制冷剂相关知识
制冷剂应用知识手册-常用制冷剂

制冷剂应用知识手册-常用制冷剂一、水,R-718多数制冷过程是吸收循环或蒸气压缩循环。
商业吸收循环一般用水作为制冷剂,溴化锂为吸收剂.水无毒、不可燃、来源丰富。
是一种天然制冷剂.吸收式制冷机即使是双效制冷机,其挑战是COP(性能系数)只比1稍大(离心式制冷机的COP大于5)。
从寿命周期的观点来看,吸收式制冷机需要一个彻底的调查,以确定其解决方案在经济上是否可行。
从环保观点来看,用水作为制冷剂是好的。
吸收式制冷机的低COP值可能表明比离心制冷机需要消耗更多的化石燃料。
但是不一定,因吸收式制冷机直接使用化石燃料,而电制冷机使用电能。
选择用哪种制冷机实际上取决于电能是如何产生的。
二、氨,R-717氨(NH3)被认为是一种效率最高的天然制冷剂。
它是一种今天仍在使用的“原始”制冷剂。
多用于正位移压缩机的蒸气压缩过程。
ASHRAE标准34将其分类为B2制冷剂(毒性高低可燃).ASHRAE标准15要求对氨制冷站有特殊的安全考虑。
尽管在商业空调也使用很多,但氨在工业制冷上的应用更广泛些。
三、二氧化碳,R-744二氧化碳(CO2)是一种天然制冷剂.它在19世纪末20世纪初停止使用,现在正在研究重新对它的使用。
用于蒸气压缩循环正位移压缩机。
在32℃时CO2的冷凝压力超过6MP A,这是一个挑战。
而且,CO2的临界点很低,能效差。
尽管如此,仍可能有一些应用,如复叠制冷,CO2将是有用的。
四、烃类物质丙烷(R-290)和异丁烷(R-600a),以及其他氢碳物质,能够在蒸气压缩过程中作为制冷剂使用。
在北欧,大约有35%的制冷机使用氢碳物质。
它们毒性低且能效高,但容易燃烧。
后者严重限制了它们在北美的使用,因受现今安全规范的制约。
五、氯氟碳族(CFC族)氯氟碳族(CFC族)有许多物质,但在空调中最常用的是R-11、R12、R-113和R -114.CFC族到20世纪中叶时已经普遍使用。
发达国家在1995应蒙特利尔议定书的要求停止了CFC族的生产。
制冷基础知识精选全文完整版

可编辑修改精选全文完整版制冷基础知识——制冷剂制冷剂的命名与标识制冷剂的标识符号由字母“R”和它后面的一组数字和字母构成。
“R”是英语中制冷剂(refrigerant)的首字母,后面的数字则根据制冷剂的化学组成按一定规则编写。
▍无机化合物制冷剂:无机物制冷剂的符号是R7加上该物质的分子量的整数部分,例如氨的符号表示是R717。
▍氟利昂制冷剂:氟利昂的分子通式是CmHnFxClyBrz,其中,n+x+y+z=2m+2,简写为R(m-1)(n+1)(x)B(z)。
分子中含氯、氟、碳的完全卤代烃简称为“CFC”制冷剂,例如R12分子中含氢、氯、氟、碳的不完全卤代烃简称为“HCFC”制冷剂,例如R22分子中含氢、氟、碳而不含氯的卤代烃简称“HFC”制冷剂,例如R134a▍碳氢化合物制冷剂,简称“HC”制冷剂:a.饱和碳氢化合物,命名规则基本上和它的衍生物氟利昂一样。
例如:丙烷代号为R290:(分子式为C3H8,m=3,n=8,x=0,那么m-1=2,n+1=9);但丁烷代号为R600是个例外(化学式为CH3CH2CH2CH3);同素异构物在代号后面加字母a以示不同,如异丁烷代号为R600a(它的化学式为CH(CH3)3)。
b.非饱和碳氢化合物与他们的卤族元素衍生物的符号命名是先在R后面写上一个“1”,然后再按氟利昂编号规则书写“1”后面的数字,例如乙烯代号为R1150 (它的化学式是C2H4)。
c.环状有机物,是在R后面先写上一个“C”,然后按氟利昂的命名方法书写后面的数字。
如八氟环丁烷,它的化学式为C4H8,代号为RC318。
▍混合物制冷剂a. 共沸制冷剂,是由两种或两种以上互相混溶的单纯制冷剂按一定比例混合而成。
这种混合物在固定的压力下蒸发或者冷凝时,蒸发温度或冷凝温度保持不变,气相和液相的组分也保持不变,就好象单纯的制冷剂一样。
其代号规定为在R后面的第一个数字为5,其后的两位数字按混合工质命名的先后次序编写,最早命名的共沸制冷剂就记为R500,以后依次为R501、R502、R503等。
制冷剂的种类及特性

制冷剂的种类及特性制冷剂是用于制冷系统中的介质,通过循环往复地进行蒸发和冷凝来实现对空气或物体的冷却。
制冷剂的种类和特性会对制冷系统的性能、环境影响以及安全性产生重要影响。
下面将介绍常见的制冷剂及其特性。
1.氨气(NH3):氨气是一种无色、有刺激气味的气体,具有优秀的制冷性能和热物理性质,因此被广泛应用于工业制冷系统。
它的优点包括高制冷效率、环境友好和广泛的温度范围。
但氨气有毒性和易燃性,对人体和环境的危害较大,因此在使用氨气时需要采取严格的安全措施。
2.氟利昂(CFCs、HCFCs和HFCs):氟利昂是一类化学物质,包括三氟甲烷(CFC-11)、二氟二氯甲烷(CFC-12)和全氟丙烷(HFC-134a)等。
它们具有优异的制冷性能和热力学性质,被广泛应用于商业和家用制冷设备。
然而,由于氟利昂会破坏臭氧层,导致臭氧空洞的产生,对环境造成严重影响。
因此,国际公约已经限制了氟利昂的使用。
3. 羟基乙基和羟基丙基(Glycols):羟基乙基和羟基丙基是水基制冷剂,由水和一种有机化合物混合而成,常用于低温制冷系统。
它们具有良好的热传导性能和化学稳定性,且无毒无味,因此在一些特殊应用中被广泛使用。
然而,其制冷性能较差,需要较高的能源消耗。
4.二氧化碳(CO2):二氧化碳是一种天然制冷剂,广泛存在于大气中,无毒无味。
它具有良好的环境友好性,不对臭氧层产生破坏,并具有零臭氧臭粒(ODP)和弱温室气体效应(GWP)。
因此,二氧化碳被视为一种可持续发展的制冷剂。
然而,由于其低临界温度和高压力要求,对系统压力容器的要求较高,限制了其应用范围。
5.碳氢化合物:碳氢化合物是一种有机化合物,如丙烷和丁烷,可用作替代氟利昂的制冷剂。
它们具有较低的环境影响,且在低温范围内具有良好的性能。
然而,由于其易燃性,对操作和安全性提出了更高的要求。
6.混合制冷剂:混合制冷剂是由两个或多个制冷剂混合而成,以实现理想的制冷性能。
比如,R404A是由R125、R143a和R134a等制冷剂混合而成。
2024年度R32制冷剂小知识

2024/2/2
5
R32应用领域及市场需求
商用制冷设备
商用制冷设备如超市冷柜、冷藏车等也逐 渐采用R32制冷剂,以满足环保和能效要
求。
A 家用空调领域
R32制冷剂在家用空调领域得到广泛 应用,其高效、环保的性能受到消 费者的青睐。
B
C
D
市场需求增长
随着全球环保意识的提高和制冷技术的不 断进步,R32制冷剂的市场需求呈现出不 断增长的趋势。
推动技术创新和研发
鼓励企业加大技术创新和研发投入, 提高R32制冷剂的技术成熟度和性能 水平。
2024/2/2
加强政策引导和扶持
政府应出台相关政策,引导和扶持环 保制冷剂的发展,推动R32制冷剂在 各行业的应用。
建立完善的标准体系
建立完善的R32制冷剂标准体系,规 范其生产、销售和使用等环节,确保 其质量和安全性能得到保障。
10
03
R32制冷剂安全使用注意事项
2024/2/2
11
储存和运输要求
储存环境
R32制冷剂应储存在阴凉、通风、干燥的专用仓库内,远离火源和热源,避免 阳光直射。同时,仓库内应配备相应的消防设施和泄漏应急处理设备。
运输要求
在运输过程中,应确保制冷剂钢瓶竖直放置,并固定牢固,防止颠簸和碰撞。 同时,运输车辆应具备相应的安全设施,如防火、防爆、防泄漏等,并遵守相 关的交通法规。
工业制冷领域
在一些工业制冷领域,如化工、医药等行 业的生产工艺中,也需要使用到R32制冷 剂。
2024/2/2
6
02
R32制冷剂优点分析
2024/2/2
7
高效节能特点
01
02
03
制冷效率高
r410a制冷剂相关知识

R410A制冷剂简介R410A是一种常用的制冷剂,它是氢氟烃类制冷剂的一种。
它在低温环境下能够提供高效的制冷效果,因此被广泛应用于空调、冷冻设备等制冷领域中。
以往,氟利昂类制冷剂被广泛应用于制冷系统,但氟利昂会对臭氧层造成破坏,因此在1990年代被国际协议禁止使用。
而R410A是一种无臭、无色、无毒的制冷剂,对臭氧层的破坏几乎没有影响,成为氟利昂的替代品。
特性与优势与其他制冷剂相比,R410A有着以下的特点和优势:•高效:R410A在低温环境下具有很高的制冷效果,相比其他制冷剂能够更快地降低温度,提高能源利用率。
•环保:R410A几乎不对臭氧层产生影响,成为氟利昂的最佳替代品。
同时,它的GWP值(全球变暖潜势,Global Warming Potential)也比较低,有助于减少碳排放。
•安全:R410A的燃烧温度、燃烧速度以及爆炸极限均较高,使用较为安全可靠。
•稳定性强:R410A在一定温度和压力下的化学稳定性和热力学稳定性较高,不会因物理或化学因素而分解或污染。
•兼容性好:R410A兼容性很好,可以和多种压缩机、制冷设备、冷却介质等相互配合使用。
总的来说,R410A是一种高效、环保、安全、稳定、兼容性好的制冷剂,成为了目前制冷系统中最为流行的一种制冷剂。
应用场景由于R410A的特性和优势,它在制冷领域中具有广泛的应用场景。
在以下的场景中,R410A都有着非常出色的表现:空调R410A被广泛应用于空调制冷系统中,其制冷效果高、能耗低、安全可靠,并对环境造成的污染和破坏极小,成为目前最好的选择。
冷库在冷库的制冷设备中,R410A也是一种很好的制冷剂。
不仅可以实现快速降温,同时也不会对食品产生不良影响。
此外,R410A的具有很高的制冷效果,能够有效保证冷库内的温度。
冷藏柜冷藏柜中的制冷必须保持在一定温度,R410A可在低温环境中提供高效制冷,避免了产品在运输或保管过程中变质,同时也保证了产品的安全。
2024年R32易燃制冷剂最全最专业的知识

2024/2/29
1
目
CONTENCT
录
2024/2/29
• R32制冷剂概述 • R32易燃特性及安全注意事项 • R32制冷剂系统设计与选型 • R32制冷剂充注、回收与再生技术 • R32制冷剂性能检测与评估方法 • R32制冷剂市场现状及发展趋势
2
01
R32制冷剂概述
100%
冷冻冷藏行业需求
R32制冷剂在冷冻冷藏设备中也 有广泛应用,如超市冷柜、冷藏 车等。
80%
工业制冷需求
在一些工业制冷领域,R32制冷 剂也逐渐被接受并应用。
2024/2/29
24
竞争格局概述
国内外企业竞争
R32制冷剂市场上,国内外企 业众多,竞争激烈,但国内企 业逐渐占据主导地位。
2024/2/29
5
R32制冷剂应用领域
01
空调领域
R32制冷剂在空调领域应用广泛。由于其高效、环保的特性,越来越多
的空调制造商选择使用R32作为制冷剂。
2024/2/29
02 03
热泵领域
R32也可用于热泵系统中。热泵是一种利用少量电能驱动,从低温热源 吸收热量并将其转移到高温热源的装置。R32在热泵系统中具有良好的 制冷效果和较高的能效比。
品牌竞争
各大品牌在R32制冷剂市场上 展开激烈竞争,通过技术创新 、品质提升等手段争夺市场份 额。
产业链整合
部分企业通过产业链整合,实 现上下游资源优化配置,提升 竞争力。
25
政策法规影响分析
1 2
环保政策
随着全球环保意识的提高,各国政府纷纷出台环 保政策,推动环保制冷剂的发展,R32制冷剂受 益其中。
《制冷剂基本常识》课件

R407C
R407C是一种室内环 保型制冷剂,替代了 部分对臭氧层有破坏 性的制冷剂,减少了 对环境的损害。
制冷剂的使用与管理
1 制冷剂的充注与回收 2 管理制冷剂的合法性 3 制冷剂的环境保护问
题
使用制冷剂时需注意充注
制冷剂的使用和管理需要
量的控制和回收,确保制
符合相关法律法规的规定,
制冷剂的使用对环境具有
制冷系统中的制冷剂
制冷系统的基本组成
制冷系统由压缩机、冷凝器、 蒸发器和节流装置等组成,制 冷剂在其中发挥重要作用。
制冷剂在制冷循环中 的作用
制冷剂通过吸收热量、压缩、 冷凝和膨胀等过程,实现热量 的转移和空调制冷效果的实现。
制冷剂在制冷系统中 的循环过程
制冷剂在制冷循环中会不断地 循环流动,完成制冷效果,确 保制冷系统顺利运行。
《制冷剂基本常识》PPT 课件
本PPT课件将介绍制冷剂的基本常识,包括制冷剂的定义、分类、特性、在制 冷系统中的作用、常见的制冷剂以及制冷剂的使用与管理等内容。
制冷剂的定义与分类
定义
制冷剂是指可利用它的物理性质,在制冷系统 中完成制冷循环过程的物质。
分类
制冷剂可以根据其化学组成和物理性质进行分 类,常见的包括氟代烃、氯代烃、碳氢化合物 等。
制冷剂的特性
1 气态相变
制冷剂在制冷循环中会发生气态相变,从高 温高压气态转变为低温低压气态。
2 液态相变
制冷剂在制冷循环中会发生液态相变,从高 温高压液态转变为低温低压液态。
3 温度和压力的关系
制冷剂的温度和压力之间有一定的关系,根 据热力学原理,可以实现冷却和制冷效果。
4 臭氧破坏的问题
一些制冷剂会产生臭氧破坏物质,对大气层 的臭氧层造成破坏,需要注意环境保护问题。
高一化学中的制冷剂知识点

高一化学中的制冷剂知识点随着现代社会的不断发展,制冷技术被广泛应用于各个领域,例如家用电器、工业生产、冷链运输等。
在高一化学课程中,学生将接触到与制冷相关的知识点,包括制冷剂的种类、性质以及环境影响等内容。
本文将依次介绍高一化学中涉及的制冷剂知识点,以帮助学生更好地理解和掌握这一领域的基础知识。
一、制冷剂的种类制冷剂是用于吸收、传递和释放热量的物质,常见的制冷剂种类有氨、氟利昂、氯氟烃等。
氨是一种常用的制冷剂,具有高效、环保的特点。
氟利昂(如氟利昂12、氟利昂22)是有机氟化合物制冷剂,具有较高的化学稳定性和制冷效果。
氯氟烃制冷剂(如R22)是一类由氯、氟、碳等元素组成的化合物,目前正在逐步被淘汰,因为它们会对臭氧层产生破坏性影响。
二、制冷剂的性质1. 沸点和气化热:制冷剂的沸点与制冷系统的工作温度有关。
沸点较低的制冷剂适用于低温制冷设备,沸点较高的制冷剂适用于高温制冷设备。
而气化热则是指单位质量制冷剂从液态变为气态所吸收的热量,也是制冷剂的重要性能指标。
2. 迁移潜力:制冷剂在系统内迁移的能力。
当制冷剂迁移时,它的浓度发生变化,可能会对制冷系统的性能造成影响。
所以,制冷剂的迁移潜力需要在设计和操作中加以考虑。
3. 介电常数和电导率:这些性质与制冷剂在电场下的表现有关,对于电冰箱等电力驱动的制冷设备来说尤为重要。
制冷剂的介电常数和电导率越小,制冷系统的效果越好。
4. 环境影响:氯氟烃类制冷剂多存在环境污染问题。
因为它们在大气中能够破坏臭氧层,对地球的自然环境造成威胁。
目前,国际上已经禁止或逐步淘汰氯氟烃制冷剂的使用,转向环保的制冷剂。
三、环境友好制冷剂的发展鉴于氯氟烃制冷剂的环境危害和高效制冷的需求,目前全球范围内都在积极研究和开发环境友好的制冷剂。
例如,氢氟酸酯(HFO)制冷剂是最新一代的高效环保制冷剂。
与氯氟烃相比,氢氟酸酯具有较低的GWP(全球变暖潜势)、零臭氧破坏潜力和较高的制冷性能。
此外,利用天然制冷剂也是一种重要的发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制冷基础知识一、冷却的概念及人工制冷1、冷却的基本概念冷却——就是取出物体的热量,使物体的温度降低。
冷却的过程伴随着物体本身热能的减少。
自热冷却的程度受周围介质的影响,冷却的极限温度不可能低于周围介质的温度。
要想把某一物体的温度降到低于周围介质的温度,只能借助于人工冷却的方法,即:人工制冷。
2、人工制冷人工制冷:就是通过消耗一定的外功,利用不同的制冷方式,使被冷却的物体温度下降到低于周围介质温度的某一预定温度。
普冷技术:利用人工制冷所制取的温度不低于120K(-153.15℃)时,称为普冷技术。
深冷技术:利用人工制冷制取的温度范围在120K至绝对温度零度(-273.15℃)的制冷技术称为深冷技术。
人工制冷所采用的制冷方式,按制冷原理分,主要有以下5种:(1)高压气体膨胀制冷使常温下的高压气体在膨胀机中绝热膨胀,达到较低的温度,再让气体复热,即可产生冷量,而对被冷却物体制冷。
使常温下的冷凝液体经过节流降压,达到较低的温度,再让液体在低压下蒸发,即可产生冷量,而对被冷却物体制冷。
(3)气体涡流制冷使常温下的高压气体在涡流管中分流,分离出冷、热两股气流,再让冷气流复热,即可产生冷量,而对被冷却物体制冷。
(4)半导体制冷用导电片将N型半导体和P型半导体串联起来,构成电偶,接在直流电路中,电流便由N型半导体流向P型半导体,从而在电偶的一端产生吸热现象,另一端产生放热现象,利用电偶吸热的一端产生的冷量而对被冷却物体制冷。
(5)化学方法制冷利用有吸热效应的化学反应过程,可产生冷量而对被冷却物体制冷。
3、常用的几种制冷系统人工制冷所采用的方式,按制冷系统分主要由4种:(1)压缩式制冷系统依靠压缩机提高制冷剂的压力,以实现制冷循环的系统称为压缩式制冷系统,主要由压缩机、冷凝器、节流或膨胀装置、蒸发器等组成封闭的制冷循环系统,制冷剂在系统中循环工作。
(2)吸收式制冷系统依靠吸收器——发生器组的作用完成制冷剂和吸收剂之间的热交换,从而实现制冷循环的制冷系统,主要由发生器、吸收器、冷凝器、节流装置,蒸发器组成封闭系统,二元溶液工质在系统内循环工作,其中低沸点组份作为制冷剂用以蒸发制冷,高沸点组份作为吸收剂,利用其对制冷剂蒸气的吸收作用完成工作循环。
(3)蒸气喷射式制冷系统(4)半导体制冷系统目前家用电冰箱和空调器的制冷系统普遍采用蒸气压缩式制冷系统,而吸收式制冷系统和蒸汽喷射式制冷系统也均以液体蒸发制冷原理为基础,所以我们重点对蒸气压缩式制冷原理进行研究和探讨。
4、蒸气压缩式制冷原理蒸气压缩式制冷就是根据物质相变过程中能吸收或放出较多热量、相变温度又会随压力条件变化的物理特性,压缩机将制冷剂蒸气压缩成高压高温过热蒸气,经过冷凝、节流后变成低压低温液体,吸收被冷却物质的热量而产生汽化,变成蒸气再被压缩机压缩,如此不停地循环,不断地将被冷却物质的热量转移出去,从而达到对被冷却物质制冷的目的。
由于制冷的循环是通过压缩机对制冷剂蒸气所做的压缩功来实现的,所以称作蒸气压缩式制冷。
制冷原理(二)——制冷剂有关知识二、制冷剂的有关知识制冷剂是制冷系统中完成制冷循环的工作介质,又称制冷工质。
制冷剂在蒸发器内吸收被冷却对象的热量而蒸发汽化,在冷凝器中将热量传递给周围介质而冷凝成液体,制冷系统就是利用制冷剂的状态变化过程中的吸、放热现象达到制冷目的的,制冷系统所产生的冷量就是制冷剂的汽化潜热。
1、制冷剂热力状态的术语(1)饱和状态制冷剂在一定压力和温度下气、液两相处于动态平衡时的状态称为饱和状态。
动态平衡是建立在一定的温度及压力条件下的,如果温度或压力改变时,平衡条件就会受到破坏,经过一段时间后,又会达到新的平衡,出现新的饱和状态。
(2)饱和温度制冷剂处于饱和状态时的温度称作饱和温度。
(3)饱和压力制冷剂处于饱和状态时的压力称作饱和压力。
(4)饱和液体制冷剂在一定压力下具有饱和温度的液体称作饱和液体。
(5)干饱和蒸气制冷剂在一定压力下具有饱和温度的蒸气称作干饱和蒸气。
(6)湿蒸气处于饱和状态下的制冷剂气、液混合物称作湿蒸气,它是由干饱和蒸气和许多细小的液体微滴组成的。
(7)干度制冷剂湿蒸气中含有干饱和蒸气的比例。
(8)过热蒸气(9)过热度过热蒸气与干饱和蒸气的温度差称作过热度。
(10)过冷液体比饱和液体在相同压力下具有更低温度的液体称作过冷液体。
(11)过冷度过冷液体与饱和液体的温度差称作过冷度。
(12)临界状态随着蒸气压力的升高,蒸气的比容逐渐接近于其液体的比容,当压力增高到某一值时,饱和蒸气和饱和液体之间就没有明显的区别了,这种状态称为临界状态。
(13)临界点临界状态所处的状态点称作临界点。
每一种气体都有自己的临界点。
临界点对气体的液化有着非常重大的意义。
在临界点以上的蒸气,无论施加多大的压力,都不会使其达到液化。
(14)临界温度、临界压力、临界比容各种气体,对应于其各自的临界点的温度、压力和比容,分别称作临界温度、临界压力、临界比容。
制冷原理(三)——制冷剂分类及选择要求2、制冷剂的选择要求(1)制冷剂的工作温度和工作压力要适中在大气压力下,制冷剂的蒸发温度要足够低,以满足冷却的温度要求;在常温下,制冷剂要有比较低的冷凝压力,因为冷凝压力过高时对制冷系统的密封性能剂结构强度要求就高。
一般要求制冷剂的冷凝压力为:12×105 ~ 15×105 Pa;在常温下,制冷剂要有比较高的蒸发压力,因为如果蒸发器内的压力低于大气压力时,外界的空气容易通过缝隙进入制冷系统,使系统中的压力升高,减少制冷量,增加功耗。
同时空气中的水分会造成制冷系统产生冰堵及其它恶果。
(2)制冷剂要有比较大的单位容积制冷量同一规格的制冷设备,当选用的制冷剂单位容积制冷量大时,可以获得较大的制冷量。
在同一工况下,当制冷量一定时,制冷剂的单位容积制冷量大,就可以减少系统的制冷剂容积,也可以相应的缩小压缩机的尺寸。
(3)制冷剂的临界温度要高,凝固点要低临界温度高,便于制冷剂在环境温度下冷凝称液体;凝固点低,可以制取较低的温度,扩大制冷剂的使用温度范围,减少节流损失,提高制冷系数。
(4)制冷剂的粘度和密度要尽量小粘度和密度小,可以使系统中制冷剂循环的流阻小,降低循环耗功量,适当的缩小管道口径,并允许管路有较小的弯曲半径(而这一点对于降低蒸发器的压力损失是非常重要的),还能减轻制冷机对压缩机中阀组的冲击力,延长压缩机的使用寿命。
(5)制冷剂的导热系数和放热系数要高导热系数和放热系数高,可以适当减小制冷系统中换热器的结构,并可提高换热器的换热效率。
(6)对制冷剂其它方面的要求不燃烧、不爆炸、无毒、无腐蚀性作用、价格适宜、易于购买等。
3、制冷剂的分类制冷剂按常温下冷凝压力的大小和在大气压力下蒸发温度的高低,可分成三大类:(1)低压高温制冷剂蒸发温度高于0℃,冷凝压力低于29.41995×104Pa。
(2)中压中温制冷剂蒸发温度-50 ~ 0℃,冷凝压力(196.113 ~ 29.41995)×104Pa。
(3)高压低温制冷剂蒸发温度低于-50℃,冷凝压力高于196.133×104Pa。
制冷原理(四)——制冷剂代号4、制冷剂的命名与代号制冷剂的代号最早是针对氟里昂而规定的,目前世界上通用的是美国供暖制冷工程协会于1967年制定的标准(ASHRAE Standard 34-67)中的规定。
这一标准的编号方法是将制冷剂的代号同它的种属和化学构成联系起来,只要知道它的化学分子式,就可以写出它的代号。
代号是由字母“R”和其后边的数字组成的。
(1)无机化合物类制冷剂代号中字母“R”后边的第一个数字是“7”,7后边的数字为其分子量的整数部分。
当有两种或两种以上的制冷剂的分子量整数部分相同时,可在其余的制冷剂编号后边加上一个a,b,c,……字母加以区别。
(2)氟里昂制冷剂氟里昂是饱和碳氢化合物(烷族)的卤族元素的衍生物的总称。
饱和碳氢化合物的分子式是:Cm H2m+2,当H2m+2被氟、氯或溴等部分或全部取代后,所得的衍生物就是 Cm HnFxClyBrz,这就是氟里昂的分子通式,且n+x+y+z = 2m+2 。
对于甲烷系,因为m = 1,所以n+x+y+z = 4对于乙烷系,因为m = 2,所以n+x+y+z = 6氟里昂的代号是由R(m-1)(n+1 )(x)B(z)组成的。
如果z = 0 ,则B可以省略,例如:二氟一氯甲烷,分子式为 CHF2Cl ,m-1=0, n+1=2, x=2, z=0 ,因而代号为 R22。
二氟二氯甲烷,分子式为 CF2Cl2,m-1=0, n+1=1, x=2, z=0 ,因而代号为 R12。
(3)饱和碳氢化合物代号的编号规则与氟里昂相同,如:甲烷为 R50,乙烷为 R170,丙烷为 R290;但丁烷不按上述规则书写,而写成为 R600。
另外,如果属于同素异构物,在代号后边加字母“a”或在个位数上加一个数字,如:异二氟乙烷为 R152a ,异丁烷为 R601等。
环状有机化合物是在R后边加上一个字母“C”,然后按氟里昂的编号规则书写,如:六氟二氯环丁烷写作 RC316,八氟环丁烷写作 RC318等。
(5)非饱和碳氢化合物及它们的卤族元素衍生物这一类制冷剂在R后边先写一个“1”,然后按氟里昂的编号规则书写,如:乙烯为 R1150,丙烯为 R1270,二氟二氯乙烯为 R1112a等。
(6)共沸制冷剂由两种或两种以上互溶的单一制冷剂在常温下按一定比例混合而成,它的性质与单一制冷剂的性质一样,在恒定的压力下具有恒定的蒸发温度,且气相和液相的组份液相同。
共沸制冷剂在标准中规定在R后边的第一个数字为“5”,其后边的两位数字按实用的先后次序编号。
(7)非共沸制冷剂由两种或两种以上相互不形成共沸溶液的单一制冷剂混合而成的溶液,溶液被加热时,在一定的蒸发压力下,较易挥发的组份蒸发的比例大,难挥发的组份蒸发的比例小,因之,气、液两相的组成不相同,且制冷剂在蒸发过程中温度是变化的,在冷凝过程中也有类似的特性。
在制冷剂编号标准中对非共沸制冷剂还未加以编号,只是留出R后边的400号的编号顺序,供增补编号使用。
制冷原理(五)——制冷剂物理性质表15、制冷剂的物理性质(见附表一)(附表一)制冷剂的物理性质(1)物理性质(2)制冷剂的制冷原理(七)——制冷剂压-焓图(lgP-h图)1、制冷剂的热力学性质制冷剂的热力学性质可通过热力参数之间的关系来描述,而制冷剂的热力参数之间的关系是通过实验方法测定出来的,一般用热力学性质图、表来表示。
(1)制冷剂的热力学性质图常用的热力学性质图有lgP—h图(压—焓图)、T—s图(温—熵图)等。
制冷剂的lgP—h图:(又称莫里尔图(Molliev Diagram))图中:K ——临界点P ——等压线h ——等焓线t ——等温度线s ——等熵线v ——等比容线x ——等干度线在lgP—h图上任意一点都能表示制冷剂的一种热力状态,在一个状态点上,制冷剂具有确定的压力、温度、比容、焓和熵,以及蒸气所占的比例,即干度值X。