三角函数
三角函数公式大全

一二三四三角函数公式大全 三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
本文将三角函数公式列举出来,方便大家查阅。
两角和三角函数公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB倍角三角函数公式三倍角三角函数公式半角三角函数公式五六七和差化积三角函数公式积化和差三角函数公式诱导三角函数公式八九十万能三角函数公式其他三角函数公式双曲函数公式十一01020304其他三角函数公式三角函数公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα三角函数公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα三角函数公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα三角函数公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα0506 cot(π-α)= -cotα三角函数公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα三角函数公式六:07 公式七:。
三角函数的定义与性质

三角函数的定义与性质一、三角函数的定义三角函数是解析几何和三角学中非常重要的一类函数。
它们以三角形内的角度作为自变量,返回一个对应于角度的函数值。
在这里,我将介绍三角函数的定义及其性质。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
它们的定义如下:1. 正弦函数(sin):对于任意角θ,正弦函数的值定义为三角形中与角θ相对的边的长度与斜边长度的比值。
即sinθ = 对边/斜边。
2. 余弦函数(cos):对于任意角θ,余弦函数的值定义为三角形中与角θ相邻的边的长度与斜边长度的比值。
即cosθ = 邻边 / 斜边。
3. 正切函数(tan):对于任意角θ,正切函数的值定义为正弦函数与余弦函数的比值。
即tanθ = sinθ / cosθ。
4. 余切函数(cot):对于任意角θ,余切函数的值定义为余弦函数与正弦函数的比值。
即cotθ = cosθ / sinθ。
5. 正割函数(sec):对于任意角θ,正割函数的值定义为斜边与邻边的比值。
即secθ = 1 / cosθ。
6. 余割函数(csc):对于任意角θ,余割函数的值定义为斜边与对边的比值。
即cscθ = 1 / sinθ。
以上是三角函数的定义。
它们是以三角形中的长度比值构建的,可以用于解决各种与三角角度有关的问题。
二、三角函数的性质三角函数具有许多重要的性质,包括周期性、偶奇性、界值和定义域等。
1. 周期性:三角函数的周期性是它们最基本的性质之一。
正弦函数和余弦函数的周期都是2π,即sin(x + 2π) = sinx,cos(x + 2π) = cosx。
而正切函数和余切函数的周期是π,即tan(x + π) = tanx,cot(x + π) = cotx。
这意味着在一个周期内,三角函数的值重复出现。
2. 偶奇性:正弦函数和余切函数是奇函数,而余弦函数和正切函数是偶函数。
三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点,记:),(y x P 22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:,,。
1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+三、诱导公式⑴παk 2+)(Z k ∈、α−、απ+、απ−、απ−2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ−2、απ+23、απ−23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅−⋅=−βαβαβαsin sin cos cos )cos(⋅−⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=− βαβαβαtan tan 1tan tan )tan(⋅−+=+βαβαβαtan tan 1tan tan )tan(⋅+−=−五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos −=−=−=…)(∗ ααα2tan 1tan 22tan −=二倍角的余弦公式)(∗有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=−2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα−=−六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +−=,ααα2tan 1tan 22tan −=。
三角函数入门课

三角函数入门课一、三角函数的定义三角函数是以弧度或角度作为自变量的单调函数。
它由三角关系引出,可以用来描述平面图形的变化和解决角的折线关系问题。
一般的三角函数有正弦(sin)、余弦(cos)、正切(tan)、正割(cot)、余割(sec)和余切(csc)等函数,它们分别等于弧度或角度在它们相应三角图形中可以得到的比值。
二、三角函数的基本概念1.正弦定义:sin(θ)= Opposite / Hypotenuse = Y/R2.余弦定义:cos(θ)= Adjacent /Hypotenuse = X/R3.正切定义:tan(θ)= Opposite / Adjacent = Y/X4.余割定义:sec(θ)= Hypotenuse / Adjacent = R/X5.余切定义:csc(θ)= Hypotenuse / Opposite = R/Y6.正割定义:cot(θ)= Adjacent /Opposite = X/Y三、三角函数的运算法则1.正弦公式:sin(a)=sin(A + B)=sin A x cos B + cos A x sin B2.余弦公式:cos(a)=cos(A + B)=cos A x cos B - sin A x sin B3.正切公式:tan(a)=tan(A + B)=(tan A + tanB) / (1 - tanA · tanB)4.余割公式:sec(a)=sec(A + B)=(sec A · sec B - 1) / (sec A · tanB + sec B · tanA)5.余切公式:csc(a)=csc(A + B)=(csc A · csc B - 1) / (csc A · tanB + csc B · tanA)6.正割公式:cot(a)=cot(A + B)=(cot A - cot B) / (1 + cot A · cot B)四、三角函数的重要性三角函数的重要性非常大,它是数学中的重要一环,常被应用在多种领域,如几何学中有用于计算角度,用于解决止角和平行线问题,物理学中用来计算定向和速度,引擎动力学中用来计算角动量,天体物理学中用来计算地球和行星的运行与轨道,测绘学中也gu用来解决大地测量定位和解止角问题;机械设计学中也用到了它们,以计算曲线和轮阶的参数关系;建筑学中用三角函数来计算建筑物的架空;电子科学中则用它们解决电位的变换;水文学中也有应用它们,如流速等关系都与三角函数有关系。
三角函数所有的公式

三角函数公式汇总常见角三角函数值:sin 0o =0 cos 0o =1 tan 0o =0 cot 0o 不存在 sin 30o =21 cos 30o =23 tan 30o =33cot 30o =3 sin 60o =23 cos 60o =21 tan 60o =3 cot 60o =33 sin 45o =22cos 45o =22tan 45o =1cot 45o =1 sin 90o =1 cos 90o =0 tan 90o 不存在cot 90o =0 任意角三角函数:sin(2k ℼ+α)= sin αcos(2k ℼ+α)= cos αtan(2k ℼ+α)= tan αsin(ℼ+α)= - sin αcos(ℼ+α)= - cos αtan (ℼ+α)= tan αsin(ℼ-α)=sin αcos(ℼ-α)= - cos αtan (ℼ-α)= - tan αsin(2ℼ-α)= - sin αcos(2ℼ-α)=cos αtan (2ℼ-α)= - tan αSin (2π-α)=cos α cos (2π-α)=sin αSin (2π+α)=cos α cos (2π+α)=-sin αSin (23π-α)= - cos α cos (23π-α)= - sin α Sin (23π+α)= - cos α cos (23π+α)=sin α 两角和差三角函数:sin(A+B)=sinAcosB+cosAsinBsin(A- B)=sinAcosB- cosAsinBcos(A+B)=cosAcosB- sinAsinBcos(A- B)=cosAcosB+sinAsinB tan(A+B)=B tan A tan B tan A tan -+1 tan(A- B)=Btan A tan B tan A tan +-1 cot(A+B)=Bcot A cot B cot A cot +-1 cot(A-B)=Bcot -A cot B cot A cot 1+ 三角函数半角公式: sin(2A )=2A cos -1 cos(2A )=2A cos 1+ tan(2A )=Acos A cos 1+-1=A sin A cos -1=A cos A sin +1 cot(2A )=A cos Acos 1-+1三角函数平方公式:sin 2α+cos 2α=11+tan 2α=sec 2α1+cot 2α=csc 2αsin 2α=221αcos - cos 2α=αtan 211+=221αcos + tan 2α=αtan tan 212- 三角函数2倍角公式:sin2α=2sinαcosαcos2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1 tan2α=αtan αtan 212- tan tan2α1=2αcos αsin +1=αsin αcos -1 3倍角三角函数公式: sin3α=3sin α-4sin 3α =4sin αsin(60o +α)sin(60o -α) sos3α=4cos 3α-3cos α =4cos αcos(60o -α)cos(60o +α) tan3α=tan αtan(60o -α)tan(60o +α) 三角函数万能公式:sin α=2αtan 212αtan+2 cos α=2αtan 212αtan +-21 tan α=2αtan 212αtan -2三角函数和差化积公式: sinA+sinB=2sin 2B A +cos 2B A - sinA- sinB=2sin 2B A -cos 2B A + cosA+cosB=2cos 2B A +cos 2B A - cosA- cosB= -2sin 2B A +sin 2B A - tanA+tanB=Bcos A cos )B A sin(+ tanA - tanB=Bcos A cos )B A sin(- cotA+cotB=Bsin A sin )B A sin(+ cotA - cotB=Bsin A sin )B A sin(- tanA - cotB= - B sin A cos )B A cos(+三角函数积化和差公式: sinAsinB= -21[cos(A+B)-cos(A-B)] cosAcosB=21[cos(A+B)+cos(A-B)] sinAcosB=21[sin(A+B)+sin(A-B)] cosAsinB=21[sin(A+B)-sin(A-B)] 辅助角公式:asin α+bcos α=b 2a 2 sin(α+ѱ) (公式中tan ѱ=a b ) 正弦定理:A sin a =B sin b =C sin c =2R (R 为△ABC 外接圆半径)余弦定理:a 2=b 2+c 2-2bc ·cosAb 2=a 2+c 2-2ac ·cosBc 2=a 2+b 2-2ab ·cosC整理不易,请勿盗版。
三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。
所有三角函数的公式大全

所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。
掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。
以下是所有三角函数的公式大全。
一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。
2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。
3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。
4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。
在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。
二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。
2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。
3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。
4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。
三角函数大全

三角函数大全1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ]7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]N倍角公式半角公式两角和公式同角三角函数的基本关系倒数关系:tanα ·cotα=1sinα ·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscα平方关系:平常针对不同条件的常用的两个公式一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常把坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sinα=∠α的对边/∠α 的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sina)+(1-2sina)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sina)=4sina[(√3/2)-sina]=4sina(sin60°-sina)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(√3/2)^2]=4cosa(cosa-cos30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下:sin2α=2sinαcosα tan2α=2tanα/(1-tanα )cos2α=cosα-sinα=2cosα-1=1-2sinα可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中三倍角公式sin3α=3sinα-4sinα=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式sinα=2tan(α/2)/[1+tan(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan&s(α/2)]其他sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tan A^6)八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tan A^6+tanA^8)九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*ta nA^4-84*tanA^6+9*tanA^8)十倍角公式sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tan A^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)为方便描述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …对所有的自然数n:1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数(总复习)一、三种函数
二、 性质
1、函数y =sin x 的图象经变换可得到()sin y A x =ω+ϕ()0>ω的图象
2、函数y =Asin (ωx +ϕ)(A >0,ω>0)的性质。
(1)定义域: (2)值域: (3)周期性:T=
(4)奇偶性:ϕ=k π,k ∈z 时是 函数,ϕ=k π+2
π
,k ∈z 时是 函数,当ϕ≠
2
k π
,k ∈z 时,既不是奇函数也不是偶函数。
(5)单调性:函数y =Asin (ωx +ϕ)(A >0,ω>0)的单调增区间可由
2k π-
2π≤ωx +ϕ≤2k π+2
π
,k ∈z 解得;单调减区间可由 2k π+2
π
≤ωx +ϕ≤2k π+32π,k ∈z 解得。
三、 三角函数公式 1.和差公式
(1)cos(α+β)= (2)cos(α-β)= (3)sin(α+β)= (4)sin(α-β)= (5)tan(α+β) = (6)tan(α-β) = 2.诱导公式
sin(-α) = cos(-α) = tan (-α)= sin(π/2-α) = cos(π/2-α) = sin(π/2+α) = cos(π/2+α) =
sin(π-α) = cos(π-α) = tan (π-α)= sin(π+α) = cos(π+α) = tan (π+α)=
3.二倍角公式
正弦 sin2α= 余弦 cos2a= 正切 tan2α=
y =sin x y=sinxX 横坐标 伸(缩) 倍 左(右)()sin x ϕ=+ 左(右) 平移
横坐标 ()sin y x ωϕ=+ 纵坐标
伸(缩) 倍 ()sin y A x ωϕ=+ 纵坐标 y =sin x y=sinxX ()sin y A x ωϕ=+
y =sinwx y=sinxXXXxx ()sin y x ωϕ=+
基础训练
1. 已知ABC △三个顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.
(1) 若0AB AC ∙=
,求c 的值;(2)若5c =,求sin A ∠的值.
2.已知函数),64cos(
)(π+=x A x f R x ∈,且2)3
(=π
f . (1) 求A 的值; (2) 设],2
,
0[,π
βα∈1730)344(-=+
παf ,5
8
)324(=-πβf ,求)cos(βα+的值.
3. 在ABC ∆中,角A 、B 、C 所对应的变分别为a 、b 、c ,则a b ≤“”是
sin sin A B ≤“”的( )
A.充分必要条件
B.充分非必要条件
C.必要非充分条件
D.非充分非必要条件
4. 函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )
(A)13(,),44k k k Z ππ-+∈ (B)13
(2,2),44
k k k Z ππ-+∈ (C)13(,),44k k k Z -
+∈ (D)13
(2,2),44
k k k Z -+∈
5. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,cos sin 0a C C b c --=.
(Ⅰ)求A ;
(Ⅱ)若2a =,ABC ∆,b c 。
速度训练(真题练习)
1. 已知△ABC 中A ,B ,C 所对的边分别为a ,b ,c ,
(1﹣cos2B )=8sinBsinC ,
A +=π.
(Ⅰ)求cosB 的值;
(Ⅱ)若点D 在线段BC 上,且BD=6,c=5,求△ADC 的面积.
2. 已知函数2()2sin cos 2sin 1f x x x x =-+(x ∈R )
(1)求函数的单调递减区间;
(2)在ABC ∆中角A B C 、、所对的边分别是a b c 、、,
且2AC CB ⋅=
,
c =
(A+)=
8
2
f πA 为锐角,求a 的值.
3. 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知
(I )求C ;
(II )若
,求的周长.
()f x ABC 2cos (cos cos ).C a B+b A c =c ABC = ABC
4. 在△ABC 中,c b a ,,分别是∠A ,∠B ,∠C 的对边长,已知A A cos 3sin 2=.
(1)若mbc b c a -=-2
22,求实数m 的值;(2)若3=a ,求△ABC 面积的最大值.
5. 函数f (x )=Asin (ωx+φ)(其中A >0,|φ|<
)的图象如图所示,为了得到g (x )
=sin2x 的图象,则只要将f (x )的图象( )
A .向右平移个单位长度
B .向右平移个单位长度
C .向左平移
个单位长度 D .向左平移
个单位长度。