一元二次方程(全章)学习资料

合集下载

九年级上册数学人教版一元二次方程

九年级上册数学人教版一元二次方程

九年级上册数学人教版一元二次方程一元二次方程学习资料。

一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 举例。

- 方程x^2+2x - 3 = 0,这里a = 1,b = 2,c=-3,它是一元二次方程。

- 而方程x^2+(1)/(x)=1不是一元二次方程,因为它不是整式方程(分母中含有未知数x)。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于形如x^2=k(k≥slant0)的方程,可以直接开平方求解。

- 例如,方程x^2=9,解得x=±3。

- 对于方程(x - 1)^2=4,则x - 1=±2,即x = 1±2,所以x = 3或x=-1。

2. 配方法。

- 步骤:- 把方程ax^2+bx + c = 0(a≠0)变形为x^2+(b)/(a)x=-(c)/(a)。

- 在等式两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。

- 把左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例如,解方程x^2+4x - 1 = 0。

- 首先将方程变形为x^2+4x=1。

- 然后在两边加上4(因为4 = ((4)/(2))^2),得到x^2+4x + 4 = 1+4,即(x + 2)^2=5。

- 解得x=-2±√(5)。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 其中b^2-4ac叫做判别式,记作Δ。

初中数学九年级上册《一元二次方程》知识点

初中数学九年级上册《一元二次方程》知识点

九上数学第21章《一元二次方程》知识点1.一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:20(0)ax bx c a ++=≠。

其中a 为二次项系数,b 为一次项系数,c 为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2.一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=,∴x a =-。

注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。

(3)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。

注意:当0n <时,方程无解(4)公式法:一元二次方程20(0)ax bx c a ++=≠根的判别式:24b ac∆=-0∆>⇔方程有两个不相等的实根:2b x a-±=(240b ac -≥)0∆=⇔方程有两个相等的实根0∆<⇔方程无实根3.韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系:1x +2x =b a -;1x ∙2x =c a4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。

一元二次方程全章复习讲义

一元二次方程全章复习讲义

一元二次方程 内容简介:1. 了解一元二次方程的定义及一元二次方程的一般形式:20(0)ax bx c a ++=≠.2. 掌握一元二次方程的四种解法,并能灵活运用.3. 掌握一元二次方程根的判别式,并能运用它解相应问题.4. 掌握一元二次方程根与系数的关系,会用它们解决有关问题.5. 会解一元二次方程应用题. 知识点一:一元二次方程的定义及一般形式【知识要点】一元二次方程的一般形式:20(0)ax bx c a ++=≠例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

知识点二:一元二次方程的解【知识要点】1、 当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。

2、 在20(0)ax bx c a ++=≠中,x 取特殊值时,a 、b 、c 之间满足的关系式。

例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m x x 的两个根,则m 的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

一元二次方程讲义全

一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。

3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。

4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。

4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是()A。

(x+1)^3=2(x+1)B。

2√x+1-11=0C。

ax^2+bx+c=0D。

x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。

例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。

例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。

例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。

一元二次方程章节知识点复习资料

一元二次方程章节知识点复习资料

一元二次方程章节知识点复习资料【知识点一】一元二次方程的解1. 已知2230x x --=,则224x x -的值为( )A .﹣6 B. 6 C .﹣2或6 D .﹣2或302.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根, 则a 的值为( )A.1或4B.-1或-4C.-1或4D.1或-43.已知α是一元二次方程20x x --=1较大的根,则下面对α的估计正确的是( )A .0<α<1B . 1<α<1.5C . 1.5<α<2D . 2<α<3 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ).1 . 1 .0 .2A B C D --5.若1x =-是关于x 的一元二次方程2310x x m +++=的一个解,则m 的值为 .6.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是 .【知识点二】一元二次方程的解法1.一元二次方程x 2﹣x ﹣2=0的解是( )A .x 1=1,x 2=2B .x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D .x 1=﹣1,x 2=22.一元二次方程220x x --=1的解是( )12121212. 1 .11.11.11A x x B x C x D x ===+=-=+=-=-=-3.方程220x x -=的解为 .4.方程x 2﹣3x =0的根为 .5.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则b a= . 6.解方程:x 2﹣5x ﹣6=0.7.解方程:2x 2﹣4x ﹣1=0.【知识点三】一元二次方程根的判别式1.一元二次方程x 2﹣4x +5=0的根的情况是( )A.有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根2.关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )9999. . . .4444A mB mC mD m ><=<- 3.一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( ). 1 . 1 . 1 .1Am B m C m D m >=<≤4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是( )A .27B .36C .27或36D .185.已知关于x 的方程22(1)04m x m x +-+=有两个不相等的实数根,则m 的最大整数值是 .6.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,求k 的值.7.已知关于x 的一元二次方程(a +c )x 2+2bx +(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.【知识点四】一元二次方程的根与系数的关系1.已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于( )A . 4-B . 1-C . 1D . 42.若α、β是一元二次方程2260x x +-=的两根,则α2+β2=( )A .﹣8B .32C .16D .403.若方程210x x +-=的两实根为α、β,那么下列说法不正确的是( )A . 1αβ+=-B . 1αβ=-C . 223αβ+=D . 111αβ+=-4.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是( )A.2680x x +=﹣ B. 2230x x +=﹣ C. 260x x =﹣﹣ D. 260x x +=﹣ 5.若12,x x 是一元二次方程210160x x ++=的两个根,则12x x +的值是( )A.﹣10B.10C.﹣16D.166.x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使12110x x +=成立?则正确的是结论是( ) A .m =0时成立 B .m =2时成立 C .m =0或2时成立 D .不存在7.若α、β是方程2230x x 的两个实数根,则22αβ+=___.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k = .9.已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式2a 3+b 2+3a 2﹣11a ﹣b +5的值为 .10.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn +3m +n = .11.方程x 2+2kx +k 2﹣2k +1=0的两个实数根x 1,x 2满足x 12+x 22=4,则k 的值为 .12.已知关于x 的方程x 2+ax +a ﹣2=0(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【知识点五】实际问题与一元二次方程1.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )2222.100(1)81 .100(1)81 .100(1%)81 .10081A x B x C x D x +=-=-==2.某果园2018年水果产量为100吨,2020年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .100)1(1442=-xB .144)1(1002=-xC .100)1(1442=+xD .144)1(1002=+x3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )11.(1)28 .(1)28 .(1)28 .(1)2822A x xB x xC x xD x x +=-=+=-=4.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=155.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.6.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程.7.学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.8.某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2018年投资1000万元,预计2020年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2020年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?10. 天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?11.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?12.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.。

初一数学一元二次方程全章精品讲义

初一数学一元二次方程全章精品讲义
当 ,方程有两个相等的根;
当 <0,方程无实数解。
典例分析:
题型1:根据判别式判断根的情况
例1:方程 的根的情况()
A、该方程有两个相等的实数根B、该方程有两个不相等的实数根
C、该方程没有实数根D、无法确定
例2:不解方程判断下列方程根的情况
(1) (2) (3)
(4) (5)
题型2:利用跟的判别式求方程中某个字母的值或取值范围
d=====( ̄▽ ̄*)b_____________________________________
例2:已知 是完全平方式,则 的值为______。
例3:若 是完全平方公式,则 的值为_______。
例4:根据完全平方式填空
(1) (2)
(3) (4)
题型2:用配方法解一元二次方程
例1:用配方法解下列方程:
例3:已知一元二次方程 的两个根分别为 ,则二次三项式 可分解为_________________。
例4:在实数范围为定义一种运算“*”,其规则为 ,根据这个规矩,方程 的解为______________。
例5:若关于 的方程 与 有相同的实数根,则 的值为_______。
例6:已知 为非负数,方程
(2)如果方程有两个相等的实数根,是判断△ABC的形状,并说明理由。
(3)如果△ABC是等边三角形,试求出这个一元二次方程的根。
例3:已知 的两边AB、AD的长是关于x的方程 的两个实数根。
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长?
(2)若AB的长为2,那么平行四边形ABCD的周长为多少?
6、求证:关于 的一元二次方程 恒有两个实数根.
7、已知关于 的方程
(1)当该方程的一个根为1时,求 的值及该方程的另一个根

(完整word版)一元二次方程讲义

(完整word版)一元二次方程讲义

第23章 一元二次方程1.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.一般形式:c b a c bx ax ,,(02=++是已知数,)0≠a 。

其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。

(1)下列方程中,是关于x 的一元二次方程的是( )A x 1+x 2=1B 212+x -21-x =1C x 2-x +1=0D 2x 3-5xy -4y 2=0(2)将方程x 2+3=x +3x 化成一般形式是____________,二次项系数是____________,一次项系数是____________,常数项是____________。

(3)关于x 的方程m 2x -3x=2x -mx+2是一元二次方程,m 应满足什么条件?(4)已知关于x 的一元一次方程(m -2)2x +3x+2m -4=0,有一个解是0,求m 的值.(1)下列方程 ①-x 2+2=0 ②2x 2-3x =0 ③ -3x 2=0 ④ -3x 2=0 ⑤ x 2+x1=0 ⑥232+x =5x ⑦ 2x 2-3=(x -3)(x 2+1)中是一元二次方程的有( ) A 2个 B 3个 C 4个 D 5个(2)方程(m+1)2x -(2m+2)x+3m -1=0有一个根为0,则m 的值为( ) A 32 B 31 C -32 D -31(1)若()5112=-+m x m 是一元二次方程,则m= 。

(2)一元二次方程()()0112=-+++c x b x a 化成一般形式为01342=++x x ,试求(2a+b )·3c 的值.2.一元二次方程的解法(1)直接开平方法(1)方程2x =1 的实数根的个数是 。

(2)用直接开平方法解下列方程① 92x -25=0 ② ()422=+x若方程()0212=--n m x ,试说明方程根的情况. (2)因式分解法(1)方程2x -1=0的根是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.1 一元二次方程(1)基础知识梳理1.只含有 ___个未知数,并且未知数的最高次数是___ 的整式方程叫做一元二次方程.2.一元二次方程的一般形式是___________ ,其中ax 2是____________,_____是二次项系数;bx 是__________, _____是一次项系数;_____是常数项。

(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。

二次项系数0a ≠是一个重要条件,不能漏掉。

)3.使方程左右两边_____的未知数的值是一元二次方程的解,一元二次方程的解也叫做一元二次方程的_______,知识点1 一元二次方程的定义【例1】判断下列方程是否为一元二次方程:22222(1)10(3)23x 10x x(5)(3)(3)x x -==+=-22 x (2)2(x -1)=3y12 x-- (4)-=0 (6)9x =5-4x知识点2 一元二次方程的一般形式【例2】将方程(8-2x )(5-2x )=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.练习1.:将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项:① 52x -1=4x ② 42x =81 ③-2x 2+1=6x④ 4x(x+2)=25⑤(3x-2)(x+1)=8x-3知识点3 一元二次方程的解【例3】已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( ) A.1 B.-1 C.0 D.无法确定 练习:2.下面哪些数是方程x 2+x-12=0的根? -4, -3, -2, -1, 0, 1, 2, 3, 4。

3.你能想出下列方程的根吗?(1) x 2-36 = 0 (2) 4x 2-9 = 0知识点4 列一元二次方程4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:1)若两相邻偶数的积为528,设较小的一个偶数为x,则可以列方程____________.2)如图,在宽为20 m,长30 m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500 m 2,若设路宽为x m,则可得关于x 的一元二次方程的一般形式为____________.3)4个完全相同的正方形的面积之和是25,求正方形的边长x;4)一个长方形的长比宽多2,面积是100,求长方形的长x ;【巩固练习】5.在下列方程中,一元二次方程有_____________. ①2370x += ②20ax bx c ++= ③(x-2)(x+5)=2x -1 ④2530x x-= 6.2230px x p q -+-=是关于x 的一元二次方程,则( ).A .p=1B .p>0C .p ≠0D .p 为任意实数 7.方程22x =3(x-6)化为一般式后二次项系数、•一次项系数和常数项分别是( ). A .2,3,-6 B .2,-3,18 C .2,-3,6 D .2,3,68.方程3x 2-3=2x+1的二次项系数为_______,一次项系数为 ______,常数项为_________. 9.已知方程2390xx m -+=的一个根是1,则m的值是______.10.若a是方程2x2-x-3=0的一个解,则6a2-3a的值为( )A.3B.-3C.9D.-911.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.12.若关于x的方程(m+3)+(m-5)x+5=0是一元二次方程,试求m的值,并计算这个方程的各项系数之和.13.小明在写作业时,一不小心把方程3x2-■x-5=0的x前的数用墨水盖住了,但通过答案知道该方程的一个根是x=5,请你帮助小明求出被墨水覆盖的数.14.已知关于x的方程(m2-1)x2-(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出该一元二次方程的二次项系数、一次项系数及常数项.达标检测(10分钟)15.下列方程是关于x的一元二次方程的是( )A.x2+1x2=0 B.ax2+bx+c=0C.(x-1)(x+2)=1D.3x2-2xy-5y2=016.方程2x2-6x=9的二次项系数、一次项系数、常数项分别为( )A.6,2,9B.2,-6,9C.2,-6,-9D.2,6,917.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900 m2的矩形绿地,长比宽多10 m,设绿地的宽为x m,根据题意可列方程为( ) A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900D.2[x+(x+10)]=90018.若一元二次方程ax2-bx-2 015=0有一根为x =-1,则a+b=________.19.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,求m的值.21.2.1 直接开平方法解一元二次方程你会解一元二次方程吗?比如:方程x2=25,你能求出这个方程的解吗?我们把这种求一元二次方程的解的方法叫做_____________.解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.【例1】计算:用直接开平方法解下列方程:①x2=8 ② (2x-1)2=5 ③ 4m2-9=0 ④ x2+4x+4=1 ⑤ 3(x-1)2-9=108练习:1.用直接开平方法解下列方程:① x2-81=0 ② x2+6x+9=0③(2-x)2=4 ④16(x-2)2-25=0用直接开平方法解一元二次方程的三个步骤(1)看:看是否符合x2=p或(x+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(x+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.【巩固练习】1.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根2.若8x2-16=0,则x的值是_________.3.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.4.如果a、b2-12b+36=0,那么ab的值是_______.5.用直接开平方法解下列方程:①(2-x)2-81=0 ② 2(1-x)2-18=027 mx-6.若k2+2=(x-1)2,这个方程的一个根是3,求k的值及另一个根?7.当k=________时,方程x2-2(k+1)x+4=0的左边是一个关于x的完全平方式.8.在实数范围内定义运算“#”,其法则为:a# b=a2-b2,求方程(4# 3)# x=24的解.达标检测(10分钟)9.方程x2=16的解是( )A.2B.4C.±2D.±410.方程(x-3)2=16的根是( )A.x1=x2=3B.x1=-1,x2=7C.x1=1,x2=-7D.x1=-1,x2=-711.若关于x的方程(x+1)2=1-k没有实根,则k的取值范围是( )A.k<1B.k<-1C.k≥1D.k>112.有下列方程:①x2-2x=0; ②9x2-25=0;③(2x-1)2=1; ④13(x+3)2=27.其中能用直接开平方法解的是( )A.①②③B.②③C.②③④D.①②③④13.用直接开平方法解下列方程:① 9x2=25; ② x2-√256=0;③3x2-1=5 ④ 4x2+16x+16=9⑤(2t-1)2=9; ⑥ (x-3)2-9=0.⑦2(x-3)2=72;⑧9(y+4)2-49=0.21.2.2配方法解一元二次方程(1)填空:(1)x2+6x+______=(x+______)2;(2)x2-12x+_____=(x-_____)2(3)4x2+4x+_____=(2x+______)2.(4)x2- 4x+_____=(x-_____)2用配方法解下列关于x的方程1.通过配成形式来解一元二次方程的方法,叫做配方法. 可以看出,配方是为了,把一个一元二次方程转化成两个来解.2.(1)当p>0时,方程(x+n)2=p有两个的实数根,x1=√p,x2=√p.(2)当p=0时,方程(x+n)2=p有两个的实数根,x1=x2=.(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,所以方程(x+n)2=p实数根.【例1】解方程:① x2-4x+2=0 ② x2+8x-9=0 【例2】解方程:① 2x2-4x-8=0 ② 2x2+2=6x用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项.(2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式.(4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.【巩固练习】1.用配方法解下列关于x的方程:(1)x2-8x+1=0 (2)2x2+1=3x(3)3x2-6x+4=0 (4)4x2-6x-3=0(5)x24x-9=2x-11 (6)x(x+4)=8x+12 (7)x2-8x+7=0 (8)9y2-18y-4=02.(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2(3)x2+px+_____=(x+______)23.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3C.(x+2)2+3 D.(x+2)2-34.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 5.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或96.方程(x+1)2=4(x-2)2的解是( )A.x=1B.x=5C.x1=5,x2=1D.x1=1,x2=-27.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.8.如果x2-4x+y2+13=0,求(xy)z的值.9.用配方法证明多项式x2-4x+5的值不小于1.10.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.①鸡场的面积能达到180m2吗?能达到200m吗?②鸡场的面积能达到210m2吗?达标检测(10分钟)11.用配方法解方程x2+x=2时,应在方程的两边同时( )A.加14B.加12C.减14D.减1212.填空:(1)x2+6x+________=(x+________)2;(2)x2-8x+________=(x-________)2;(3)x2+72x+________=(x+________)2.13.方程4x2-4x+1=0的解为________.14.若关于x的方程(x-a)2+b=0有解,则b的取值范围是________.15.用配方法解下列一元二次方程:(1)x2-7x-18=0; (2)x2-2x=5;(3)2x2+3=7x; (4)6x2-x-12=0.21.2.3用公式法解一元二次方程解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,(1)根的判别式一般地,式子b2-4ac叫做一元二次方程ax2+bx +c=0(a≠0)根的判别式,通常用希腊字母“Δ”表示它,即Δ=b2-4ac.①当Δ>0时,方程有________的实数根;②当Δ=0时,方程有________的实数根;③当Δ<0时,方程________实数根.(2)当Δ≥0时,x=2ba-±叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.要点突破1 用公式法解一元二次方程【例1】用公式法解下列方程.① 2x2-4x-1=0 ② 5x+2=3x2 ③(x-2)(3x-5)=-11 ④ 2x2-22x+1=0用公式法解一元二次方程的四个步骤(1)化:若方程不是一般形式,先把一元二次方程化为一般形式ax2+bx+c=0(a≠0).(2)定:确定a,b,c的值.(3)算:计算b2-4ac的值.(4)求:若b2-4ac≥0,则利用求根公式求出方程的根;若b2-4ac<0,则原方程没有实数根. 练习:1.用公式法解下列方程.① x2-4x-7=0 ②5x2-3x=x+1 ③4x2-3x+1=0要点突破2 一元二次方程根的判别式【例2】若关于x的一元二次方程(m-1)x2+x+1=0有实数根,则m的取值范围是____________. 变式:方程(m-1)x2+x+1=0有实数根,求m的值及方程的根.练习:2.关于x的一元二次方程ax2+bx+14=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=________,b=________.3.已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.根的判别式的“三大作用”(1)判:不解方程,根据b2-4ac的符号,直接判断方程根的情况;(2)求:已知方程根的情况,求方程中字母系数的取值范围;(3)证:根据b2-4ac恒大于0,恒小于0或恒等于0,证明方程根的情况.【巩固练习】4.关于x的一元二次方程x2+ax-1=0的根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.若关于x的一元二次方程(k-1)·x 2+2x-2=0有不相等实数根,则k的取值范围是( )A.k>12B.k ≥12C.k>12且k ≠1D.k ≥12且k ≠1 6.若方程x 2+kx+9=0有两个相等的实数根,则k=_____.7.当x=______时,代数式x 2-8x+12的值是-4. 8.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____. 9、用公式法解下列方程.①2x 2-3x-23=0 ②x 2+x-6=0③ x 2-24x+9=0 ④ 3x 2+10x=2x 2+8x达标检测(10分钟) 10.用公式法解方程6x -8=5x 2时,a ,b ,c 的值分别是( )A.5,6,-8B.5,-6,-8C.5,-6,8D.6,5,-811.下列一元二次方程中,有两个不相等的实数根的方程是( )A.(x -1)2=0 B. x 2+2x -19=0 C.x 2+4=0 D.x 2+x +1=0 12.用公式法解下列方程:① 3x 2-2x +2=0; ② (x -2)(3x -5)=1.13.求证:关于x 的方程x 2+(2k +1)x +k -1=0有两个不等的实数根.21.2.4因式分解法1:知识准备 (1)分解因式:①x 2-2x =________; ②x 2-16=________; ③x 2-6x +9=________; 2、归纳:(1)对于一元二次方程,先因式分解使方程的一边化为0,再使方程的另一边分解成_____________的形式,从而实现令每个因式分别等于0,即得到两个一元一次方程,再_____________________,它们的解就是原方程的解,这种解法叫做______________。

相关文档
最新文档