北师大版-数学-七年级上册-【例题与讲解】一元一次方程的应用—水箱变高了

合集下载

北师大版七年级上册数学《应用一元一次方程―水箱变高了》一元一次方程PPT教学课件

北师大版七年级上册数学《应用一元一次方程―水箱变高了》一元一次方程PPT教学课件

课堂达标
等量关系:周长不变
墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖将梯形下底的
钉去掉,并将这条彩绳钉成一个长方形,那么,小颖所钉长方形的长和
宽各为多少厘米?
10
解:设长方形的长为xcm
10
10
6
10
6
则 2(10+x)=10×4+6×2
解得
x=16
答:长方形的长为16cm,宽为10cm。
小结
4米
4 米
(2)设新水箱的高度是x米,填写下表:
3.2米
旧水箱
新水箱
x 底面半径/米
2
1.6

高/米
4
x
体积/立方米 π×22×4 π×1.62×x
4米
4 米
3.2米
(3)规范的解题过程: x
米 解:设新水箱的高度是x米
由题意,得 π×22×4= π×1.62×x 解方程,得 16π= 2.56πx
化而变化,当__长__=_宽____(即为_正__方_形__)时,面积最大。
2.练习变式 小华的父亲养了一群鸡,把它们圈在用80米篱笆围成的长为30米、
宽为10米的鸡圈内.为了扩大养鸡规模,利用现有的篱笆把鸡圈面积扩 大,你能帮他想想办法吗?
解:将80米的篱笆围成正方形时,面积最大 这时,正方形的边长为80÷4=20米。
2.列方程解应用题的步骤:
(1)审清题意,找准“__等__量___关系”; (2)设_未__知__数___; (3)列__方__程____; (4)正确求__解_____; (5)判明方程解的__合__理__性__;
(6)答。
3.下列过程中,哪些量变了?哪些量没变?根据不变量找出等量关系。 (1)用一块橡皮泥先捏出一个“瘦长”的圆柱,然后把它变矮,变成一

最新北师版初中数学七年级上册精品课件3 应用一元一次方程——水箱变高了

最新北师版初中数学七年级上册精品课件3  应用一元一次方程——水箱变高了

C.π·82x=π·62(x+5)
D.π·82x=π·62×5
4. 用直径为4cm的圆钢,铸造三个直径为2 cm,高16 cm 的圆柱形零件,则需要截取的圆钢长___1_2___cm. 5. 用5个一样大小的小长方形恰好可以拼成如图的大长方 形,若大长方形的周长是14,则小长方形的长是___2___, 宽是__1___.
教学课件
数学 七年级上册 BS版
第五章 一元一次方程
3 应用一元一次方程 ——水箱变高了
某居民楼顶有一个底面直径和高均为4m的圆柱形储水 箱.现该楼进行维修改造,为减少楼顶原有储水箱的 占地面积,需要将它的底面直径由4m减少为3.2 m.那 么在容积不变的前提下,水箱的高度将由原先的4 m 增高为多少米?
【展示点评】分析:由题意可知,长方形的周长始终是不 变的,即长与宽的和为:20×½ =10m.在解决这个问题的 过程中,要抓住这个等量关系.
解:(1)设此时长方形的宽为 x m,则长为 x+1.4
根据题意,得 x+x+1.4=10 × 1
2
解这个方程,得 x=1.8 此时长方形的长为 3.2 ,宽为 1.8 ,面积为 5.76.
2
解这个方程,得 x=2.5
此时正方形的长为 2.5 ,面积为 6.25 的面积比
(2)中面积 增大6.25-6.09=0.16 m².
【小组讨论2】用一元一次方程解决实际问题的一般步 骤有哪些? 【反思小结】 用一元一次方程解决实际问题的一般步骤 审:审题,明确各数量之间的关系; 找:找出能够表示应用题全部含义的一个相等关系; 设:设未知数(一般求什么,就设什么为x); 列:根据这个相等关系列出需要的代数式,从而列出方程; 解:解所列的方程,求出未知数的值; 检:检查所求解是否符合题意;

初一上数学课件(北师版)-应用一元一次方程——水箱变高了

初一上数学课件(北师版)-应用一元一次方程——水箱变高了
【规范解答】设长方形的长为 x 米,依题意得:x+2(x-5)=35,解得 x= 15,∵15>14,∴小王的设计不合实际. 【题后反思】类似此类有关实际问题的应用题,在解出未知数的值后要注 意其值是否符合问题的实际意义.
知识点一:等积变形
等体积变形:即物体的外形或形态发生变化,但变化前后的体积 不变 ,
列方程解决形体问题. 【例 1】锻造车间要铸造底面半径为 8cm,高为 12cm 的圆柱形零件毛坯 5 个,需要用横截面半径为 16cm 的圆柱形钢材多长?(生产过程中的损耗不 计)
【思路分析】锻造过程中,虽然物体形状变了,但体积不变,就是利用这 一点为相等关系建立方程求解.
【规范解答】设需要横截面半径为 16cm 的圆柱形钢材 xcm,根据题意,得 5π×82×12=π×162×x,解得 x=15.答:需要横截面半径为 16cm 的圆柱形 钢材 15cm 长.
箱壁每平方米的造价是箱底每平方米造价的23,若整个水箱共花去 1860 元,
求水箱的高度.
解:设水箱的高度为 x 米,2(5x+3x)×60×23+5×3×60=1860,∴x=1.5, 答:水箱的高度为 1.5 米.
7.用一根铁丝围成一个三条边都为 24cm 的三角形,如果将它改围成一个
正方形,这个正方形的边长是( B )
A.24cm
B.18cm
C.12cm
D.9cm
8.如图,小明从一个正方形的纸片上剪下一个宽为 6cm 的长条后,再从剩 下的纸片上剪下一条宽为 8cm 的长条,如果两次剪下的长条面积正好相等, 则原正方形的边长是( B )
A.20 C.48
B.24 D.144
9.长方形的长是宽的 3 倍,如果宽增加了 4m 而长减少了 5m,那么面积增 加 15m2,设长方形原来的宽为 xm,所列方程是( B ) A.(x+4)(3x-5)+15=3x2 B.(x+4)(3x-5)-15=3x2 C.(x-4)(3x+5)-15=3x2 D.(x-4)(3x+5)+15=3x2

北师大版数学七年级上册课件:5.3 应用一元一次方程——水箱变高了 (共12张PPT)

北师大版数学七年级上册课件:5.3  应用一元一次方程——水箱变高了 (共12张PPT)
5.3Βιβλιοθήκη 应用一元一次方程——水箱变高了
1、分析简单问题中的数量关系,建立方 解决问题
2、通过具体问题的解决体会利用方程解 问题的关键是寻找等量关系
将一个底面直径是10厘米,高为36厘米的 “瘦长”形水箱改造成底面直径为20厘米的 “矮胖”形水箱,那么在容积不变的前提下 新水箱的高变成了多少?
等量关系: 旧水箱的容积=新水箱的容积
x
x+1.4
解:设此时长方形的宽为x米, 则它的长为(x+1.4)米 根据题意,得 x+x+1.4=10÷2
2x=3.6 x=1.8 长方形的长为1.8+1.4=3.2 ∴长方形的长为3.2米,宽为1.8米
(2) 使得该长方形的长比宽多0.8米,此时长方形的长、 少米?它所围成的长方形与(1)中所围成的长方形相比 有什么变化?
(3) 使得该长方形的长与宽相等,即围成一个正方形,此时 的边长是多少米?它所围成的面积与(2)中相比又有什么变
解:设此时正方形的边长为x米,根据题意,得
x+x=10÷2
同样长的铁
围成怎样的四
x
x=2.5
形面积最大呢
正方形的边长为2.5米,
S=2.5×2.5=6.25 米2 比(1)中面积增大6.25-6.09=0.16 米2
小明的爸爸想用10米铁线在墙边围成一 个鸡棚,使长比宽大4米,问小明要帮他 爸围成的鸡棚的长和宽各是多少呢?
x x+4
墙 铁线
如图所示,小明将一个正方形纸片 剪去一个宽为4厘米的长条后,在从剩下 的长方形纸片上剪去一个宽为5厘米的长 条,如果两次剪下的长条面积正好相等,
4 5厘米
谢谢!
谢谢!

初中数学北师大版七年级上册应用一元一次方程——水箱变高了课件

初中数学北师大版七年级上册应用一元一次方程——水箱变高了课件

柱底面半径,读题时要看清题目中所给条件是直径还是
半径.
感悟新知
知识链接 常见立体图形的体积公式: 1. V正方体=a(3a为棱长). 2. V长方体=abh(a、b为底面的长、宽,h为高). 3. V圆柱=πR2h(R为底面圆的半径,h 为高).
知1-讲

感悟新知
知1-练
例 1 用直径为4 cm 的圆柱形钢铸造3 个直径为2 cm,高为 16 cm 的圆柱形零件,需要截取多长的圆柱形钢? 解题秘方:紧扣题意中铸造前后的体积相等这一等量 关系,列出方程解决问题.
感悟新知
知1-练
例2 将装满水的底面直径为40 cm,高为60 cm 的圆柱形 水桶里的水全部灌于另一个底面直径为50 cm 的圆柱 形水桶里(水不会溢出),这时水面的高度是多少厘米? 解题秘方:紧扣容器改变但水的体积没有变这一等量 关系.
感悟新知
解:设这时水面的高度为x cm.
根据题意可得,
感悟新知
知2-练
3-2. 用两根等长的铁丝分别围成一个正方形和一个圆. 已 知正方形的边长比圆的半径长2(π-2)m,求这两根等 长的铁丝的长度,并通过计算说明谁的面积较大.
感悟新知
解:设圆的半径为r m,则正方形的边长为m.
知2-练
根据题意,得2πr=4.解得r=4.
所以铁丝的长为2π×4=8π(m).
感悟新知
知2-练
3-1. 用一根铁丝可围成边长为9 cm 的正方形,若用这根 铁丝围成长比宽多2 cm 的长方形,则长方形的面积 是多少?
解:设长方形的宽为x cm,则它的长为(x+2)cm. 依题意,得2x+2(x+2)=9×4.解得x=8. 则x+2=10,10×8=80(cm2) 所以长方形的面积为80 cm2.

最新北师大版七年级数学上册精品课件5.3 应用一元一次方程——水箱变高了

最新北师大版七年级数学上册精品课件5.3  应用一元一次方程——水箱变高了
• 第•二第级三解级得 x=2.5.
• 第四级
正方形的• 第边五级长为2.5 m. 正方形的面积为2.5 × 2.5 =6. 25(m2)
比(2)中面积增大 6. 25 -6.09=0.16(m2)
同样长的铁丝可以 围更大的地方
单击此处编母版标题样式
典例精析
例1 用两根等长的铁丝分别绕成一个正方形和一个圆, 已• 知单正击方此形处的编边辑长母比版圆文的本半样径式长2(π-2) m,求这两 根等•长第的二铁级 丝的长度,并通过计算说明谁的面积大.
单击此处编母版标题样式
(3)若该长方形的长与宽相等,即围成一
• 个单正击方此形处,编那辑么母正版方文形本的样边式长是多少?它围成 的•正第方二形级的面积与(2)中相比,又有什么变化?
• 第三级
• 第四级 • 第五级
xm
单击此处编母版标题样式
解:设正方形的边长为xm. 根据题意,得 • 单击此处(x编+辑x)母×版2 =文10本. 样式
2 cm,• 长第方二形级就变成了正方形,则正方形的边长为( B )
A.6 c•m第•三第级四级 B.7 cm
• 第五级
C.8 cm
D. 9 cm
2.
C
2019/8/20
18
单击此处编母版标题样式 3.根据图中给出的信息,可得正确的方程是( B )
• 单击此处编辑母版文本样式
• 第二级
• 第三级
• 第四级 • 第五级
• 第二级
•所第以三铁级 丝的长为2πr=8π(m).
• 第四级
所以圆• 的第五面级 积是π×42=16π(m 2),
正方形的面积为[4+2(π-2)]2=4π2(m 2).
因为4π×4>4π×π,所以16π>4π2,

北师版初中七上数学5.3 应用一元一次方程-水箱变高了(课件)

北师版初中七上数学5.3 应用一元一次方程-水箱变高了(课件)

例题欣赏 ☞
例题&解析
(2)若使长方形的长和宽相等,即围成一个正方形,此时正方形 的边长是多少米?围成的面积与第二次围成的面积相比,又有什么 变化?
x
例题&解析
解:(2)设正方形的边长为x米.
根据题意,得:(x +x) ×2 =10 解得:x=2.5
面积:2.5×2.5=6.25(米2)
同样长的铁丝围成 怎样的四边形面积
x x+0.8
例题&解析
解:(1)设长方形的宽为x米,则它的长为(x+0.8) 米.根据题意,得:
(x+0.8 +x)×2=10 解得:x=2.1 长:2.1+0.8=2.9 面积:2.9×2.1=6.09(米2)
此时长方形的长为2.9米,宽为2.1米,面积为6.09平方米.此时长 方形的面积比第一次围成的面积增大6.09-5.76=0.33(平方米).
探索&交流
如下图,将一个底面直径是20厘米,高为9厘米的“矮胖”形圆 柱锻压成底面直径是10厘米的“瘦长”形圆柱,高变成了多少?
10
20 9
锻压前的体积=锻压后的体积.
10
20 9
探索&交流
探索&交流
设锻压后圆柱的高为x厘米,填写下表: (单位:厘米)
底面半径 高
锻压前 10 9
锻压后 5 x
体积
探索&交流
列方程解应用题的一般步骤: 设未知数、列方程、解方程、检验所得结果、确 定答案;可简要地概括为“设、列、解、检、答”.
例题欣赏 ☞
例题&解析
例3.3月12日是植树节,七年级170名学生参加义务植树活动,如 果平均一名男生一天能挖树坑3个,平均一名女生一天能种树7棵, 要正好使每个树坑种一棵树,则该年级的男生、女生各有多少人?

数学七年级上北师大版 5.3应用一元一次方程——水箱变高了课件.

数学七年级上北师大版 5.3应用一元一次方程——水箱变高了课件.

旧水箱 底面半径 /m 高/m
新水箱
2
4
1.6
x
2.56x
体积/m3
16
例:用一根长为10米的铁丝围成一个长方形.
(1)使得该长方形的长比宽多1.4 米,此时长方形的长、 宽各是多少米呢?面积是多少?
等量关系:(长+宽)× 2 = 周长.
解:(1)设长方形的宽为X 米,则它的长为(X+1.4) 米, 由题意得 2 ( x+1.4 +x ) =10
第3节 应用一元一次方程
——水箱变高了
某居民楼顶有一个底面直径和高均为4米的圆柱形储水箱. 现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需 要将它的底面直径由4米减少为3.2米.那么在容积不变的前提下, 水箱的高度将由原先的4米增高为多少?
等量关系: 旧水箱的容积=新水箱的容积 解:设水箱的高变为 x 米,填写下表:
解:设长方形的宽为 x 米,则它的长为 (x+0.8)米. 由题意得 x 2(x +0.8 + x) =10 解,得 x=2.1 长为:2.1+0.8=2.9(米) x+0.8 面积为:2.9 ×2.1=6.09(平方米) 面积增加了:6.09-5.76=0.33(平方米).
答:长方形的长为2.9米,宽为2.1米,面积是6.09平方 米,比(1)中的长方形的面积增加了0.33平方米.
x x+1.4
解,得 x=1.8
长为:1.8+1.4=3.2(米)
面积为: 3.2 × 1.8=5.76(米2).
答:长方形的长为3.2米,宽为1.8米,面积是5.76平方米.
(2)使得该长方形的长比宽多0.8米,此时长方形 的长、宽各为多少米?它所围成的长方形与(1)所 围成的长方形相比,面积有什么变化?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 应用一元一次方程——水箱变高了
1.几何图形中常用的公式
(1)常用的体积公式
长方体的体积=长×宽×高;
正方体的体积=棱长×棱长×棱长;
圆柱的体积=底面积×高=πr 2h ;
圆锥的体积=13×底面积×高=13
πr 2h . (2)常用的面积、周长公式
长方形的面积=长×宽;
长方形的周长=2×(长+宽);
正方形的面积=边长×边长;
正方形的周长=边长×4;
三角形的面积=12
×底×高; 平行四边形的面积=底×高;
梯形的面积=12
×(上底+下底)×高; 圆的面积=πr 2;
圆的周长=2πr .
【例1】 用7.8米长的铁丝做成一个长方形框架,使长比宽多1.2米,求这个长方形框架的宽是多少米?设长方形的宽是x 米,可列方程为( ).
A .x +(x +1.2)=7.8
B .x +(x -1.2)=7.8
C .2=7.8
D .2=7.8
解析:根据长方形的周长公式列方程即可.长方形的周长=2×(长+宽),故可列方程为2=7.8.
答案:C
2.形积变化问题中的等量关系
形积变化问题中,物体的形状和体积会发生变化,但问题中一定有相等关系.分以下几种情况:
(1)形状发生了变化,体积不变.其相等关系是:变化前物体的体积=变化后物体的体
积.
(2)形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.
(3)形状、体积不同.根据题意找出体积之间的关系,即为相等关系.
【例2】有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.
分析:圆柱的形状由“瘦长”变成“矮胖”,底面直径和高度都发生了变化,在不计损耗的情况下不变量是它们的体积,抓住这一不变量,就得到等量关系——锻造前的体积=锻造后的体积.
解:设锻造成“矮胖”形圆柱的高为x cm,
根据题意,得
π·52·80=π·202·x.
解这个方程,得
x=5.
答:“矮胖”形圆柱的高为5 cm.
3.等长变形问题
等长变形,是指用物体(一般用铁丝)围成不同的图形,图形的形状、面积发生了变化,但周长不变.
解答此类问题,可以利用周长不变设未知数,寻找相等关系列出方程.
面积问题中常常会用到特殊图形的周长和面积公式.如三角形、平行四边形、长方形、正方形、梯形、圆等;记住常见的几何图形的面积公式,抓住周长不变的特征是解决等长变形问题的关键.
【例3】如图所示是用铁丝围成的一个梯形,将其改成一个长和宽比为2∶1的长方形,那么该长方形的长和宽分别为多少?
分析:根据“梯形的周长=长方形的周长”列方程求解.
解:设长方形的宽为x,则长为2x.
由题意,得2(x+2x)=5+6+9+13,
解这个方程,得x=5.5,所以2x=11.
答:该长方形的长和宽分别为11,5.5.。

相关文档
最新文档