PID调节方法
PID参数如何设定调节讲解

PID参数如何设定调节讲解PID(Proportional Integral Derivative)是一种常用的控制算法,广泛应用于自动化系统和过程控制中。
PID控制器根据被控对象的误差信号进行调整,通过调节比例、积分和微分这三个参数,可以有效地控制系统的稳定性和响应速度。
下面将详细讲解如何设置PID参数进行调节。
1. 比例参数(Proportional Gain,P):比例参数决定了输出调节量与误差信号之间的关系。
增大比例参数的值可以加快系统的响应速度,但过大的值会导致系统不稳定和超调。
通常的经验法则是,开始时可以设置一个较小的比例增益,然后逐渐增大直到系统开始出现振荡或超调为止。
根据实际情况,逐步调整比例参数,使系统具有准确的控制。
2. 积分参数(Integral Gain,I):积分参数用于处理系统的静态误差。
当系统的零偏较大或变化较慢时,可以适度增大积分参数,以减小系统的稳态误差。
但过大的积分参数会导致系统不稳定。
可以采用试验法来确定合适的积分参数:首先将比例和微分参数设置为零,然后逐渐增大积分参数直到系统开始超调。
然后逐渐减小积分参数直到系统达到最佳控制性能。
3. 微分参数(Derivative Gain,D):微分参数用于补偿系统的动态误差,主要用于抑制系统响应过程中出现的振荡。
过大或过小的微分参数都会导致系统不稳定。
微分参数的选择需要结合系统响应的快慢来进行调整。
通常情况下,较慢的系统需要较大的微分参数,而较快的系统需要较小的微分参数。
可以通过试验法或经验法来调整微分参数,以便使系统的响应与期望的响应曲线相适应。
4.调节顺序和迭代调节:在调节PID参数时,一般的建议是先从比例参数开始调节,然后再逐步加入积分和微分参数。
调节过程中应根据系统的实际情况进行迭代调节,通过反馈信息和实时数据不断调整参数,使系统的控制性能达到最佳状态。
在迭代调节过程中,可以采用逐步调整法,或者借助自动调节器进行优化。
PID控制器的原理与调节方法

PID控制器的原理与调节方法PID控制器是一种常见的控制算法,广泛应用于工业自动化系统中。
它是通过对反馈信号进行比例、积分和微分处理,来实现对被控对象的控制。
本文将介绍PID控制器的原理和调节方法,并探讨其在实际应用中的一些注意事项。
一、PID控制器原理PID控制器的原理基于三个基本元素:比例、积分和微分。
这三个元素分别对应控制误差的当前值、累积值和变化值。
PID控制器根据这三个元素的加权和来生成控制信号,以实现对被控对象的稳定控制。
1. 比例元素(P)比例元素是根据当前的控制误差进行调节的。
它直接乘以一个比例系数,将误差放大或缩小,生成相应的控制信号。
比例元素的作用是快速响应控制误差,但可能引起超调和震荡。
2. 积分元素(I)积分元素是对控制误差的累积值进行调节的。
它将误差进行积分,得到一个累积值,并乘以一个积分系数,生成相应的控制信号。
积分元素的作用是消除稳态误差,但可能导致系统响应过慢或产生超调。
3. 微分元素(D)微分元素是对控制误差的变化率进行调节的。
它将误差进行微分,得到一个变化率,并乘以一个微分系数,生成相应的控制信号。
微分元素的作用是预测误差的变化趋势,以提前调整控制信号,但可能引起过度调节和噪声放大。
通过调节比例、积分和微分元素的系数权重,可以优化PID控制器的响应速度、控制精度和抗干扰能力。
二、PID控制器调节方法PID控制器的调节方法通常包括经验法和自整定法两种。
1. 经验法经验法是基于经验和试错的方法,通过手动调节PID控制器的系数来实现对被控对象的控制。
具体步骤如下:步骤一:将积分和微分元素的系数设为零,只调节比例元素的系数。
步骤二:逐渐增大比例系数,观察系统的响应,并调整至系统稳定且响应时间较短。
步骤三:增加积分系数,减小系统的稳态误差,但要注意避免系统过调和震荡。
步骤四:增加微分系数,提高系统对突变的响应速度,但要避免过度调节和噪声放大。
2. 自整定法自整定法是基于系统辨识和参数整定理论的方法,通过对系统的频域或时域特性进行分析,自动计算得到PID控制器的系数。
PID参数怎样调整最佳

(3)临界比例带法,用临界比例带法整定调节器参数时,先要切除积分和微分作用,让控制系统以较大的比例带,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例带PBk(称为临界比例带)和波动周期Tk,然后按表3-4-3给出的经验公式求出调节器的参数值。按该表算出参数值后,要把比例带放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例带可以减小,再将PB放在计算值上。这种方法简单,应用比较广泛。但对PBk很小的控制系统不适用。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用 ,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。如果加进积分和微分作用,可按表3-4-2给出经验公式进行计算。若按这种方式整定的参数作适当的调整。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动一次时间为Ts。
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。一般可以通过理论计算来确定,但误差太大。目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。各种方法的大体过程如下:
(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。由于微分作用有抵制偏差变化的能力,所以确定一个Td到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。这样可根据曲线形状来改变PB或Ti。③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
PID调节参数及方法

PID调节参数及方法PID控制是一种常用的自动控制方法,它可以根据系统的实时反馈信息,即误差信号,来调整控制器的输出信号,从而实现系统的稳定性和性能优化。
PID调节参数是PID控制器中的比例系数、积分系数和微分系数。
调节这些参数可以达到所需的动态性能和稳态精度。
下面将介绍PID调节参数及常用的调节方法。
1.比例系数(Kp):比例系数用来调节控制器输出信号与误差信号的线性关系。
增大比例系数可以加快系统的响应速度,但可能会引起系统的超调和不稳定。
减小比例系数可以提高稳定性,但可能会导致系统的响应速度变慢。
调节比例系数的方法一般有经验法和试探法。
经验法:根据经验将比例系数初值设为1,然后逐渐增大或减小,观察系统的响应情况。
当增大比例系数时,如果系统的超调量明显增加,则应适当减小比例系数;相反,如果系统的超调量过小,则应适当增大比例系数。
反复调节,直到得到满意的响应。
试探法:根据系统的特性进行试探调节。
根据系统的频率响应曲线或步跃响应曲线,选择适当的比例系数初值,然后逐渐增大或减小,观察系统的响应。
如果系统的过冲量大,则应适当减小比例系数;如果系统的响应速度慢,则应适当增大比例系数。
反复试探调节,直到得到满意的响应。
2.积分系数(Ki):积分系数用来补偿系统的静差,增加系统的稳态精度。
增大积分系数可以减小系统的稳态误差,但可能会引起系统的震荡和不稳定。
减小积分系数可以提高稳定性,但可能会导致系统的静差增大。
调节积分系数的方法一般有试探法和校正法。
试探法:将积分系数初值设为0,然后逐渐增大,观察系统的响应。
如果系统的震荡明显增强,则应适当减小积分系数;相反,如果系统的响应速度慢,则应适当增大积分系数。
反复试探调节,直到得到满意的响应。
校正法:根据系统的静态特性进行校正调节。
首先将比例系数设为一个适当的值,然后减小积分系数,直到系统的静差满足要求。
这种方法通常用于对稳态精度要求较高的系统。
3.微分系数(Kd):微分系数用来补偿系统的过冲和速度变化,增加系统的相对稳定性。
PID调节方法

PID调节方法PID调节是一种广泛应用于工业过程控制的方法,通过测量控制系统的输出与期望值之间的误差,并根据误差的大小来调整控制系统的输入,以使输出与期望值尽可能一致。
PID调节的主要目标是快速、准确地调整系统的响应速度、稳定性和稳态精度。
下面将详细介绍PID调节的原理、调参方法和一些常见的应用。
1.PID调节的原理\[Output = K_p \cdot Error + K_i \cdot \int{Error}\ dt + K_d \cdot \dfrac{d(Error)}{dt}\]其中,\(K_p\)、\(K_i\)和\(K_d\)分别是比例、积分和微分参数。
比例项(P)通过根据误差的大小来调整输出,具有快速的响应速度和较小的超调。
积分项(I)通过累积误差来减小稳态误差,具有消除静差的作用。
微分项(D)通过对误差变化率的控制,可以避免输出的过度波动。
通过调整三个参数的大小和比例,可以在控制系统中实现适当的响应速度、稳定性和稳态精度。
2.PID调节的调参方法调参是PID调节的关键步骤,合适的参数设置可以使系统达到最佳的控制效果。
常见的PID调参方法有经验法、试验法和优化算法。
(1)经验法:根据经验公式设置PID参数。
这种方法基于经验,适用于一些简单的控制系统。
常见的经验法有经验公式法、手动调参法和Ziegler-Nichols法。
其中,经验公式法是根据控制对象的性质和要求选择合适的参数;手动调参法是通过观察系统响应和对参数的手动调整来获得合适的参数;Ziegler-Nichols法是一种经验调参法,通过对系统进行临界增益试验来确定PID参数。
(2)试验法:基于试验和观察系统响应的方法。
通过改变PID参数的值,观察系统的响应和性能指标,如超调量、调整时间和稳态误差等,来判断参数的合适性。
这种方法需要多次试验调整,比较耗时。
(3)优化算法:使用数学方法和计算机算法来最佳的PID参数。
常见的优化算法有基于遗传算法、粒子群算法和模拟退火算法等。
pid参数设置方法

pid参数设置方法PID参数设置是控制系统中的一项重要工作,它决定了系统对外界干扰和参考信号的响应速度和稳定性。
PID(比例-积分-微分)控制是一种基本的控制方法,通过调节比例、积分和微分三个参数,可以优化控制系统的性能。
本文将介绍三种常用的PID参数设置方法:经验法、试探法和自整定法。
一、经验法:经验法是一种基于经验和实际运行经验的参数设置方法。
它通常适用于对系统了解较多和试验数据比较丰富的情况下。
经验法的优点是简单易懂,但需要有一定的经验基础。
具体步骤如下:1.比例参数的设置:将比例参数设为一个较小的值,然后通过试验观察系统的响应情况。
如果系统的响应过冲很大,说明比例参数太大;如果响应过于迟缓,则说明比例参数太小。
根据这些观察结果,逐步调整比例参数的大小,直到系统的响应达到理想状态。
2.积分参数的设置:将积分参数设为一个较小的值,通过试验观察系统的响应情况。
如果系统存在静差,说明积分参数太小;如果系统过冲或振荡,说明积分参数太大。
根据这些观察结果,逐步调整积分参数的大小,直到系统的响应达到理想状态。
3.微分参数的设置:将微分参数设为0,通过试验观察系统的响应情况。
如果系统过冲或振荡,说明需要增加微分参数;如果系统响应过缓或不稳定,说明需要减小微分参数。
根据这些观察结果,逐步调整微分参数的大小,直到系统的响应达到理想状态。
二、试探法:试探法是一种通过试验获取系统频率响应曲线,然后根据曲线特点设置PID参数的方法。
具体步骤如下:1.首先进行一系列的试验,改变输入信号(如阶跃信号、正弦信号等)的幅值和频率,记录系统的输出响应。
2.根据试验数据,绘制系统的频率响应曲线。
根据曲线特点,选择合适的PID参数。
-比例参数:根据曲线的峰值响应,选择一个合适的比例参数。
如果曲线的峰值响应较小,比例参数可以增大;如果曲线的峰值响应较大,比例参数可以减小。
-积分参数:根据曲线的静态误差,选择一个合适的积分参数。
如果曲线存在静差,积分参数可以增大;如果曲线没有静差,积分参数可以减小。
PID参数以及PID调节

PID参数以及PID调节PID参数是一种常用的控制器参数,用于控制系统中的反馈环节,以达到期望的输出。
PID调节是对PID参数进行调整,以优化控制系统的性能。
PID(Proportional-Integral-Derivative)是一个由比例项、积分项和微分项组成的数学表达式,用于确定控制系统的输出。
在PID参数中,比例项(P项)用于根据当前偏差的大小调整输出;积分项(I项)用于根据过去偏差的累积值调整输出;微分项(D项)则用于根据当前偏差的变化速度调整输出。
PID参数的值直接影响着控制系统的性能,因此需要进行调节。
PID调节有多种方法和技巧,下面将介绍一些常用的调节方法:1.手动调节法:首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到出现超调现象。
接着逐步减小P项数值,使系统的超调范围逐渐缩小,直至满足要求为止。
最后,逐一增加I项和D项的数值,注意调整的顺序和步骤,直到获得最佳的响应速度和稳定性。
2. Ziegler-Nichols法:这是一种经典的基于实验的PID调节方法。
该方法首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到系统输出开始出现稳定振荡。
通过记录此时的临界增益值Kc和振荡周期Tu,可以使用固定的数学公式计算出P、I和D的参数。
3.自整定法:这是一种基于系统参数辨识的PID调节方法。
该方法通过对于开环与闭环响应的分析,识别出系统的速度常数和时间延迟等参数,从而确定最优的PID参数。
4.基于优化算法的自动调节法:这是一种由计算机自动调整PID参数的方法,常用的有遗传算法、模糊控制算法、粒子群优化算法等。
该方法基于优化算法,通过不断迭代的方式寻找最优的PID参数组合,以达到最佳的控制效果。
总结起来,PID参数的调节是一个复杂的过程,需要结合实际系统的特点和要求,运用不同的调节方法和技巧进行。
通过合理的参数调节,可以优化控制系统的性能,提高系统的稳定性、响应速度和抗干扰能力,从而实现更好的控制效果。
PID参数如何设定调节

PID参数如何设定调节PID(比例-积分-微分)控制器是一种常用的自动控制器,可以根据系统的反馈信号对控制对象进行调节。
PID参数是控制器的核心参数,其调节的准确性和合理性直接影响到控制系统的性能。
一般来说,PID参数的调节可以通过以下几个步骤进行:1.确定控制对象的准确数学模型。
首先,需要通过实际测试或系统分析得到控制对象的传递函数或状态空间模型。
这是确定PID参数调节的基础。
2. 根据控制器的需求和性能指标进行参数初步设定。
在确定控制对象的数学模型后,根据控制器的要求和性能指标,可以初步设定PID参数的取值范围。
通常,可以使用经验公式或者根据控制对象的动态特性进行设定。
比如,可以使用经验法则Ziegler-Nichols法则,它提供了一种经验性的套路,可以根据控制对象的阶数(惯性系数T和时延系数L)设定PID参数的经验公式。
3.利用实验或仿真进行参数调试。
在初步设定PID参数后,需要进行实验或者仿真以观察系统的响应。
可以通过改变PID参数的取值来观察系统的响应,进而评估系统的性能。
在实验或仿真中,可以通过以下几种方法来调节PID参数:-比例项(P项):增大P项的取值可以增强系统的灵敏度,但可能引起系统的震荡或过冲。
减小P项的取值可以减小系统的震荡,但可能导致系统的超调减小。
-积分项(I项):增大I项的取值可以增强系统的静差消除能力,但可能导致系统的震荡或者系统响应时间延长。
减小I项的取值可以减小系统的震荡,但可能导致系统的静差增大。
-微分项(D项):增大D项的取值可以使系统的响应速度更快,但可能导致系统的超调增大或震荡。
减小D项的取值可以减小系统的超调,但可能导致系统的响应速度减慢。
4. 进行反复调试和优化。
在进行实验或仿真后,需要根据观察结果对PID参数进行修正和优化。
如果系统的响应不理想,可以根据经验或者优化算法进行调整。
最常用的算法有Ziegler-Nichols算法、曲线拟合法或者用专业控制软件进行自动优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、先调节P值(I、D均为0),使其调节速度达到要求。
P值增减先按倍
数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。
2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。
直到偏差小到符合要求。
3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值,
又不发生震荡为度。
1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后
再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘
往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,
理想曲线两个波,前高后低4比1,
2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节
系统中P.I.D参数经验数据以下可参照:温度T:
P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L:
P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。
PID控制原理与PID参数的整定方法
PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。
参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对
炉温的手动控制来理解。
阅读本文不需要高深的数学知识。
1.比例控制
有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制
与人工控制的控制策略有很多相似的地方。
下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。
假设用热电偶检测炉温,用数字仪表显示温度值。
在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。
然后用手操作电位器,调节加热的电流,使
炉温保持在给定值附近。
操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根
据当时的温度误差值调整控制加热电流的电位器的转角。
炉温小于给定值时,误差
为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。
炉温大
于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。
上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。
闭环中存在着各种各样的延迟作用。
例如调节电位器转角后,到温度上升到新的
转角对应的稳态值时有较大的时间延迟。
由于延迟因素的存在,调节电位器转角后
不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟
作用。
比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。
比例系数如果过大,即
调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高
忽低,来回震荡。
增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。
但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动
态性能变坏,比例系数太大甚至会使闭环系统不稳定。
单纯的比例控制很难
保证调节得恰到好处,完全消除误差。
2.积分控制
PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。
PID控制程序是周期性执行的,执行的周期称为采样周期。
计算机的程序图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。
图1积分运算示意图
每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)
成正比的微小部分。
误差为负值时,积分的增量为负。
手动调节温度时,积分控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。
温度低于设定值时误差为正,积分
项增大,使加热电流逐渐增大,反之积分项减小。
因此只要误差不为零,控制器的
输出就会因为积分作用而不断变化。
积分调节的“大方向”是正确的,积分项有减小误差的作用。
一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值,对应于上述温度控制系统中电位器转角的位置L。
因此积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。
PID控制器输出中的积分部分与误差的积分成正比。
因为积分时间TI在积分项的分
母中,TI越小,积分项变化的速度越快,积分作用越强。
3.PI控制
控制器输出中的积分项与当前的误差值和过去历次误差值的累加值成正比,因此积
分作用本身具有严重的滞后特性,对系统的稳定性不利。
如果积分项的系数设置得
不好,其负面作用很难通过积分作用本身迅速地修正。
而比例项没有延迟,只要误
差一出现,比例部分就会立即起作用。
因此积分作用很少单独使用,它一般与比例和微分
联合使用,组成PI或PID控制器。
PI和PID控制器既克服了单纯的比例调节有稳态误差的缺点,又避免了单纯的积分
调节响应慢、动态性能不好的缺点,因此被广泛使用。
如果控制器有积分作用(例如采用PI或PID控制),积分能消除阶跃输入的稳态误差,这时可以将比例系数调得小一些。
如果积分作用太强(即积分时间太小),相当于每次微调电位器的角度值过大,其累
积的作用会使系统输出的动态性能变差,超调量增大,甚至使系统不稳定。
积
分作用太弱(即积分时间太大),则消除稳态误差的速度太慢,积分时间的值应
取得适中。
4.微分作用
误差的微分就是误差的变化速率,误差变化越快,其微分绝对值越大。
误差增大时,其微分为正;误差减小时,其微分为负。
控制器输出量的
微分部分与误差的微分成正比,反映了被控量变化的趋势。
有经验的操作人员在温度上升过快,但是尚未达到设定值时,根据温度变化的趋势,预感到温度将会超过设定值,出现超调。
于是调节电位器的转角,提前减小加热的电流。
这相当于士兵射击远方的移动目标时,考虑到子弹运动的时间,需要一定的提前量一样。
图2 阶跃响应曲线
图2中的c (∞)为被控量c (t)的稳态值或被控量的期望值,误e(t) = c (
∞) - c (t)。
在图2中启动过程的上升阶段,当时,被控量尚未超过其稳态值。
但是因为误差e(t)不断减小,误差的微分和控制器输出的微分部分为负值,减小了控制器的输出量,相当于提前给出了制动作用,以阻碍被控量的上升,所以
可以减少超调量。
因此微分控制具有超前和预测的特性,在超调尚未出现之前,就能提前给出控制作用。
闭环控制系统的振荡甚至不稳定的根本原因在于有较大的滞后因素。
因为微分项能预测误差变化的趋势,这种“超前”的作用可以抵消滞后因素的影响。
适当的微分控制作用可以使超调量减小,增加系统的稳定性。
对于有较大的滞后特性的被控对象,如果PI控制的效果不理想,可以考虑增加微分控制,以改善系统在调节过程中的动态特性。
如果将微分时间设置为0,微分部分将不起作用。
微分时间与微分作用的强弱成正比,微分时间越大,微分作用越强。
如果微分时间太大,在误差快速变化时,响应曲线上可能会出现“毛刺”。
微分控制的缺点是对干扰噪声敏感,使系统抑制干扰的能力降低。
为此可在微分部分增加惯性滤波环节。
5.采样周期
PID控制程序是周期性执行的,执行的周期称为采样周期。
采样周期越小,采样值越能反映模拟量的变化情况。
但是太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,将使PID控制器输出的微分部分接近为零,所以也不宜将采样周期取得过小。
应保证在被控量迅速变化时(例如启动过程中的上升阶段),能有足够多的采样点数,不致因为采样点数过少而丢失被采集的模拟量中的重要信息。
6.PID参数的调整方法
在整定PID控制器参数时,可以根据控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。
有经验的调试人员一般可以较快地得到较为满意的调试结果。
在调试中最重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。
为了减少需要整定的参数,首先可以采用PI控制器。
为了保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以避免出现系统不稳定或超调量过大的异常情况。
给出一个阶跃给定信号,根据被控量的输出波形可以获得系统性能的信息,例如超调量和调节时间。
应根据PID参数与系统性能的关系,反复调节PID的参数。
如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。
如果阶跃响应没有超调量,但是被控
量上升过于缓慢,过渡过程时间太长,应按相反的方向调整参数。
如果消除误差的速度较慢,可以适当减小积分时间,增强积分作用。
反复调节比例系数和积分时间,如果超调量仍然较大,可以加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。