人教版九年级数学下册图形的相似同步练习

合集下载

人教版九年级数学下册27.1 图形的相似同步练习2 及答案(新审)

人教版九年级数学下册27.1 图形的相似同步练习2 及答案(新审)

相似多边形
1. 若线段c满足a c
c b
=,且线段a=4 cm,b=9 cm,则线段c=()
A.6 cm B.7 cm
C.8 cm D.9 cm
2. 在下列四个命题中:①所有的等腰直角三角形都相似;②所有的等边三角形都相似;③所有的
正方形都相似;④所有的菱形都相似.其中真命题有()
A.4个B.3个
C.2个D.1个
3. 有一多边形草坪,在市政建设设计图纸上的周长为50 cm,其中一条边的长度为5 cm.经测量,
这条边的实际长度为15 m,则这块草坪的实际周长是()
A.100 m B.150 m
C.200 m D.250 m
4. 图中的两个四边形是相似图形,若∠N=125º,则∠M=__.
5.(2013枣庄)如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD= .
参考答案
1.A
2.B
3.B
4.125º
551 +。

人教版九年级数学下册27.2 相似三角形 同步练习1 含答案

人教版九年级数学下册27.2 相似三角形 同步练习1  含答案

27.2.1相似三角形的判定(1)1、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =3、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A 1对B 2对C 3对D 4对4、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④.5、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥6、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形AB C 相似(相似比不为1).7、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.8、一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,写出所有不同的截法?答案1、D E ∥BC2、C3、C4、C5、B6、略7、AD=516cm 8、两种截法(1)新截三角形的三边分别是10cm,25cm,30c m (2)新截三角形的三边分别是12cm,30cm,36cm。

人教版九年级数学下册图形的相似同步练习【新审】

人教版九年级数学下册图形的相似同步练习【新审】

图 27.1-6
6.如图 27.1-7,试一试,把下列左边的图形放大到右边的格点图中 .
图 27.1-7 7.如图 27.1-8,已知图中的两个梯形相似,求出未知边 度数 .
x、 y、z 的长度和∠ α、∠β的
图 27.1-8
二、综合 ?应用达标 8.矩形相框如图 27.1-9 所示,图中两个矩形是否相似 ?
思路解析: 要解决此类问题 ,应先统一单位 (当四条线段的长度单位不相同时 ),把它 们 按从小到大 ( 或从大到小 )的顺序进行排列,然后依次计算第一条与第二条、第三条 与第四条线段的比,看这两个比值是否相等;有时计算乘积要方便些,如果第一、 四两个数的积等于第二三两个数的积,则四条线段成比例,否则不成比例 . 解: (1)四条线段按从小大的顺序排列为 3,4,5,7. ∵ 3×7≠4×,5即 3∶ 4≠5∶7, ∴ 3 cm,4 cm,5 cm,7 cm这四条线段不成比例 . (2)5 cm=50 mm,4 cm=40 mm,四条线段按从小大的顺序排列为 12,15, 40,50. ∵ 12×50=15×40,即 12∶15=40∶50, ∴ 12 mm,5 cm,15 mm,4 cm这四条线段成比例 . (3)1 cm=10 mm,2 cm=20 mm, 四条线段按从小大的顺序排列为 5,10, 10,20. ∵ 5×20=10×10,即 5∶ 10=10∶20, ∴ 5 mm,1 cm,10 mm,2 cm这四条线段成比例 . 10.试将一个正方形纸片 (如图 27.1-10)分割为 8 个相似的小正方形 .
图乙
图 1(1 阶)
图 2(2 阶)
图 3(3 阶)
思路解析: 本题是阅读理解题, n 阶分割实际是把原三角形分为 4n 个相同的小三角

人教版九年级数学下册图形的相似同步练习 (含答案)

人教版九年级数学下册图形的相似同步练习 (含答案)

人教版九年级数学下册图形的相似同步练习一.选择题(本大题共10小题,每小题3分,共30分)1.下面几对图形中,相似的是( )2.下列图形是相似图形的是( )A .两张孪生兄弟的照片B .三角板的内、外三角形C .行书中的“美”与楷书中的“美”D .同一棵树上摘下的两片树叶3.下列各线段的长度成比例的是( )A .2 cm ,5 cm ,6 cm ,8 cmB .1 cm ,2 cm ,3 cm ,4 cmC .3 cm ,6 cm ,7 cm ,9 cmD .3 cm ,6 cm ,9 cm ,18 cm4.两个相似多边形的一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A.23 B.32 C.49 D.945.一个多边形的边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边长为24,则这个多边形的最短边长为( )A .6B .8C .12D .106.下列四组图形中,一定相似的是( )A .正方形与矩形B .正方形与菱形C .菱形与菱形D .正五边形与正五边形7. 如图所示的两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°8. 若y x =34,则x +y x的值为( ) A .1 B.47 C.54 D.749. 用一个10倍的放大镜看一个15°的角,看到的角的度数为( )A .150°B .105°C .15°D .无法确定大小10. 如图,一般书本的纸张是由原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推.若各种开本的矩形都相似,那么AB AD等于( ) A .0.618 B.22 C. 2 D .2二.填空题(共8小题,3*8=24)11.已知a ,b ,c ,d 是成比例线段,其中a =5 cm ,b =3 cm ,c =6 cm ,则线段d =____cm.12. 在比例尺1∶1000000的地图上,A ,B 两地的图上距离为2.4厘米,则A ,B 两地的实际距离为________千米.13.如图,在长8 cm ,宽4 cm 的矩形中截去一个矩形(阴影部分),使留下的矩形与原矩形相似,那么留下的矩形的面积为________cm 2.14. 已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为_________.15. 已知线段a =4,b =16,线段c 是线段a ,b 的比例中项(即a c =c b),那么c 等于________. 16. 已知a b =23,则a+b b等于_________. 17.如果x y =25,那么y -x y +x=________. 18. 有一块三角形的草地,它的一条边长为25 m ,在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两条边的实际长度都是________m.三.解答题(共7小题,46分)19.(6分) 已知图中的两个梯形相似,求未知边x ,y ,z 的长度和∠α,∠β的度数.20.(6分)试判断如图所示的两个矩形是否相似?并简单说明理由.21.(6分) 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD ,交AD 的延长线于点F.(1)AB ,BC ,BF ,DE 这四条线段是否成比例?如果不是,请说明理由;如果是,请写出比例式.(2)若AB =10,DE =2.5,BF =5,求BC 的长.22.(6分) 如图,在△ABC 中,AB =24,AE =6,EC =10,AD BD =AE EC. (1)求AD 的长;(2)试说明AB BD =AC EC.23.(6分) 已知四边形ABCD与四边形EFGH相似,且AB∶BC∶CD∶AD=7∶8∶11∶14,若四边形EFGH的周长为80,求四边形EFGH各边的长.24.(8分)如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为E,F.求证:四边形AFGE与四边形ABCD相似.25.(8分)如图,矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,求AD的长.参考答案:1-5 CBDAB 6-10 DADCB11. 18512. 2413. 814.3∶415.816. 5317. 3718. 2019. 解:∵两个梯形相似,∴x 2=y 4=4.5z =4.83.2,∴解得x =3,y =6,z =3.∵相似多边形的对应角相等,∴∠α=∠D =180°-∠A =180°-62°=118°,∠β=∠B′=180°-∠C′=180°-110°=70°20. 解:这两个矩形的角都是直角,因而对应角相等,小矩形的长是20-5-5=10,宽是12-3-3=6,∵1020=612,即两个矩形的对应边的比相等,∴这两个矩形相似21. 解:(1)AB ,BC ,BF ,DE 这四条线段成比例.∵在▱ABCD 中,DE ⊥AB ,BF ⊥AD ,∴S ▱ABCD =AB·DE =AD·BF.∵BC =AD ,∴AB·DE =BC·BF ,即AB BC =BF DE .(2)∵AB·DE =BC·BF ,∴10×2.5=5BC ,解得BC =5.22. 解:(1)设AD =x ,则BD =24-x ,由AD BD =AE EC 得x24-x =610,解得x =9.∴AD =9.(2)由AB =24,AD =9得BD =15,∵ABBD=2415=85,ACEC=6+1010=85,∴ABBD=ACEC.23. 解:∵四边形ABCD与四边形EFGH相似,∴AB∶BC∶CD∶AD=EF∶FG∶GH∶EH=7∶8∶11∶14.设EF=7x,FG=8x,GH=11x,EH=14x,则7x+8x+11x+14x=80,∴x=2,∴EF=14,FG=16,GH=22,EH=2824. 解:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°. 又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG,∴AE=EG=FG=AF,∴四边形AFGE为正方形,∴AFAB=FGBC=GECD=AEAD,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC,∴四边形AFGE与四边形ABCD相似25. 解:由题意易知四边形ABEF为正方形,设AD=x,∵AB=1,∴FD=x-1,FE=1,∵四边形EFDC与矩形ABCD相似,∴FEFD=ADAB,即1x-1=x1,整理得x2-x-1=0,解得x1=5+12,x2=1-52(不合题意,舍去),经检验x1=5+12是原方程的解,∴AD=5+12。

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。

(精编)九年级数学下册 27.1 图形的相似同步测试 (新版)新人教版

(精编)九年级数学下册 27.1 图形的相似同步测试 (新版)新人教版

相似__图形的相似__第1课时相似图形[见B本P68]1.在以下四组图形中 ,相似的有( D )图27-1-1A.1组B.2组C.3组 D.4组2.以下四组图形中 ,一定相似的是( D )A.正方形与矩形 B.正方形与菱形C.菱形与菱形 D.正五边形与正五边形3.如图27-1-2所示 ,是群众汽车的标志图案 ,与它相似的是( B )图27-1-24.以下哪组图形是相似图形( C )【解析】要找出图中相似的图形 ,就是要通过观察、分析 ,进行比拟 ,判断同一组中的两个图形的形状是否相同.5.在实际生活中 ,我们常常看到许多相似的图形 ,请找出以下图形中的相似图形.图27-1-3解:图(a)与图(f) ,图(b)与图(d) ,图(c)与图(h) ,图(e)与图(i)分别是相似图形.6.如图27-1-4 ,相似的正方形共有__5__个 ,相似的三角形共有__16__个.图27-1-4【解析】图中所有正方形都是相似的图形 ,相邻的两个正方形分割成4个等腰直角三角形 ,都是相似图形 ,共有4×4=16个相似的三角形.7.如图27-1-5 ,在给出的方格内通过放大或缩小画出已给图形的相似图形.图27-1-5 解:如下图:第2课时 相似多边形 [见A 本P70]1.以下各组线段(单位:cm)中 ,成比例线段的是( B )A .1 ,2 ,3 ,4B .1 ,2 ,2 ,4C .3 ,5 ,9 ,13D .1 ,2 ,2 ,3【解析】 因为12=24 ,所以1 ,2 ,2 ,4是成比例线段. 2.假设a -b b =23 ,那么a b=( D ) A.13 B.23C.43D.53【解析】 ∵a -b b =23 ,∴a -b b +1=23+1 ,∴a b =53. 3.b a =513 ,那么a -b a +b的值是( D ) A.23 B.32C.94D.494.如图27-1-6所示的两个四边形相似 ,那么角α的度数是( A )图27-1-6A .87°B .60°C .75°D .120°【解析】 相似多边形对应角相等 ,故α=360°-60°-75°-138°=87° ,选A.5.假设△ABC 与△A 1B 1C 1的相似比为2∶3 ,△A 1B 1C 1与△A 2B 2C 2的相似比为2∶3 ,那么△ABC 与△A 2B 2C 2的相似比是__4∶9__.【解析】 依题意 ,有AB A 1B 1=23 ,A 1B 1A 2B 2=23 ,所以AB A 2B 2=AB A 1B 1·A 1B 1A 2B 2=49. 6.如图27-1-7所示的相似四边形中 ,求未知边x ,y 的长度和角α的大小.图27-1-7【解析】 此题直接运用相似多边形的性质:对应边成比例 ,对应角相等来求解. 解:∵两个四边形相似 ,它们的对应边成比例 ,对应角相等 ,∴184=y 6=x 7,解得x ,y =27. α=360°-(77°+83°+117°)=83°.7.要做甲、乙两个相似的三角形框架 ,甲三角形框架的三边分别为50 cm ,60 cm ,80 cm ,乙三角形框架的一边长为20 cm ,还需要多少材料可以制成乙三角形框架( D )A .56 cm B.1303cm C .27.5 cm D .以上情况都有可能【解析】 由于给出乙三角形框架的一边长为20 cm ,具体为哪一条边还未确定 ,因此应就这条边进行分类讨论.当20 cm 为乙框架的最|短边时 ,设另两边的长为x cm ,y cm ,根据题意 ,得x 60=y 80=2050,∴x =24 ,y =32 , ∴x +y =24+32=56(cm) ,同理可求出另两边的边长之和也可以为1303cm 或27.5 cm ,故应选D.8.a +b c =a +c b =b +c a=k ,那么k 的值是__2或-1__. 【解析】 (1)a +b +c ≠0时 ,∵a+bc=a+cb=b+ca=k ,∴a+b+a+c+b+ca+b+c=k ,∴k=2.(2)a+b+c=0时 ,a+b=-c ,∴k=-1.故答案为2或-1.9. 矩形ABCD中 ,AB=1 ,在BC上取一点E,沿AE将△ABE向上折叠 ,使B点落在AD上的F点.假设四边形EFDC与矩形ABCD相似 ,那么AD=__5+12__.图27-1-8【解析】可设AD=x ,由四边形EFDC与矩形ABCD相似 ,根据相似多边形对应边的比相等列出比例式 ,求解即可.解:∵AB=1 ,设AD=x ,那么FD=x-1 ,FE=1 ,∵四边形EFDC与矩形ABCD相似 ,∴EFFD=ADAB,1x-1=x1,解得x1=5+12,x2=1-52(不合题意 ,舍去) ,经检验x1=5+12是原方程的解.故答案为5+12.10.一般认为 ,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割比 ,那么这个人身材好看 ,一个参加空姐选拔的选手的肚脐以上的高度为65 cm ,肚脐以下的高度为95 cm ,那么她应穿多高的鞋子才能好看 ?(精确到1 cm ,参考数据:黄金分割比为5-12 ,5≈) 【解析】 利用黄金分割比求解.解:设她应穿x cm 高的鞋子 ,根据题意 ,得6595+x =5-12,解得x ≈10(cm). 答:她应穿约10 cm 高的鞋子才能好看.11.答复以下问题并说明理由:(1)在图27-1-9(a)中 ,停车牌标志内、外两个三角形是否相似 ?(2)在图27-1-9(b)中 ,相片框内、外两个矩形是否相似 ?图27-1-9【解析】 (1)停车牌的内、外两个三角形都是等边三角形 ,所以它们相似;(2)矩形中的四个角都为直角 ,所以两个矩形要相似 ,还需要对应边成比例. 解:(1)停车牌的内、外两个三角形都为等边三角形 ,设边长分别为a 和b , 那么a b =a b =a b ,即对应边成比例 ,它们的内角都为60° ,那么对应角相等 ,所以停车牌标志内、外两个三角形相似.(2)内、外两个矩形不相似 ,设外矩形长为a ,宽为b ,内外两个矩形中间的木条宽度为m ,那么内矩形的长为a -2m ,宽为b -2m ,如果它们相似 ,那么有a b =a -2m b -2m, 那么根据比例性质有ab -2ma =ab -2mb , 那么a =b ,而从图中可看出a ≠b , 那么相片框内、外两个矩形不相似.。

人教版九年级数学下册图形的相似)同步练习题

人教版九年级数学下册图形的相似)同步练习题

第二十七章 相似27.1 图形的相似基础题1.下列各组图形相似的是( )2.将左图中的箭头缩小到原来的12,得到的图形是( )3.将一个直角三角形三边扩大3倍,得到的三角形一定是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上三种情况都有可能 4.下列各线段的长度成比例的是( ) A .2 cm ,5 cm ,6 cm ,8 cm B .1 cm ,2 cm ,3 cm ,4 cm C .3 cm ,6 cm ,7 cm ,9 cm D .3 cm ,6 cm ,9 cm ,18 cm5.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A.23B.32C.49D.946.(莆田中考)下列四组图形中,一定相似的是( ) A .正方形与矩形 B .正方形与菱形 C .菱形与菱形 D .正五边形与正五边形7.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为______m.8.在一张复印出来的纸上,一个多边形的一条边由原图中的2 cm 变成了6 cm ,这次复印的放缩比例是________.9.如图所示是两个相似四边形,求边x 、y 的长和∠α的大小.中档题10.下列说法:①放大(或缩小)的图片与原图片是相似图形;②比例尺不同的中国地图是相似形;③放大镜下的五角星与原来的五角星是相似图形;④放电影时胶片上的图象和它映射到屏幕上的图象是相似图形;⑤平面镜中,你的形象与你本人是相似的.其中正确的说法有()A.2个B.3个C.4个D.5个11.(重庆中考)如图,△ABC与△DE F相似,相似比为1∶2,BC的对应边是EF,若BC =1,则EF的长是()A.1 B.2C.3 D.412.某机器零件在图纸上的长度是21 mm,它的实际长度是630 mm,则图纸的比例尺是()A.1∶20 B.1∶30C.1∶40 D.1∶5013.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F14.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()15.如图所示,它们是两个相似的平行四边形,根据条件可知,∠α=________,m=________.16.如图,左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同.17.为了铺设一矩形场地,特意选择某地砖进行密铺,为了使每一部分都铺成如图所示的形状,且由8块地砖组成,问:(1)每块地砖的长与宽分别为多少?(2)这样的地砖与所铺成的矩形地面是否相似?试明你的结论.综合题18.如图:矩形ABCD的长AB=30,宽BC=20.(1)如图1,若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD 与A′B′C′D′相似吗?请说明理由;(2)如图2,x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?参考答案1.B 2.A 3.A 4.D 5.A 6.D 7.9 8.1∶3 9.∵两个四边形相似,∴AD A′D′=BC B′C′=AB A′B′,即416=6x =7y. ∴x =24,y =28.∵∠B =∠B′=73°,∴∠α=360°-∠A -∠D -∠B =83°.10.D 11.B 12.B 13.B 14.B 15.125° 12 16.图略. 17.(1)设矩形地砖的长为a cm ,宽为b cm , 由题图可知4b =60,即b =15.因为a +b =60,所以a =60-b =45,所以矩形地砖的长为45 cm ,宽为15 cm.(2)不相似.理由:因为所铺成矩形地面的长为2a =2×45=90(cm),宽为60 cm , 所以长宽=9060=32,而a b =4515=31,32≠31,即所铺成的矩形地面的长与宽和地砖的长与宽不成比例.所以它们不相似.18.(1)不相似,AB =30,A ′B ′=28,BC =20,B ′C ′=18,而2830≠1820,故矩形ABCD与矩形A′B′C′D′不相似.(2)矩形ABCD 与A′B′C′D′相似,则A′B′AB =B′C′BC 或A′B′BC =B′C′AB .则:30-2x 30=20-220,或30-2x 20=20-230,解得x =1.5或9,故当x =1.5或9时,矩形ABCD 与A′B′C′D′相似.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图第2题图第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A.1个 B.2个 C.3个 D.4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。

人教版九年级数学下册27.1 图形的相似 同步练习 含答案

人教版九年级数学下册27.1 图形的相似 同步练习  含答案

九年级数学(下)自主学习达标检测[图形的相似、相似三角形](时间60分钟 满分100分)一、选择题(每题4分,共32分)1.下列各种图形相似的是 ( )A .(1)、(2)B .(3)、(4)C .(1)、(3)D .(1)、(4)2.下列图形相似的是 ( )(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与相机拍摄的长城照片. A .4组 B .3组 C .2组 D .1组3.下列说法不一定正确的是 ( )A .所有的等边三角形都相似B .有一个角是100°的等腰三角形相似C .所有的正方形都相似D .所有的矩形都相似4.一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为 ( ) A .7.5米 B .8米 C .14.7米 D .15.75米5.两个相似三角形的周长比为4︰9,则面积比为 ( ) A .4︰9 B .8︰18 C .16︰81 D .2︰36.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) A .小明的影子比小强的影子长 B .小明的影子比小强的影子短 C .小明的影子和小强的一样长 D .谁的影子长不确定 7.如图,能使△ACD ∽△BCA 全等的条件是( ) A .BC AB CD AC =B .CB CD AC •=2C .CDBD AC AB =D .BD AD CD •=28.如图所示的测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,•叙述错误的是( )A .可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B .只需测量出标杆和旗杆的影长就可计算出旗杆的高C .可以利用△ABC ∽△EDB ,来计算旗杆的高D .需要测量出AB 、BC 和DB 的长,才能计算出旗杆 的高二、填空题(每题4分,共32分)9. 下列情形:①用眼睛看月亮和用望远镜看月亮,看到的图象是相似的图形;②用彩笔在黑板上写上三个大字1、2、3,它们是相似图形;③用粉笔在黑板上写上“天”和用毛笔在纸上写上“天”,这两个字是相似图形;以上说法你认为正确的是 ,错误的是 .(填序号)(1)(2)(3)(4)BCDA第7题EDC BA第8题10. 若a , x ,b , y 成比例线段,则比例式为 ;若a =1,x =2,b =2.5,则y = .11.三角形三边之比为3︰5︰7,与它相似的三角形最长边为21cm ,那么与它相似的三角形周长为 .12.如图,∠ADC =∠ACB =90°,∠ACD =∠B ,AC =5,AB =6,则AD =____ __. 13.直线CD ∥EF ,若OC =3,CE =4,则ODOF的值是 . 14.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.15.△ABC 的三边长为2,10,2,△A'B'C '的两边为1和5,若△ABC ∽△A'B'C',则△A'B'C'的笫三边长为________.16.两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长为___ __.三、解答题(共36分)17.在如图所附的格点图中画出两个相似的三角形.18.两个相似三角形的一对对应边的长分别是35cm 和14cm ,它们的周长相差60cm ,求这两个三角形的周长.第12题BDA 第13题O FECD第14题BCD AE F19.如图,△A BC 中,EF ∥BC ,FD ∥AB ,AE =18,BE =12,CD =14,求线段EF的长.20.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学下册图形的相似同步练习
[图形的相似﹨相似三角形〗〖时间60分钟 满分100分〗
一﹨选择题〖每题4分,共32分〗
1.下列各种图形相似的是 〖 〗
A .〖1〗﹨〖2〗
B .〖3〗﹨〖4〗
C .〖1〗﹨〖3〗
D .〖1〗﹨〖4〗 2.下列图形相似的是 〖 〗
〖1〗放大镜下的图片与原来的图片;〖2〗幻灯的底片与投影在屏幕上的图象;〖3〗天空中两朵白云的照片;〖4〗卫星上拍摄的长城照片与相机拍摄的长城照片. A .4组 B .3组 C .2组 D .1组
3.下列说法不一定正确的是 〖 〗
A .所有的等边三角形都相似
B .有一个角是100°的等腰三角形相似
C .所有的正方形都相似
D .所有的矩形都相似
4.一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为 ( ) A .7.5米 B .8米 C .14.7米 D .15.75米
5.两个相似三角形的周长比为4︰9,则面积比为 〖 〗 A .4︰9 B .8︰18 C .16︰81 D .2︰3
6.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 〖 〗 A .小明的影子比小强的影子长 B .小明的影子比小强的影子短 C .小明的影子和小强的一样长 D .谁的影子长不确定 7.如图,能使△ACD ∽△BCA 全等的条件是〖 〗 A .BC AB CD AC =
B .CB CD A
C •=2
C .CD
BD AC AB =
D .BD AD CD •=2
8.如图所示的测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,•叙述错误的是〖 〗
A .可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高
B .只需测量出标杆和旗杆的影长就可计算出旗杆的高
C .可以利用△ABC ∽△EDB ,来计算旗杆的高
D .需要测量出AB ﹨BC 和DB 的长,才能计算出旗杆 的高
二﹨填空题〖每题4分,共32分〗
9. 下列情形:①用眼睛看月亮和用望远镜看月亮,看到的图象是相似的图形;②用彩
笔在黑板上写上三个大字1﹨2﹨3,它们是相似图形;③用粉笔在黑板上写上“天”和用毛笔在纸上写上“天”,这两个字是相似图形;以上说法你认为正确的是 ,错误的是 .〖填序号〗
(1)(2)
(3)(4)
B
C
D
A
第7题
E
D
C B
A
第8题
10. 若a , x ,b , y 成比例线段,则比例式为 ;若a =1,x =2,b =2.5,则
y = .
11.三角形三边之比为3︰5︰7,与它相似的三角形最长边为21cm ,那么与它相似的三
角形周长为 .
12.如图,∠ADC =∠ACB =90°,∠ACD =∠B ,AC =5,AB =6,则AD =____ __. 13.直线CD ∥EF ,若OC =3,CE =4,则
OD
OF
的值是 . 14.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.
15.△ABC 的三边长为2,10,2,△A'B'C '的两边为1和5,若△ABC ∽△A'B'C',
则△A'B'C'的笫三边长为________.
16.两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长
为___ __.
三﹨解答题〖共36分〗
17.在如图所附的格点图中画出两个相似的三角形.
18.两个相似三角形的一对对应边的长分别是35cm 和14cm ,它们的周长相差60cm ,
求这两个三角形的周长.
第12题
B
D
A 第13题
O F
E
C
D
第14题
B
D A
E F
19.如图,△A BC 中,EF ∥BC ,FD ∥AB ,AE =18,BE =12,CD =14,求线段EF
的长.
20.如图,有一路灯杆AB 〖底部B 不能直接到达〗,在灯光下,小明在点D 处测得自
己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

21.如图,点D ﹨E 分别在AC ﹨BC 上,如果测得CD =20m ,CE =40m ,AD =100m ,
BE =20m ,DE =45m ,求A ﹨B 两地间的距离。

A C
B D E F B D F E
G
A
C A
D
C
22.如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得O A︰OD=OB︰OC=3︰1,CD=5cm,你能求零件的壁
厚x吗?
九年级数学〖下〗自主学习达标检测
一﹨填空题
1.A 2.C 3.D 4.A 5.C 6.D 7.B 8.B
二﹨选择题
9.①,②③10.a b
x y
,5 11.45 12.
25
6
13.
3
7
14.3 15.216.45
三﹨解答题
17.图略.18.100cm,40cm.19.21.
20.6.4cm.
21.135m.
22.0.5cm.。

相关文档
最新文档