教育网搜集整理因为它是测试者估计出来的,这个物体的长度可能是11.24cm ,亦可能是11.22cm ,测量的结果有±0.01cm 的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
这个数值就是四位有效数字。
数值分析思考题2

数值分析思考题21、已知函数()f x 的下列观测值:利用Lagrange 和Newton 插值方法计算02(.)f 的近似值。
若另外测得一个新点:02080(.).f ,试估计用上述方法计算02(.)f 的近似值的误差。
答:lagragange 插值方法:(1) n=1时,取x 0=0.15,x 1=0.25,L 1(x)=l 0(x)f(x 0)+l 1f(x 1)= x−0.250.15−0.25×0.860708+x−0.150.25−0.15×0.778801;将x=0.2代入得f (0.2)=0.8197545 (2) n=2时,取x 0=0.15,x 1=0.25,x 2=0.30,L2(x )=l0(x)f(x0)+l1f(x1)+l2f(x2)=(x −x1)(x −x2)(x 0−x 1)(x 0−x 2)f(x0)+(x −x0)(x −x2)(x 1−x 0)(x 1−x 2)f(x1)+(x −x0)(x −x1)(x 2−x 0)(x 2−x 1)f(x2);代入x=0.2.得f (0.2)=0.8187643334Newton 插值方法:clear,clcX=[0.10,0.15,0.25,0.30];Y=[0.904837,0.860708,0.778801,0.740818]; n=length(X); A(1:n,1)=Y(1:n); format rat已知for j=2:nfori=j:nA(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end end A=A syms x f f=0; fori=1:n u=1.0; for k=1:i-1u=u*(x-X(k)); endf=f+u*A(i,i); end y=expand(f) ezplot(y,[0.10,0.30]) hold on plot(X,Y,'ro') 得f(0.2)=0.8188.2、函数251()f x x =+及定义区间]5,5[-,将定义区间分成 10等分。
数值分析思考题

数值分析思考题1、 一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称 ()n n n e y x y =-为某方法在点n x 的整体截断误差,设n y 是准确的,用某种方法计算n y 时产生的截断误差,称为该方法的局部截断误差。
可以知道,整体误差来自于前面误差积累,而局部误差只来自于n y 的误差。
如果给定方法的局部截断误差为11()p n T O h ++=,其中p 为自然数,则称该方法是p 阶的或具有p 阶精度。
2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法?显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。
3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h 需要足够小,但是为了反映解的完整性,x 区间又需要足够长,计算速度变慢。
最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。
(1)3,12(1)0.4dy y x x dxx y ⎧=-≤≤⎪⎨⎪=⎩;(2)'109,'1011,y y z z y z =-+⎧⎨=-⎩ 满足(1)1,(1)1,y z =⎧⎨=⎩,12x ≤≤。
解:(1)取步长为0.1,向前Euler 公式:3101=0.11.(,)()n n n n n n ny y hf x y x y x +=++-向后Euler 公式:41111110101.(,).n n n n n n n n x y x y y hf x y x +++++++=+=+改进的Euler 公式:()11333113211(,),(,)20.10.12n n n n n n n n n n nn n n n n n hy y f x y f x y h f x y y x y y x x x x x ++++++=+++⎡⎤⎣⎦⎡⎤+=+-+-⎢⎥+⎣⎦经典的四阶Runge-Kutta 法:11234226()n n hy y k k k k +=++++1(,)n n k f x y =2122(,)n n h hk f x y k =++ 3222(,)n n h hk f x y k =++43(,)n n k f x h y hk =++四阶显示Adams 方法:01112233555937924()[(,)(,)(,)(,)]n n n n n n n n n n hy y f x y f x y f x y f x y +------=+-+- 01111122919524()[(,)(,)(,)(,)]n n n n n n n n n n h y y f x y f x y f x y f x y +++----=++-+(2)二元微分方程组,经典的四阶Runge-Kutta 法公式为:11234226()n n hy y k k k k +=++++ 11234226()n n hz z L L L L +=++++1(,,)n n n k f x y z =211222(,,)n n n h h h k f x y k z L =+++ 322222(,,)n n n h h hk f x y k z L =+++433(,,)n n n k f x h y hk z hL =+++1(,,)n n n L g x y z =211222(,,)n n n h h h L g x y k z L =+++ 322222(,,)n n n h h hL g x y k z L =+++433(,,)n n n L g x h y hk z hL =+++改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。
数值分析思考题2

数值分析思考题二1、 怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区间多少次?答: (1)已知1020()x f x e x =+-=,作210x e x =-的图像,可得在区间[0,1]之间有交点,即有且仅有一个根。
由于()102x f x e x =+-,所以()f x 在区间[0,1]上连续,且()00100210f e =+⨯-=-,()11101280f e e =+⨯-=+,即()()010f f •,又()'100x f x e =+,根据零点定理得知,在()f x 在区间[0,1]有唯一实根。
由二分法的估计式()*211102k k x x b a ε-+-≤-=,得到()ln 102ln10 4.60511 5.645ln 20.693k-+-≈-≈,因此取6k =。
1211102 4.6022f e ⎛⎫=+⨯-≈ ⎪⎝⎭,又()1002f f ⎛⎫• ⎪⎝⎭,()f x 在区间[0,12]有唯一实根。
1411102 1.8044f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,14]有唯一实根。
18111020.38088f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,18]有唯一实根。
116111020.3101616f e ⎛⎫=+⨯-≈- ⎪⎝⎭,又110816f f ⎛⎫⎛⎫• ⎪ ⎪⎝⎭⎝⎭,()f x 在区间[18,116]有唯一实根。
332331020.03603232f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[116,332]有唯一实根。
56455102.0146464f e ⎛⎫=+⨯-=- ⎪⎝⎭,故 50.07864=即为所求。
电子科技大学数值分析-第四章思考题

电⼦科技⼤学数值分析-第四章思考题《数值分析》第四章思考题1.解线性⽅程组的迭代法与直接法相⽐哪些不同?解:解⽅程的迭代法分为多种迭代法,迭代法适⽤于求解⼤规模稀疏矩阵的线性⽅程组。
直接法适⽤于求解阶数⽐较低的线性⽅程组。
2.雅可⽐迭代法中的迭代矩阵如何构造?解:雅可⽐迭代法的矩阵表⽰,可以⽤矩阵分裂导出。
传统的矩阵分裂法是将⽅程组Ax = b 的系数矩阵 A 分为三部分之和,设A=D?L?U3.迭代法中的迭代矩阵与⽅程组数值解误差有何关系?解:迭代格式收敛的充分必要条件是B k=0limk→∞经过证明过程得:这也就是说明迭代法产⽣的序列收敛,且序列的极限是⽅程组(I?B)?1x=f的解。
4.迭代矩阵的幂级数有何数学意义?解:5.矩阵的谱半径与矩阵的范数相⽐哪⼀个⼤?解:设n阶矩阵B的特征值为λ1,λ2,λ3,?λn,则称|λk|ρ(B)=max1≤k≤n为矩阵B的谱半径。
谱半径与矩阵的算⼦范数之间如下关系:ρ(B)≤‖B‖6.迭代法收敛定理对⽅程组数值解的误差是如何估计的?解:如果迭代法收敛。
当迭代次数⾜够⼤时,可⽤最后相邻两次迭代解的差替代最后⼀次迭代解的误差。
7.如果系数矩阵是主对⾓占优矩阵,是否可⽤雅可⽐迭代法或赛德迭代法求解⽅程组?解:如果系数矩阵是严格主对⾓占优矩阵,可以⽤赛德尔迭代法求解。
8.如果系数矩阵是实对称正定矩阵,是否可⽤雅可⽐迭代法或赛德迭代法求解⽅程组?解:如果系数矩阵是对称正定矩阵,可以⽤赛德尔迭代法求解。
9.何谓共轭向量组?共轭向量组与正交向量组有何区别?向量共轭是向量正交关系的推⼴。
10.何谓线性⽅程组的初等变分原理?初等变分原理有哪些应⽤?解:对于⼀个系数矩阵为对称正定矩阵的线性⽅程组,求解过程可以与⼀个多元⼆次函数的极⼩值点相联系。
设线性⽅程组Ax = b 的系数矩阵 A 是实对称正定矩阵,构造⼆次函数f(x)=1(Ax,x)?(b,x),x∈R n由于A对称正定,故⽅程组Ax =b有唯⼀解x?,且⼆次函数f(x) 也有唯⼀的极⼩值点。
数值分析思考题5

数值分析思考题51、插值与拟合的相同点和不同点分别是什么?相同点:插值和拟合都是函数逼近或者数值逼近;都需要根据已知数据构造函数;可使用构造的函数计算未知点函数值。
不同点:插值要求函数通过所有样本点,拟合则不要求,只要均方差最小即可;当数据的函数形式已知时,仅需要拟合参数值。
2、写出n次多项式拟合的一般形式,奇函数和偶函数的多项式拟合的一般形式。
n次多项式拟合的一般形式:P x=a0+a1x+a2x2+⋯+a n x n,奇函数一般形式: P x=a1x+a2x3+⋯+a2n+1x2n+1,偶函数一般形式: P x=a1x2+a2x4+⋯+a2n x2n.3、详述你所知道的矩阵分解,它们的意义如何?三角分解:将原正方矩阵分解成一个上三角形矩阵和一个下三角形矩阵的乘积。
简化一个大矩阵的行列式值的计算过程,减少求解线性方程组的计算量和存储量。
正交分解:将矩阵分解成一个正交阵和一个上三角形矩阵的乘积。
对矩阵进行满秩分解,可以求解线性方程组的极小最小二乘解。
4、超定(矛盾)线性方程组的最小二乘解有哪些情况?说明它与广义逆的关系。
若rank(A)=n,超定线性方程组有唯一的最小二乘解;若rank(A)<n,超定线性方程组有无穷多个最小二乘解。
超定(矛盾)线性方程组的极小最小二乘解为x=A+b.5、 给出各种正交化方法的优劣比较。
(1)GS 法的列q 由A 的列经过反复线性组合,由于舍入误差的影响,可能会导致产生的单位正交向量产生较大的偏差(2)MGS 法解决了这个问题,且比GS 法稳定,但MGS 法的列正交性可能较差。
(3)Household 变换法的运算量大于GS 法、MGS 法,但其计算解更精确。
(4)Givens 变换的运算量一般为Household 变换法的两倍,但对于有较多零元素的矩阵,其运算量往往大大减少。
6、用Householder 变换求解下列线性方程组的极小最小二乘解12341124412355134661457715689x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 解: a 1 2= 5,y =( 5,0,0,0,0)T ,u 1=x −y =x − x 2e 1=a 1− a 1 2e 1=(1− 5,1,1,1,1)T , 规格化u 1,u 1=(1,(−1− 5)/4,(−1− 5)/4,(−1− 5)/4,(−1− 5)/4)T ,1T 112=0.5528u u β= ,T 1111 0.4472 0.4472 0.4472 0.4472 0.4472 0.4472 0.6382 -0.3618 -0.3618 -0.3618H I u u 0.4472 -0.3618 0.6382 -0.3618 -0.3618 0.4472 -0.3618 -0.3618 0.6382=-β= -0.3618 0.4472 -0.3618 -0.3618 -0.3618 0.6382⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ ()1 2.2361 6.7082 8.9443 13.4164 13.8636 0.0000 -2.6180 -2.6180 -2.6180 -2.9798H A |b 0 -1.6180 -1.6180 -1.6180 -1.9798 0.0000 -0.6180 -0.6180 -0.6180 -0.=9798 0.0000 0.3820 0.3820 0.3820 1.0202⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ , ()T 2a -2.6180 -1.6180 -0.6180 0.3820= ,()T 22212u a a e -5.7803 -1.6180 -0.6180 0.3820=-= ,规格化u 2,()T 2u 1.0000 0.2799 0.1069 -0.0661= , 2T 222= 1.8279u u β= ,T 2222 -0.8279 -0.5117 -0.1954 0.1208 -0.5117 0.8568 -0.0547 0.0338H I u u -0.1954 -0.0547 0.9791 0.0129 0.1208 0.0338 0.0129 0.9920⎡⎤⎢⎥⎢⎥=-β=⎢⎥⎢⎥⎣⎦’, 2 1.0000 0 0 0 0 0 -0.8279 -0.5117 -0.1954 0.1208H 0 -0.5117 0.8568 -0.0547 0.0338 0 -0.1954 -0.0547 0.97=91 0.0129 0 0.1208 0.0338 0.0129 0.9920⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ ,()21 2.2361 6.7082 8.9443 13.4164 13.8636 0 3.1623 3.1623 3.1623 3.7948H H A |b 0.0000 0.0000 0.0000 0.0000 -0.0835 0.0000 0.0000 0.0000 0.0000 -0=.2555 0 -0.0000 -0.0000 -0.0000 0.5725⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 2.2361 6.7082 8.9443 13.4164U 0 3.1623 3.1623 3.1623⎡⎤=⎢⎥⎣⎦ ,T 13.8636Q b 3.7948⎡⎤=⎢⎥⎣⎦ ,因为T T UU y Q b =, T 1T0.0789y (UU )Q b -0.1153-⎡⎤==⎢⎥⎣⎦, 故极小最小二乘解为()TT x U y 0.1765 0.1647 0.3412 0.6941==%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析思考题6
1、数值计算中迭代法与直接法的区别是什么
(1)直接法是指在没有舍入误差的情况下经过有限次运算求得方程组的精确解的方法。
直接法又称为精确法。
(2)迭代法是采取逐次逼近的方法,即从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是方程组的精确解,只经过有限次运算得不得精确解。
迭代法是一种逐次逼近的方法,与直接法比较, 具有程序简单,存储量小的优点。
2、详述你所知道的线性方程组的迭代法的收敛性定理。
迭代公式收敛的充分必要条件是假设矩阵M的谱半径,可知的充分必要条件是。
迭代公式和
,收敛。
严格对角占优线性方程组Ax=b(其中,)的Jacobi 迭代公式,收敛。
Gauss-Seidel迭代公式
,收敛。
3、详述你所知道的非线性方程(组)的迭代法以及收敛性结果。
(1)不动点迭代法:不一定收敛,若存在常数L<1,使得
,则收敛于x*。
(2)斯蒂芬森迭代法:若不动点迭代公式的迭代函数在不动点
x*的某邻域内具有二阶连续导数, 且,则
二阶收敛,极限是x*。
(3)牛顿迭代法:收敛
4、举例说明解线性方程组的SOR 方法的最佳松弛因子与何种因素有关
解线性方程组的SOR 方法的最佳松弛因子与迭代矩阵的谱半径有关,是单峰关系。
经实验,当谱半径是时,松弛因子是。
5、指出解非线性方程组的Newton 法的主要工作量所在。
分别用Newton 法和Broyden 秩1校正方法求解如下方程组在()1,1,1T
点附近的根:
2
1232
12332312470,10110,1080.
x x x x x x x x ⎧---=⎪+--=⎨⎪+-=⎩
解非线性方程组的Newton 法的主要工作量在于求解。
牛顿解: , ,
Broyden 秩1校正方法: , ,。