车库停车优化设计建模
数学建模 停车场的设计1

停车场的设计一、问题概述在某镇上位于街角处有一块50m ×100m 空地,将用来设计作为停车场,要把尽可能多的车塞进停车场会导致以直角停靠的方式一辆挨一辆地排成行。
但是缺乏经验的司机对于这种停靠方式是有困难的,这可能引起昂贵的保险费要求。
为了减少停靠车辆时可能造成的损坏,场主就要启用一些熟练的汽车司机作为 “专职停靠司机”。
另一方面,如果汽车从通道进来有一个足够大的“转弯半径”的话,那么大多数司机看来都不会有很大的困难一次就停靠到该停靠的位置上去。
当然通道愈宽能容纳的车辆就愈少,这就会导致停车场场主收入的减少。
二、问题分析城市停车设施选址规划是建立在停车设施需求分布的基础上,为了反映规划区域的停车需求特征,有必要将其细分为若干个不同的功能小区,功能小区的划分原则为:(1)停车需求预侧的角度,功能小区反盖范围不宜过大或过小,过大会影响规划可达性及预测和分布的精度,过小会增加使车位无法使用,造成资源浪费现象。
(2) 由于不同司机对停车半径率不同。
而且对停车场建造类型的选择也有影响,因此功能,可依据用地性质相同或相近来组合。
(3) 停车区域四周应尽可能地设置一条单向交通循环路线,为了不至于给顾客选择往哪个方向走带来困扰,这条路上必须设立清晰可见的方向箭头或标志。
三、模型的假设停车场的长度为:A停车场的宽度为:B车位的长为:小车1a 大车2a车位的宽为:小车1b 大车2b汽车的最外点最小转弯半径为:R汽车的最外点最小转弯半径为:r道路宽度为D能停车的行数为:m 0≥m能停车的列数为:n 0≥n每行能停的车辆数为:p 0≥p每列能停的车辆数为:q 0≥q每行设计的道路数为:u 1≥u )2,1,0(∈=x xmu 每列设计的道路数为:v 1≥v )2,1,0(∈=x x n v四、模型的建立通道宽度的计算按《道路车辆外廓尺寸,轴荷,及质量限值》的要求,车辆通道宽度应为车身最外点在地面上的投影所形成的外圆周轨迹R 与最内侧部位在地面上的投影所形成的内圆周轨迹r 的差值 不大于7.2m ,即通道宽度D 为:D=R-r当垂直停车时有:pb na vD A ++≥qb ma uD B ++≥化解上面两式:bvD na A p --≤ b ma uD B q --≤ 则车位总数为:q p N += 小车:11111b ma uD B b vD na A N --+--= 大车22222b ma uD B b vD na A N --+--=假设小车每天收费1s 元,大车每天收费2s 元,则总收入为:2211s N s N S +=由于,停车的通道的宽窄问题,有些司机不能把车停入车位,所以需要雇佣有经验的司机来停靠,假设同一时间不能正常停入的车辆的百分比为w%,请一名司机每天需要3s 元,不能正常停入百分比与路宽成反比,所以有:Dk w =% 请有经验的司机的费用为: %)(213w N N s S +=司机所以此时总利润为:3222211112222211111)()()(s D k b ma uD B b vD na A b ma uD B b vD na A s b ma uD B b vD na A s b ma uD B b vD na A S --+--+--+-----+--+--+--=总 如果以90度停车,能停进的司机很少,所雇佣的有经验的司机就越多,经研究发现,当车位与道路存在一定的角度时,能停入的司机明显增加,这样可以在一定程度上减少雇佣有经验的司机的人数,所以用斜角停车比较划算。
停车场泊车位设计的数学建模

对每一排停车位, 其一边为通道,另一边则可以是另一排停车位或者是停车场的 边缘。所以停车排数 PC 最多只能是通道数 P 1 的两倍,即:
PC 2P 1 (2)
如果按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依 次排列,确实也可以达到 PC 2P 1 。即(2)式中的等号是可以成立的。此时, 车位数可以达到停车位位置的最大值,排列情况同样可以见图 9 100 米宽的停车场的一边可以当作足够长的边来看待, 将 300 米为一排来设计小 轿车的车位, 即每排车位与矩形的短边平行。 在理想情况下, 根据 4.1 讨论可知, 最佳设计下的车位长度为:
我们假定小轿车的最外端在半径为c1的原周上行驶且此时轿车的最内端在半径为c2的原周上随之移动然后以角度进入停车位所以通道的最小宽度每辆车均以角度停放用w表示小轿车停车位的宽度l表示停车位的长度这的最上方并没有渠道最下端是考虑到车身以外的区域可以留给对面停车位使用l0表示停车位末端的距离易知他们分别是停车角的函数且有
1 L C1 sin Cw cos 3.3sin 69.94 1.4cos 69.94 3.580(米) 2
停车场通道宽度为:
R C1 C2 cos 4 2cos 69.94 3.314(米)
所以,理想情况下的一组(即两排车位中间加一条行通车道)的宽度 X 约为:
X 2L R 10.474(米)
则 100 米宽的停车场能够考虑设计 9 组这样的车位, 现在在考虑从出入口到最里 面靠墙这一段与横向垂直通道 R ' 的情况,即有一组里面有一排车位数是完整的, 也就是说其余的 8 组以及剩下一组的两排车位数是一样缺少出入口通道 R ' 所占 的数目。显然,横向通道 R ' =6.1 米较合理,而理想条件下相邻车尾末端的距离 是 L0
停车场泊位最优化设计与评价数模论文

停车场泊位最优化设计与评价【摘要】本文着手解决随着家用小汽车普及率迅猛提高而带来的停车场的泊位问题,在建立了停车场的最优泊位模型后又建立了停车场效度综合评价模型对所建立出的最优化设计进行评论,评价体系完善、正确,所作出的综合评价与实际相符合。
为了得到停车场车位的最优化方案,我们建立停车场最优泊位设计模型。
首先通过对局部车位的讨论,得到无限大平面车位的最优化方案。
然后根据本题所给的具体尺寸,先对整个停车场区域进行合理划分,分成形状规则区域和不规则区域。
形状规则区域建立非线性规划模型,对各种可能出现的情况进行计算,求解出车位最优方案以及此时对应的车位排数、通道数和停车位与通道之间的夹角;对于不规则区域,我们灵活地对其进行车位安排,在保证每个车位都满足使用性要求条件下尽量多、尽量合理地安排车位。
这样,便得到本题停车场区域的最优化车位规划。
我们最终合理地规划了110个可用车位,所有的车位都可以自由进出,实用美观,符合实际。
划分车位后,我们建立了停车场效度的综合评价模型。
我们首先用层次分析法将停车场的各指标进行建立、筛选、归类,再对这些指标进行量化。
我们最终选取了7个指标。
然后采用多属性决策的方法,利用这些指标来对我们已经规划的车位进行综合评价。
得到的评价结果与实际相符合。
根据评价结果,我们又对已规划的车位进行了更深一步的分析讨论,得出每个停车位的优点和不足,为实际应用提供了理论基础。
我们得到的车位规划和车位评价如下图所示。
关键词:停车场、泊位规划、非线性规划、层次分析、评价指标、多属性决策一、问题重述20世纪90年代后,家用小汽车普及率迅猛提高,随之而来的停车场泊位问题亦越来越突出。
停车场泊车位规划是指在有限的空间区域内,设计车位布局,尽可能多地发挥空间、时间效率。
停车泊位设计考虑的因素较多,如平均车位占面积,车辆出入泊位难易程度,停车场内部道路畅通程度等等。
图1是某居民小区的一个露天停车场,要求:1.对该停车场泊车位进行规划设计;2.设计一个完整的指标体系,应用所建立的评价体系对访停车场效度进行评价,并指出哪些车位最不受欢迎。
关于停车场数学建模问题汇总

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学院(请填写完整的全名):参赛队员(打印并签名) :1.2.3.日期: 2013 年 11 月 2 日评阅编号(教师评阅时填写):汽车车库库存的优化方案摘要本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。
针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。
查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。
其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。
最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。
针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。
为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。
其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。
分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。
对于停车场区域优化模型研究

对于停车场区域优化模型研究1. 研究背景与意义随着车辆数量的不断增加,城市停车难问题也愈发突出,加剧了交通阻塞、环境污染、能源浪费等问题。
因此,停车场的规划与设计显得越来越重要。
停车场区域的优化模型研究可以帮助解决上述问题,优化停车场的布局,提高停车场的利用效率,减缓交通压力,缓解城市停车难的问题。
2. 现状分析当前停车场存在很多问题,如布局不合理、停车位少、停车位利用效率低等。
为了解决这些问题,需要运用数学模型对停车场区域进行优化设计。
停车场优化模型研究以行车路径、停车位布局、拥堵分析、收费管理等多方面内容为基础,建立一个系统的停车场优化模型。
3. 研究方法(1)建立停车场优化模型首先需要考虑的是停车场的结构,包括停车场长度、宽度、深度和缓冲带大小等。
在此基础上,可以建立一个3D停车场模型,通过数据采集和分析,确定停车场流量和车辆类型。
根据停车场布局方式的不同,采用相应的优化算法,如遗传算法、蚁群算法等,建立停车场优化模型。
通过对停车场区域进行优化布局,可以最大限度地提高停车位数和利用效率。
通过可视化技术,对停车场布局进行改进,使车位的使用更加合理、有效。
同时,可以采用机器学习技术,对车辆类型和地形信息进行分析,设计出更合理的停车场布局方案。
(3)优化车辆行驶路径车辆行驶路径是影响停车场运营效率的重要因素。
通过分析车辆流量和路径选择,可以确定最佳的行驶路径,避免拥堵和浪费。
优化车辆行驶路径,可以有效提高停车场的利用效率和运作效率。
4. 研究成果停车场优化模型的研究可以帮助解决城市停车难的问题,提高停车场利用效率,缓解交通拥堵。
通过对停车场布局、车辆行驶路径和收费管理等方面进行优化,可以提高停车场的运营效率和经济效益。
同时,优化停车场布局还可以降低对城市环境的影响,提高城市公共停车场的辐射范围。
通过这些措施,可以有效提高城市停车的品质,缓解停车难问题,使城市交通更加顺畅、绿色、健康。
地下车库的停车模型

地下车库的停车模型摘要对于地下停车场的设计,由于停车场的面积有限,所以我们的主要目的就是利用有限的面积停尽可能多的车,这样才能满足实际的需求,才具有一定的实际意义,这就要求我们要对停车场进行合理的规划设计以达到上面所说的目的。
下面就给出简单摘要。
停车场是一个100米*100米的正方形区域。
首先,要考虑停车场的进出口在哪的问题,这个题目中已经给出,就如图中所示。
其次,要考虑停车位的角度问题,以水平边为参考,无论轿车如何停,他总是有一个角度的,那么角度就设为θ。
而后,要考虑轿车的最小转弯半径的问题,因为车在停车场不可能一直走直路,他总是要转弯的,不然车就无法进入车位处,也无法走出停车场,这就涉及到最小转弯半径的问题。
根据最小转弯半径e(f)以及停车角度θ就可以表示出停车场内的通道宽度g,这是下部求解不可缺少的。
然后,要考虑停车位的整体布局,按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列就可以得到一种排列方式,这种方式也是最佳方式。
最后,要考虑停车位的长度问题,无论轿车以何种角度停车,停车位总是有一个竖直长度的。
因为停车场的长度是100米,因此要考虑停车位竖直长度l和停车位角度θ的一系列关系,以满足停车位的竖直总长度加上停车通道的总宽度等于停车场的长度,这样才能将停车场合理的利用。
由以上的各个因素,我们对其进行逐一整理,先列出简单的小式子,再根据总的长度关系就可以得到一个关于a、b、c、e、f、g、l、m、n、θ的计算关系式,这个关系式就是最主要的关系式。
然后找出其中所有的限制关系,再对所有的限制条件加以讨论就可以得到m的值,带入式中就可以求解出θ的值,也就是最佳停车角度。
关键字非线性最小转弯半径停车位长度通道宽度一,问题的重述与分析1.1 问题的重述近几年我国居民活水平有了显著提高,出行已是经常的事,那么这就要求要有足够的交通工具给以支持。
公交车、客车似乎不能满足人们的需求,于是越来越多的人们买起了私家车。
MathorCup大学生数学建模挑战赛B题全国二等奖

2.问题分析
2.1 问题一的分析
根据查找的相关文献,我们提炼了几个与小区汽车停车位的分布合理有关的关键指 标。对于这几个指标,我们从“点”与“面”两个方面来考虑指标与判定车位分布的关 联。通过对指标的理解,我们在“面”的角度选择了多因素的决策模型。
2.2 问题二的分析
首先我们要对附件一所提供的内容进行理解,以及归纳总结。从附件一中得到有关 指标的所对应的判断标准及判断值。再从问题一中建立的模型出发,综合考虑停车位分 布的合理性,并对判断的结果进行相应的解释。
车位分布的优化设计与评价
摘要
现代社会经济的快速发展导致了小区内私家车数量的快速增长,因此小区内停车场 如何科学合理的分布成为了社会关注的问题。本文针对此问题,先建立了停车场综合评 价模型,再将所设计方案应用于已给附件,指出该小区停车场设计不合理,最终给出合 理分配方案,并与不合理的方案进行比较分析。 针对问题一:为了得到停车场车位的最优方案,我们采用多指标综合评价中的最优 回归构权法,先将评价停车场的指标分为分为三类,分别是方便性,实用性和舒适性。 其中方便性由效用时间和出口的位置决定;实用性由安全系数、紧急逃离和车位布置方 位决定;舒适性由排风口位置和场内环境决定。在选取的七个指标中,我们从“点”与 “面”两个方面来考虑指标与判定车位分布的关联。通过对指标的理解,我们在“面” 的角度选择了多因素的决策模型。 针对问题二:由于给出的附件为一张停车场的示意图,我们在查证现实生活中车位 的标准大小后确定所给图的大小,确定出比例尺为 1:500,并且将所给停车场分成 A 和 B 两个区域,分别对这两个区域再实行分区,最终得到 8 个区域,利用比例尺求得相 关数据。再根据问题一中所探讨出来的模型,分别进行点和面的分析,用 Matlab 处理 所求数据,再画出 A 和 B 两区域的评价得分图,车位得分情况呈下降趋势,故得出所 给停车分布并不合理。 针对问题三:由于在第二问中,我们算得车位分配并不是最优化,我们接下来对车 位最优化的方案进行探究。我们对 A 和 B 两个区域分别探讨,为了得到“均好”的效 果,我们重新分配车位的原则为 :对于得分高的车位,安排需要下楼时间长的户主。基于 这一原则,我们对问题二的车位得分情况以及不同楼层的下楼时间进行了简单的排序, 把得分高的车位对应与下楼时间长的户主,得到了重新修正过的等效时间。然后求出了 分配前后 A、B 区域的得分标准差,并且画出了重新分配前后的评价得分对比图,发现 优化后的分布方案显然更为科学合理。 关键词:多指标综合评价 最优化 评价得分
数学建模优秀论文停车场泊车位的优化设计与效度评价

停车场泊车位的优化设计与效度评价:随着汽车消费量剧增,“停车难”已经成为一个较为严重的社会问题。
我们以某小区露天停车场为背景,用排队论对该服务系统进行了分析,并通过建立整数规划模型对其泊车位布置进行了优化设计,最后用模糊综合评价法对停车场效度进行了度量。
在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间和马路空间并入车辆所在的空间的方式,形成新的“空间单元矩形”,因其可以在空间无间隙密铺从而简化分析过程。
同时设定了“最大内接矩形”作为优先标准,建立了整数规划模型,对“最大内接矩形”空间内的车位进行了优化设计,用LINGO 软件编程处理,而对其余的区域采用观察法和穷举法进行设计,最终的设计方案总共能够提供102个泊车位,空间利用效率较高。
在对停车场效度评价的模型中,我们选择的是模糊综合评价方法,同时采用层次分析法构建指标体系并确定指标权重,然后基于稳健性打分原则,对各指标进行打分,在形成评判集的基础上进行了综合评价。
用MATLAB软件编程处理,结果显示综合评价值为4.85,停车场的效度处于较好的状态。
在对车位优劣进行评价时,我们援用了目标规划的思路,用四个依次优先级递增的指标进行评价。
在筛选车位时我们又援用了决策理论中淘汰“次优方案”的思路,根据优先级逐渐把“次劣”泊车位排除,最后发现在采用我们设计的泊车方案的前提上,整个停车场右下角的车位是最劣车位,最不受欢迎。
关键词:泊位设计排队论整数规划多目标规划模糊综合评价法层次分析法一、问题的重述随着我国的汽车消费增长并逐渐普及开来,“停车难”的问题已经越来越凸显出来,成为了困扰人们正常生活和交通秩序的重要因素。
究其本质,“停车难”问题的根源在于停车位供给短缺和停车位需求旺盛之间的供需矛盾,真正意义上解决这个难题有待于车辆停放设施的增加速度跟上车辆的迅猛增加。
但是在短期内难以改变车辆停放设施数目的情况下,通过优化设计提高停车场的运行效率,对于局部缓解“停车难”的现状有着重大的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
停车场停车的优化设计随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。
要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。
停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。
本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。
假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。
因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。
所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。
我们先来看看生活中非货运车辆大小的种类。
根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。
其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。
根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。
我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。
再来看看车位的大小。
根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。
另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。
设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。
考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。
所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。
根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =-=米,如图1所示。
对于大客车,我们设其最小转弯半径为110B =米,与此同时,大型车转弯时转向中心到内侧转向车轮轨迹间的最小距离为21 2.27.8B B =-=米。
本文的目的就是讨论应当整体设计车位的排布。
对于给定的停车场,我们的目标就是尽可能多地增加车位数,或者说,使每辆车占据的停车场面积尽可能小。
一 仅有一种车型的局部车位位置大型客车和小轿车在停车时占地面积相差很大,一般都是分区停泊的。
现在,让我们先来看看只限于停放小轿车的简单情况,并且先不考虑停车场的实际大小,只是来研究一下应当如何给出局部设计,才能使每辆车占据的停车场地面积最小。
对于每一个车位,为了便于该车位上的小轿车自由进出,必须有一条边是靠通道的,设该矩形停车位的长边与通道的夹角为(0)2πθθ≤≤,其中2πθ=便是车辆垂直从通道驶入车位,0θ=就是车辆从通道平行驶入车位,即平时所说的平行泊车。
为了留出通道空间和减少停车面积,显然,我们可以假设该通道中的所图1有车位都保持着和该车位相同的角度平行排列,如图2所示。
上图中,小轿车是自东向西行驶顺时针转弯θ角度驶入车位的。
我们来具体研究一下小轿车驶入车位的情况,见图3,其中1C 为最小转弯半径,R 为通道的最小宽度。
我们假定小轿车的最外端在半径为1C 的圆周上行驶,且此时轿车的最内端在半径为2C 的圆周上随之移动,然后以θ角度进入停车位,所以通道的最小宽度12cos R C C θ=-。
在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,我们来看一下一排车位之间的各个数据,见图4。
图2图3每辆车均以角度θ停放,用W 表示小轿车停车位宽度,L 表示小轿车停车位长度(这里L 的最上方并没有取到最上端是考虑到车身以外的小三角形区域可以留给对面停车位使用),o L 表示停车位末端的距离,易见他们分别是停车角θ的函数,且有sin W C W θ= 1sin cos 2L W L C C θθ=+ 01(cot )cos 2L W L C C θθ=+ 11cos 2W L C θ= 现在按照图4所示,计算一下每辆车占据的停车场面积()S θ.考虑最佳排列的极限情况,假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积012L L •,因为它们被平均到每个车位上去的公摊面积很小,可以不计。
从车辆所占的停车位来看,它占据的面积为W L •,另外,它所占的通道的面积为W R •。
考虑到通道对面(也就是图4的下部)也可以有类似的一排车位可以相互借用此通道,所以可以对占用的通道面积减半,于是我们得到:()212cos cos 122sin 2sin 2sin W W W W L C C C C C S WL WR C C θθθθθθ=+=++- (1) 我们的目标就是求出()S θ的最小值。
将1 5.5C =米,2 3.8C =米,5L C =米, 2.5W C =米代人(1)式,可得图4() 6.875 1.625cos 12.5sin sin S θθθθ=+-,()21.625 6.875cos sin S θθθ-'=, 所以当 1.62513cos 6.87555θ==,即76.33θ︒≈时,()S θ达到最小,且(){}min 19.18S θ=平方米。
需要说明的是,当0θ=时车位与车道平行,此时每辆车都得采用平行泊车的方式进入车位,这是现实生活中马路边的停车位常见的情况,在一般的停车场中几乎很少看到。
平行泊车对驾驶员的技术要求较高,所以我们不考虑这样的情况。
事实上,即便要计算在这种情况下每单位车辆所占据的停车场面积()S θ也不困难,只不过对于平行泊车,所要求的每个车位的长和宽不应再是上面所说的L C 和W C ,特别是停车位的长度L C 将变得更长(否则,停泊的车辆将无法进出),其所要求的行车道的最小宽度也得足够大,以便能让泊车车辆通过,车位图形需按小轿车路线重新绘制,读者可以自行计算并得到这些数据,计算结果表明,平行泊车是每辆车所占的平均面积明显地大于19.18平方米。
上述对车位的局部分析表明,当停车位与通道夹角76.33θ︒≈时,可以使每单位车辆占据停车场的面积达到最小。
二 仅有一种车型的全局车位排列上面的局部分析告诉我们,如果保持一排车位方向一致,且与单向通道的夹角为76.33θ︒≈,可使单位车辆占据的面积最小,此时宽度为R 的单向通道分别提供给其两边的停车位使用。
在通道两边都各安排一排小轿车车位时,考虑到路线的单行性质,通道两边的停车位角度θ应该相对,如图5所示。
对每一排停车位,其一边为通道,另一边则可以是另一排停车位或者是停车场的边缘。
所以停车排数C P 最多只能是通道数I P 的两倍,即:2C I P P ≤ (2)另一方面,如果按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,确实也可以达到2C I P P =。
即(2)式中的等号是可以成立的。
此时,车位数可以达到停车位位置的最大值,排列情况同样可以见图5. 图5显示,在每排车位数相当大或者说,在不考虑整个停车场四角浪费的那些面积时,我们可以使每单位车辆占用的停车场面积最小,并且对于小轿车来说,此最小值在车位角度76.33θ︒≈时达到。
我们再来计算一下停泊车辆均为大型客车时的最佳角度,将模型(1)修改为:()212cos cos 2sin 2sin 2sin W W W W L B B B B B S B B θθθθθθ=++- (3) 并且将相应数据代人(3)得到:()157.2cos 37.5sin sin S θθθθ=+-, ()27.215cos sin S θθθ-'= 取θ使()0S θ'=,即7.2cos 0.4815θ==,求得当61.31θ︒≈,此时每单位大型客车占据的停车场面积最小,每辆车占据的面积为()50.66S θ=(平方米)。
综上所述,对于只有一种车型的足够大的停车场,按照现有的车辆尺寸大小图5计算,我们将采用图5的排列方式设计停车位。
对于小轿车,设计车位角度为76.33︒,单位车辆占据的停车场面积为19.18平方米。
对于大型客车,设计的车位角度为61.31︒,单位车辆占据的停车场面积为50.66平方米。
三 两种车型的停车场设计的理想情况对于两种车型,即小轿车和大型客车同时存在的情况,如果对于足够大的停车场地,我们可以根据:(1)9:1αα-=的比例要求,计算出所需的小轿车车位排数和大型客车车位排数,以及每排的停车数目。
根据第二部分的讨论,我们可以按一排停车位,一行通车道,一排停车位这样三排为一组的方式组合出停车场的结构,设小轿车有g C 组,大型客车有g B 组,每组的一排长度为G 米。
根据第一部分,对于小轿车的停车位置宽度 2.5 2.573sin sin 76.33W C W θ︒===(米),而对于大型客车,其停车位置的宽度3 3.420sin sin 61.31W B W θ︒===(米)。
所以,对于小轿车,每一组可以停放的车辆数目为22.537G •,该停车场中总共可以停放22.537g C G••辆小轿车,而对于大型客车,同样可以得总车位数为23.420g B G。
根据22:9:12.537 3.420g g C G B G ••••=的比例要求,我们可以得到: 6.77:1g g C B =。
综上所述,对于足够大的停车场地,我们可以用一排停车位,一条通车道,一排停车位为一组的形式来平行设计车位,大体结构可参见图 5.至于小轿车组和大型客车组的比例,可以按照近似于6.77:1的形式,例如,取近似值7:1,13:2,20:3,27:4,34:5等比例建造。
四 具体停车场车位设计上面我们讨论的都是理想情况,现实中很多停车场的占地面积并不一定很大,而且从图5的设计安排来看,理想情况下的每一组车位都必须为车辆能够自由进出而设置一个入口和一个出口,这样的设计既不经济也不安全。