分式复习课教案
分式期中复习教学教案

分式期中复习教学教案一、教学目标:1. 知识与技能:使学生掌握分式的概念、性质、运算方法及应用,提高学生解决实际问题的能力。
2. 过程与方法:通过复习分式的相关知识,培养学生独立思考、合作交流的能力。
3. 情感态度与价值观:激发学生学习分式的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
二、教学重难点:1. 重点:分式的概念、性质、运算方法及应用。
2. 难点:分式的化简、求值及在实际问题中的应用。
三、教学准备:1. 教师准备:整理分式相关知识,准备典型例题和练习题。
2. 学生准备:回顾分式的相关知识,准备笔记本和文具。
四、教学过程:1. 导入:教师通过提问方式检查学生对分式的掌握情况,引导学生进入复习状态。
2. 知识梳理:教师带领学生回顾分式的概念、性质、运算方法,重点讲解分式的化简、求值及应用。
3. 典型例题讲解:教师展示典型例题,引导学生运用分式的相关知识解决问题,讲解解题思路和方法。
4. 课堂练习:学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
五、课后作业:1. 完成课后练习题,巩固所学知识。
2. 搜集生活中的分式问题,尝试用所学知识解决,并分享给同学和老师。
3. 准备下一节课的复习内容。
六、教学评价:1. 评价内容:学生对分式知识的掌握程度、运用分式解决问题的能力。
2. 评价方法:课堂练习、课后作业、学生分享生活中的分式问题。
3. 评价指标:正确率、解答过程、创新应用。
七、教学拓展:1. 引导学生关注分式在其他学科中的应用,如物理、化学等。
2. 介绍分式在生活中的应用案例,激发学生学习兴趣。
3. 提示学生分式与分数、代数等知识之间的联系,促进知识整合。
八、教学反馈:1. 课后收集学生作业,分析学生掌握情况,为下一步教学提供依据。
2. 听取学生对课堂内容的反馈,了解学生的学习需求,调整教学方法。
3. 与学生家长沟通,了解学生在家的学习情况,共同促进学生进步。
九、教学改进:1. 根据学生掌握情况,针对性地调整教学内容和教学进度。
分式复习教案

分式复习教案教案标题:分式复习教案教案目标:1. 复习和巩固学生对分式的理解和运用。
2. 帮助学生熟练掌握分式的加减乘除运算。
3. 提高学生解决实际问题时运用分式的能力。
教学内容:1. 分式的定义和基本概念。
2. 分式的化简和约分。
3. 分式的加减运算。
4. 分式的乘除运算。
5. 分式在实际问题中的应用。
教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具。
2. 学生准备教科书、笔记本和计算器。
教学过程:一、导入(5分钟)1. 教师通过提问和回顾上节课的知识,激发学生对分式的兴趣和回忆。
2. 提问:你们还记得分式的定义和基本概念吗?请举个例子。
二、知识讲解与示范(15分钟)1. 教师通过教学PPT或板书,对分式的定义和基本概念进行讲解,并给出示例进行说明。
2. 教师讲解分式的化简和约分的方法,并进行相关的示范演示。
三、练习与巩固(20分钟)1. 学生个别或小组完成一些基础练习题,巩固分式的化简和约分。
2. 学生进行分式的加减运算练习,教师进行讲解和指导。
3. 学生进行分式的乘除运算练习,教师进行讲解和指导。
四、拓展与应用(15分钟)1. 教师通过实际问题的讲解,引导学生将所学的分式知识应用到实际生活中。
2. 学生个别或小组完成一些实际问题的解答,教师进行讲解和指导。
五、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要继续巩固和复习的部分。
2. 学生进行自我评价和反思,教师进行必要的点评和指导。
教学延伸:1. 鼓励学生进行分式的综合运用,解决更复杂的实际问题。
2. 提供更多的分式练习题和挑战题,以满足学生的不同需求和能力水平。
教学评估:1. 教师通过课堂练习和个别辅导,对学生的掌握情况进行评估。
2. 教师可以设计小测验或作业,检验学生对分式的理解和运用能力。
教学反思:1. 教师应根据学生的实际情况,调整教学内容和教学方法,确保教学效果。
2. 教师应及时收集学生的反馈和意见,不断改进教学策略和方法。
《分式复习》教案

《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。
2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。
3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。
四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。
教学资源:教材、PPT、练习题、实际问题案例。
教学时间:1课时。
六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。
2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。
3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。
4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。
七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。
分式单元复习教案教师版

分式单元复习教案教师版一、教学目标1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练掌握分式的化简、运算及应用;(3)能够运用分式解决实际问题。
2. 过程与方法:(1)通过复习,提高学生对分式的认知水平;(2)培养学生运用分式解决实际问题的能力;(3)引导学生自主学习,提高学生的学习能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的自信心;(2)培养学生合作、探究的精神;(3)使学生感受到数学在生活中的应用。
二、教学内容1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式在实际问题中的应用。
三、教学重点与难点1. 重点:分式的概念、基本性质、化简与运算;2. 难点:分式在实际问题中的应用。
四、教学过程1. 复习导入:(1)回顾分式的概念,引导学生回忆分式的组成要素;(2)通过例题,复习分式的基本性质;2. 自主学习:(1)让学生自主完成课后练习,巩固分式的化简与运算;(2)引导学生运用分式解决实际问题,如面积计算、浓度问题等;(3)组织学生分享解题心得,讨论解决实际问题时的注意事项。
3. 课堂讲解:(1)讲解分式在实际问题中的应用,如利润计算、比例问题等;(2)通过案例分析,引导学生掌握分式在实际问题中的解题思路;4. 课堂练习:(1)设计针对性练习题,巩固学生对分式的掌握;(2)让学生独立完成练习题,及时发现并解决问题;(3)组织学生相互批改,提高学生的判断能力。
(2)让学生谈谈在实际问题中运用分式的体会,反思自己的学习过程;(3)鼓励学生提出问题,为下一节课的学习做好准备。
五、课后作业1. 完成课后练习题,巩固分式的化简与运算;2. 运用分式解决实际问题,如家庭预算、购物优惠等;3. 预习下一节课的内容,了解分式在实际问题中的应用。
六、教学策略1. 采用问题驱动法,引导学生主动探究分式的化简与运算规则;2. 利用案例分析,让学生体验分式在实际问题中的应用;3. 运用小组合作学习,提高学生的团队协作能力;4. 注重个体差异,因材施教,使每个学生都能在复习过程中得到提高。
(完整版)分式复习课教案

分式复习课学案教学目标1. 理解分式定义,掌握分式有意义的条件。
2. 掌握分式的加减乘除运算及混合运算。
3. 掌握分式方程的解法,会列分式方程解决实际问题。
教学重点: 分式加减乘除混合运算及分式方程 教学难点:列分式方程解决实际问题 、预习作业1. 分式的概念:2. 分式的基本性质:(1) 分式的分子分母同乘(或除以)一个 _________________________ ,分式的值 _________ (2) 分子,分母的公因式,系数的 __________ 与各 ______ 因式的 __________ 的积(3) ___________________________________________ 各分式的最简公分母,各分母系数的_____________________________________________________ 与 _______ 因式 ____________ 的积 3•分式的运算法则:(1) 乘法法则 ____________________________________________ (2) 除法法则 ____________________________________________ (3) 分式的乘方 _____________________________________ (4) 加减法则同分母分式相加减 ____________________________________________ 异分母分式相加减 ____________________________________________(5) 分式加、减、乘、除、乘方的混合运算法则 __________________________________________mn“m 、n“・、nm n“a 、n(6) a a ________ (a )____ (ab) _________ a a _________ (_) ____b(7) 当n 是正整数时 a -n = ______________ ( __________ ) 4.解分式方程的步骤(1) ___________________________________________ 去分母,方程两边同乘 化成整式方程(1) 分式的定义:一般地 (2) 分式有意义的条件是 (3) 分式无意义的条件是 (4) 分式为零的条件是 A , B 是两个 ________ ,且 ___________ 不等于0 ___________ 等于0 ______ 不等于0,且 _____A中含有字母,那么-叫分式B等于0(2)解出整式方程的解(3) _____________________________________ 将整式方程的解代入进行检验,若不为零,则整式方程的解就是_______________________ ,若等于零,则这个解 ___________ 原方程的解(3)二、预习交流三、展示探究例1.填空1.下列代数式中:2x2xx 1-,2X1-------- 2 2va b x y a 1曰八卡砧若y, , ,, 是分式的有、a b x y x m yx 12 .当x满足时,分式(x 1)(x 2)有意义。
八年级分式复习教案

教案:八年级分式复习一、教学目标:1.复习分数及其运算,能够灵活运用分数进行计算。
2.能够将分数化简为最简形式。
3.能够根据实际情境,灵活地选择分数的运算方法。
二、教学内容:1.分数的概念及表示方法。
2.分数的加、减、乘、除法运算。
3.分数的化简。
三、教学步骤:步骤一:引入新知识(5分钟)1.让学生回忆并复习分数的概念及表示方法。
2.引导学生思考分数的实际应用,例如:分数在日常生活中的运用。
步骤二:知识讲解与讨论(15分钟)1.讲解分数的加法:a.分母相同的两个分数相加,直接把分子相加,分母不变。
b.分母不同的两个分数相加,先通分,再进行相加。
2.讲解分数的减法:a.分母相同的两个分数相减,直接把分子相减,分母不变。
b.分母不同的两个分数相减,先通分,再进行相减。
3.讲解分数的乘法:a.将两个分数的分子和分母相乘,得到新的分数。
b.可以约分化简。
4.讲解分数的除法:a.将除数的倒数乘以被除数。
b.可以约分化简。
步骤三:实例操作(30分钟)1.分数的加减法:a.例子1:1/2+1/3=?b.例子2:2/5-1/4=?2.分数的乘除法:a.例子1:2/3×1/4=?b.例子2:3/4÷1/2=?3.实际应用题:a.例子1:小明一共走了2/3公里,其中的1/4公里是小王走的,剩下的部分是小明走的,求小明走了多少公里?b.例子2:一台机器每分钟生产1/6个产品,要生产10个产品,需要多长时间?步骤四:巩固练习(20分钟)1.完成课本上的练习题。
步骤五:小结归纳(5分钟)1.归纳分数的加、减、乘、除法运算的方法。
2.归纳分数化简的方法。
四、教学总结:通过本次分式复习课,学生们复习了分数的加、减、乘、除法运算,掌握了分数化简的方法,更加熟练地运用分数进行计算和解决实际问题。
五、教后反思:本节复习课以复习为主,主要通过讲解、例题及实际应用题的方式进行,学生能够积极参与课堂讨论,通过实例练习巩固所学知识。
分式单元复习教案教师版

分式单元复习教案教师版一、教学目标1. 知识与技能:理解和掌握分式的概念、分式的运算规则、分式的性质和分式的应用。
2. 过程与方法:通过复习和练习,提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和坚持不懈的精神。
二、教学内容1. 分式的概念:复习分式的定义,理解分式的分子和分母的概念。
2. 分式的运算:复习分式的加减乘除运算规则,掌握分式的运算方法。
3. 分式的性质:复习分式的基本性质,如分式的符号变化、分式的乘除性质等。
4. 分式的应用:解决实际问题,如比例计算、溶液浓度计算等。
三、教学重点与难点1. 教学重点:分式的概念、分式的运算规则、分式的性质和分式的应用。
2. 教学难点:分式的运算规则的理解和应用,解决实际问题的方法。
四、教学方法1. 讲解法:教师对分式的概念、运算规则、性质等进行讲解,引导学生理解和掌握。
2. 练习法:学生通过练习题目的方式,巩固所学知识,提高解题能力。
3. 案例分析法:教师给出实际问题,学生分组讨论和解决问题,培养学生的团队合作意识。
五、教学准备1. 教学课件:制作课件,展示分式的概念、运算规则、性质等知识点。
2. 练习题目:准备分式的练习题目,包括基础题和提高题。
3. 教学工具:准备黑板、粉笔等教学工具。
六、教学过程1. 导入新课:通过复习问题和回顾已学过的分式知识,激发学生的学习兴趣。
2. 分式概念复习:讲解分式的定义,强调分子和分母的概念,举例说明。
3. 分式运算复习:复习分式的加减乘除运算规则,进行示例运算,让学生跟随。
4. 分式性质复习:讲解分式的基本性质,如符号变化、乘除性质等,并进行示例说明。
5. 分式应用复习:解决实际问题,如比例计算、溶液浓度计算等,引导学生应用所学知识。
七、课堂练习1. 基础练习:提供一些基础的分式运算题目,让学生独立完成,巩固运算规则。
2. 提高练习:提供一些综合性的分式运算题目,让学生思考和解答,提高解题能力。
八年级数学分式复习教案

目标:1.复习和巩固八年级数学中关于分式的基本概念和运算规则;2.练习运用分式解决实际问题。
一、概念复习1. 分式概念回顾:分式是指分子和分母分别是代数式的表达式,形如$\frac{a}{b}$ ;2.分式的基本性质:分式的值可以是实数或者未知数,且分式可以约分;3.分式的约分:找出分子和分母的公因式,进行约分;4.分式的乘法:将两个分式化为最简形式后,分别计算其分子和分母的乘积,然后组合成一个新的分式;5.分式的除法:将除数和被除数的分式化为最简形式后,先转化为乘法问题,然后乘以被除数的倒数;6.分式的加法和减法:将分式化为通分后的最简形式,然后计算分子的和或差,再将结果与公共分母组合成一个新的分式。
二、运算规则回顾1. 分式乘法的运算规则:$\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}$;2. 分式除法的运算规则:$\frac{a}{b}\div\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}$;3. 分式加法的运算规则:$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$;4. 分式减法的运算规则:$\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}$。
三、应用练习例题1:小明每天都要喂养自己的宠物狗。
如果小明在一天中的$\frac{2}{5}$的时间里喂食狗粮,如果小明一天有6小时的时间,他每天要花多少时间喂食狗粮?解题思路:利用分式乘法的运算规则,将小明一天的时间$\frac{2}{5}$乘以一天的总时间6小时,得到的结果即为小明每天花在喂食狗粮上的时间。
解题步骤:1. 计算$\frac{2}{5}\cdot6$;2.化简分式,计算并写出结果。
例题2:若$\frac{a}{b}=2$,$\frac{c}{d}=3$,求$\frac{a-c}{b-d}$的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习课学案
教学目标
1、理解分式定义,掌握分式有意义得条件。
2、掌握分式得加减乘除运算及混合运算。
3、掌握分式方程得解法,会列分式方程解决实际问题。
教学重点:分式加减乘除混合运算及分式方程
教学难点:列分式方程解决实际问题
一、预习作业
1.分式得概念:
(1)分式得定义:一般地A,B 就是两个_______,且_____中含有字母,那么
B A 叫分式 (2)分式有意义得条件就是___________不等于0
(3)分式无意义得条件就是___________等于0
(4)分式为零得条件就是________不等于0,且_________等于0
2.分式得基本性质:
(1)分式得分子分母同乘(或除以)一个__________________,分式得值_________
(2)分子,分母得公因式,系数得_________与各______因式得_________得积
(3)各分式得最简公分母,各分母系数得___________与_______因式___________得积
3.分式得运算法则:
(1)乘法法则________________________________________
(2)除法法则________________________________________
(3)分式得乘方_________________________________
(4)加减法则
同分母分式相加减_______________________________________
异分母分式相加减_______________________________________
(5)分式加、减、乘、除、乘方得混合运算法则___________________________________
(6)=n m a a ______ =n m )a (______ =n )ab (______ =÷n m a a _____ =n )b
a
(______ (7)当n 就是正整数时=a
-n _____________ (_________)
4.解分式方程得步骤 (1)去分母,方程两边同乘________________________化成整式方程
(2)解出整式方程得解
(3)将整式方程得解代入___________________进行检验,若不为零,则整式方程得解就就是_____________________,若等于零,则这个解__________原方程得解
二、预习交流
三、展示探究
例1、填空
1、 下列代数式中:x 2x 2,y x y x y x y x b a b a y x x -++-+--1
,,,21,22π,m 1a +就是分式得有______________
2.当x 满足__________时,分式1(1)(2)x x x -+-有意义。
当x=__________时,分式29
3x x -+得
值为零,当x 满足____________时,分式21
3x x +-值为正,当x 满足___________时,分
式|
1x |51x 2---无意义 例2、计算
(1)222212142144a a a a a a a a -++•÷--+-+ (2)ab a b a +-2÷4222a b a a ab --×a
b -1 (3)44622+--x x x ÷-2x x 4-12×31+x (4)242331q p 85q p 21⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛---- 例3.计算
计算:(1)221224a a a a +÷+--(
) (2)265(2)22x x x x -÷---- (3)
12
)1(242+-----a a a a (4)
例4.解方程(1)2242111x x x x x -+=-+ (2 )21533x x x -=--- 例5、先化简,再求值 1、
2、
3、 当
例6应用题
1.A 城市每立方米水得水费就是B 城市得1、25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水得水费各就是多少元?
2.有一段公路急需抢修,此项工程原计划由甲工程队单独完成,需要20天,在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,
求乙工程队单独完成这项工程需要多少天?
四、当堂检测
1.当x 取何值时,下列分式有意义? (1)1x
21x -- (2)22671x x x --+
2.不改变分式得值,使分式2
312x x x x +---得分子、分母中最高次项得系数为正数。
3.计算:(1)22x xy y xy y x -•- (2)
25363458a b a b a b a b a b a b a b b a -------+-+- 4.某校八年级两个班各为玉树地震灾区捐款1800元。
已知2班比1班人均捐款多4元,2班得人数比1班得人数少10%。
请您根据上述信息,就这两个班得“人数”或“人均捐款”提出一个用分式方程解决得问题,并写出解题过程。
5.如果34(1)(2)21x A B x x x x -=+
----,求实数A 、B 得值
6.已知:511=+y x ,求y
xy x y xy x +++-2232得值 7. 解方程(1) 114112=-+-+x x x (2)9
1232312-=--+x x x。